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ABSTRACT

This paper describes a novel framework for compressive sam-
pling of multichannel signals that are highly correlated across the
channels. In this work, we assume few number of independent
sources are generating the multichannel observations based on a
linear mixture model. Moreover, sources are assumed to have
sparse/compressible representations in some orthonormal basis. The
main contribution of this paper lies in rephrasing the compressed
sampling of multichannel data as the compressive source separa-
tion problem by knowing the mixture parameters. A number of
simulations measure the performance of our recovery algorithm.
Comparing to the classical CS scheme -which recovers data of all
channels separately- ours indicates a significant reduction in both,
the number of measurements to be sent and the complexity of the
decoding algorithm (i.e., scaling by the number of sources rather
than the number of channels). We demonstrate an application of our
scheme in acquisition of the Hyperspectral images. Our algorithm
proposes an accurate, low cost and fast recovery from small number
of the transmitted measurements that are taken by a low resolution
camera.

Index Terms— Compressed sensing, Hyperspectral images,
Mixture model, Source separation, Sparsity, /1-minimization.

1. INTRODUCTION

Hyperspectral images (HSI) are a collection of hundreds of images
which have been acquired simultaneously in narrow and adjacent
spectral bands. HSI finds many applications including agriculture,
mineral exploration and environmental monitoring. HSI are pro-
duced by imaging spectrometers which measure the light reflected
from many areas, each of which represented as a pixel, on the Earth’s
surface. A prism splits the light into many narrow, adjacent wave-
length and the energy in each band is measured by a separate de-
tector. The spectral range and the spatial resolution of the HSI are
restricted by limitations of detector designs, the requirements of data
storage, transmission and processing [1].

As an alternative to the Shannon/Nyquist sampling which takes
N periodic samples to acquire the data z € R”, it is possible with
the compressive sampling (CS) [2, 3] approach, to reduce the num-
ber of the measurements to M < N, if the data = has a sparse or
compressible representation § € R™ in some basis & € RV *¥ (.e.
x = V#). CS measurements are inner product between a measure-
ment vector, which can be a random vector, and the data vector x.
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Thus, the set of measurements can be expressed in a matrix form
y= oz (1

where y € R™ is the vector containing the CS measurements and ®
is the measurement matrix of size M x N. The number of measure-
ments M necessary for CS recovery is determined by the sparsity of
x and the mutual coherence between the measurement matrix ¢ and
the basis ¥, see [2, 3].

As it is costly to acquire each pixel of the HSI, it becomes very
interesting to use the CS approach to acquire HSI. This can be done
using the single-pixel hyperspectral camera (SPHC) [4], where the
hyperspectral lightfield is focused onto a digital micromirror device
(DMD). The DMD acts as an optical spatial modulator and reflects
part of the incident lightfield into a spectrometer. Thus the DMD
computes in the analog domain an inner product between a measure-
ment vector with 0/1 entries, and the image in all the spectral bands
simultaneously. As a consequence the same measurement matrix is
applied to each spectral band image and each measurement depends
on only one spectral band image. Different approaches to reconstruct
the data form these separate measurements have been studied in [5].

In multichannel signals, the idea of exploiting the correlations
across the channels have been studied in [6, 7] to decrease even more
the number of the compressive measurements. These approaches as-
sume the signals of all channels having more or less the same sup-
port. As a result only few measurements are required to recover
the joint support, however, they are not sufficient to reconstruct the
coefficients, which remains as the bottleneck of these schemes. In
this paper we assume that the data is generated from a linear source
mixture model, presented in section 2.1. We then propose a new
sampling and transmission scheme for HSI in section 2.2 as well as
a recovery algorithm in section 3. Simulations in section 4 show
that we can drastically reduce the number of measurement needed to
reconstruct the data as compared to the classical CS approach.

2. PROBLEM SETUP

2.1. Observations Model

In order to represent the hyperspectral images, define a matrix X €
R7*N | where each of its rows X7 (in this note, by superscript we
index a row of a matrix) corresponds to a slice of the global cubic im-
age i.e, a 2-D image observed in a certain spectral band (we reshape
this slice into an IV dimensional vector). Here, J is the number of
the spectral channels and N denotes the resolution of the images for
each channel.

Typically there is a high dependency between the slice images
of HSI (rows of X)) i.e., the structures in the images are more or less
preserved across the spectral channels, however some parts highlight
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more or less in certain frequency ranges. This comes from the fact of
having few subregions consisting of different materials and therefore
due to their different frequency responses they reflect the light with
specific attenuation across the frequency bands. We refer to these
regions as different sources. More precisely, we define a source im-
age S* € [0, 1]1 *N asa positive valued vector which represents the
percentage of a given material (indexed by ¢) in each pixel of the
scene. As a consequence, for a given pixel of the scene (indexed
by n), the sum of the consisting sources must be equal to one i.e.,
Vn € {1,..., N} the source images must satisfy >, S*(n) = 1.
In practice, if the spatial resolution of the image is high compared
to the structural content of the image, each pixel corresponds to only
one material, which means that the sources are disjoint and take their
values in the set {0, 1} . Moreover, for each source 7 there is a
spectral response vector A; € R7*! that is associated with each
nonzero element of S®. With descriptions above, any hyperspectral
image can be decomposed by several distinct sources as following
[1]:

X = AS. 2)

Where, rows of the matrix S € RY*¥ and the columns of A €

R7*7 are collections of I source images and their corresponding
spectral vector. If we assume the observed region is composed of
few number of materials, say I*, there will be only I* rows in S
which have nonzero energy and hence, (2) can be rewritten as,

X = Az« Sz, ©)

where, Z* is the set that indexes the active sources with cardinality
I

In real applications, sources appear as piecewise constant im-
ages (contours of binary values) which implies compact sparse/ com-
pressible representations in wavelet domain for both S* and X 7. We
define matrix ¥ to be the 2D wavelet coefficients of the rows of .S
and from the model (3) we can deduce

X = Az 80T, “4)

where, U is the 2D wavelet basis.

In the next sections we take this representation of the hyperspec-
tral images which contains both sparsification along slices (due to the
wavelet transform) and dimension reduction from J to I™* (thanks to
the few existing sources), to develop a coding/decoding scheme that
compress the whole cubic image in few number of measurements to
be sampled and transmitted.

2.2. Sampling and Transmission Mechanism

In this section we describe our compression scheme which merges
the idea of compressed sampling together with utilizing the knowl-
edge of the mixture model X = AS, in order to efficiently reduce
the number of the samples and transmitted data. Note that, we need
to know what are the materials that can be present in the HSI as well
as their spectral response which can be picked out of a spectral li-
brary like the USGS digital spectral library [8]. More details are as
follows:

e For each spectral channel j, we sample its corresponding im-
age by only M < N linear measurements

" =a(x7)7, ®)
where, ® € RM*¥ is the sampling matrix which is unique
for all channels, and we choose it to be i.i.d. random Gaus-

sian due to nice properties ! of these types of matrices for
compression. In HSI applications, ® can be implemented by
flipping the micromirrors of DMD at random. Stacking these
samples together we form the J X M matrix of measurements
Y = X"

o We apply the pseudo inverse matrix AT = (A7 A) 7' A7 from
the left side to Y and threshold out the rows with zero energy
to have only measurements from the active sources. Consid-
ering the model (4) for the observations, this step results in
dimension reduction of Y to a I x M matrix as following,

Y = [AY]; =2 070", (©6)

Here, by [.]+ we denote the thresholding operator that applies
on matrices to pick their rows with nonzero energy.

Following the steps above, finally we transmit the indices of the
active sources Z* plus their compressed measurements to the base
station and what is received is typically corrupted by some noise
(e.g. quantization, transmission noise and mismatch with model (2)
due to some unexpected material frequency response) which can be
modeled by,

Y =3.0707 + 2. @)

Z € RT"*M i the noise matrix that is assumed to have elements
with i.i.d. A'(0, o) distribution.

Note that, to be able to define At in the second step, A has to be
a full rank matrix. Having a fix number of channels, this fact obvi-
ously pose an upper bound on the number of sources to be detected
such that, at least / < J. In addition, if observations do not per-
fectly obey the model 2 (e.g., due to some noise), in order to have
stability, A has to be chosen such that its pseudo inverse prevents a
huge amplification of noise, which implies even further constraints
(roughly saying it results in I < J). Note that, in the case where
A would be close to be singular, it would be still possible to use the
regularized pseudo-inverse operator (AT A + eI)* A, where € is
a small number. We also need to update the thresholding operator to
pick rows of A'Y", containing more than a certain level of energy.

3. MULTICHANNEL RECOVERY ALGORITHM

In this section we describe our algorithm which recovers the mul-
tichannel data X from a set of incomplete noisy measurements Y.
The measurement matrix ¢ has to be known at the base station. As
previously mentioned, the main feature of our scheme lies in recov-
ering the independent sources .S, rather than estimating directly the
multichannel data. For this purpose let us rewrite (7) as,

Vec(Y) = & Vec(Xz+) + Vec(Z2). (8)
Where, Vec(.) reshapes the columns of a matrix to a vector and bold
face ® € RM!I™*NI" is the Kronecker product between the I* x I*
identity matrix and ®V i,e., = OV ® Id;=.
Considering the fact that sources have sparse representations in
wavelet domain, the source recovery problem can be formulated as
the solution to the following non-convex optimization,

$7+ = argmin ||Vec(§31*)||o
S« €B
st |[Vec(Y) — @ Vec(Sz+)|2 < € )

'Random Gaussian matrices have the property of being low-coherent with
any orthogonal basis, with a very high probability [3, 2, 4, 5].
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(a) Original data.

y § A

(b) Reconstruction without the thresholding
step (Normalized MSE=0.23).

L Hr -
(c) Reconstruction with the thresholding step
(Normalized MSE=0.19).

Fig. 1. Reconstruction of HSI using our recovery scheme, by randomly sampling 0.45% of the original cube, demonstrated for a slice/channel

j = 90.

Here, lp-norm counts the number of the nonzero elements in a vec-
tor, and B denotes the set of matrices such that the inverse wavelet
transform of its rows (i.e. rows of the matrix X7+ 7)) have binary el-
ements, and are disjoints with each other. This optimization uniquely
recovers Vec(Xz~) if it is sparse enough, however, finding this so-
lution is NP-hard [9].
To have a feasible solution which estimates (9) with a polynomial-

time algorithm, our scheme proposes the two following steps:

o First, by using the idea of [2, 3] we substitute the [o mini-
mization by [4, i.e.,

S = arg min ||Vec(§z*)||1

st |[Vec(Y) — @ Vec(Sz+)|l2 < e (10)

This minimization can be solved via second-order cone pro-
gram (SOCP) with a polynomial time complexity. However,
the solutions obviously may not belong to the set 3.

e In order to reconstruct sources that follow our model, here,
we add a simple thresholding step to refine the solution of
[1-minimization. More precisely, after recovering S+ from
(10), we apply the inverse wavelet transform to find St
Now, since each pixel of the image can only belong to one
source, for each column of Sz-, we set the value of its largest
element to one and the rest to zero. In this way, we associate
each pixel to the source that is most likely to be belonged to.

Once the algorithm determines the sources, the whole HSI cube can
be recovered through the mixing model in (3).

4. SIMULATIONS AND PERFORMANCE ANALYSIS

Our simulations are based on HSI synthesized using (2), where I =
6 sources are extracted from a ground truth map image? of farms at
the suburb of Geneva city and the source spectra (i.e. matrix A)
are choosen at random form the USGS digital spectral library * [8].

2We acknowledge Xavier Gigandet for providing this ground truth map.
3 Available at the url http://speclab.cr.usgs.gov/spectral.lib06.

Figure 1(a) shows one channel of the resulting HSI. The HSI cube
consists of dimension 256 x 256 x 128, which indicates slices of the
resolution N = 256 x 256 that are taken over J = 128 frequency
bands. The encoder (e.g. satellite) assumed to be provided by the
knowledge of the materials (i.e. matrix A) that are potentially ex-
isting in the region (here I = 36, including the true existing source
spectra). Following our sampling scheme, we set M = 6400 to
randomly sample the whole cube by about 10% of its original size.
Further, we apply the decorrelation step and we transmit only M ™
measurements (i.e., about 0.45% of the original HSI) to the base sta-
tion. Figure 1 compares the recovery performance of our algorithm
for one slice of the HSI, with and without applying the thresholding
step. As we can see, applying thresholding decreases MSE only by
4%, however, comparing those images, 1(c) looks much more simi-
lar to the original one. This highlights the role of source separation
by the last thresholding step, which results in recovering images that
are piecewise constant and indeed looking more natural.

In the second setup we choose the first 64 x 64 pixels of the
upper left part of the images across the first 64 spectral channels,
which enables us to run quick experiments that evaluates the aver-
age performance of our scheme for various compression matrices of
different sizes. Figures 2(a) and 2(b) respectively demonstrate the
accuracy — that is the ratio of the misclassified pixels to the total
number of pixels in the source image — of the source separation and
the reconstruction error, under different SNR regimes and for dif-
ferent compression sizes. The plots are averaged over 20 indepen-
dent realizations of the random measurement matrix and Gaussian
additive noise. Both figures indicate stable recovery, improving by
increasing M, up to a limit that is determined by the noise power.
It is noteworthy that, the total number of measurements has to be
transmitted to have an acceptable reconstruction (say, with accuracy
> 90%) is only about 0.34% of the size of the original HSL

Figure 3 compares the performance of the classical CS scheme
applied on each channel separately (i.e., compression/reconstruction
of each slice of HSI independently) with the one of our CS scheme
via source separation (Source CS). As we can observe, thanks to
exploiting the underlying correlations in HSI, our scheme indicates
a huge gain in reconstruction for a fixed M. Moreover, comparing
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Fig. 2. Source separation accuracy and HSI reconstruction error (normalized MSE) of our recovery scheme, for different levels of noise and

different number of measurements M.
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Fig. 3. Reconstruction error of the HSI (Normalized MSE) using
classical CS recovery (applied separately on each channel), and our
source separation based recovery scheme (Source CS).

to the classical CS, this improvement is achieved by transmitting
only M I measurements (instead of M J), which significantly saves
the battery life of the satellite and the complexity of the decoding
algorithm.

5. CONCLUSION

In this paper, we proposed a new method for compressive sampling
(CS) of multichannel data which exploits the correlation across the
channels via a source mixture model. Based on the knowledge of the
mixture parameters, we apply a decorrelation step, so that the num-
ber of the measurements to be transmitted scales with the number of
the sources. Since the source images have sparse representations in
2D wavelet basis, at the decoder side, we solve an inverse problem
with relaxed sparsity constraint (/1 -minimization), which follows by
a thresholding step to reconstruct the sources (hence, the whole data)
from those few measurements. We run several simulations on hyper-
spectral images indicating that our scheme stably recovers the noisy
multichannel data and it outperforms the classical CS scheme which
recovers data of each channel separately. However, one of the main

limitation of this approach is that the spectral response of the materi-
als of the HSI, i.e. the matrix A, has to be known in advance. Future
works include the estimation or re-estimation of the spectral matrix
A so as to deal with situations where the materials which compose
the HSI are unknown or different from the spectral library.
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