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ABSTRACT
The field of optical flow techniques in vision is presently
dominated by global variational techniques based on pixel-
wise matching costs, ie. based on the Horn & Schunck
paradigm, as opposed to local window based matching costs,
ie. based on the Lucas-Kanade paradigm. Motivated by the
needs of some difficult real world data we underline the prac-
tical interest of the combined local global (CLG) method pro-
posed by Bruhn et al. that combines both approaches.

We will show that embedding the basic first order CLG
equations in a large displacement iterative framework leads
to a technical difficulty. We shall see how Bruhn et al. im-
plicitly deal with this difficulty and we will propose an al-
ternative approximation that yields fewer computations and
performs equally well.

1. INTRODUCTION

Modern optical flow algorithms find their roots in approaches
that appeared in the 80’s. We can classify them into local
window based methods and global techniques. According to
Middlebury rating, the latter generally provides better results

However, global methods are known to be noise sensi-
tive. Combining local and global approaches is the solution
given by Bruhn et al. [3]. This method has the advantage of
supposing some local regularity in addition to the global reg-
ularity. This property improves the robustness of the method
and makes it a good candidate for real world application se-
quences with poor image quality, such as sequences from
aerial videos from unmanned aerial vehicle (UAV) and Parti-
cle Image Velocimetry (PIV).

Figure 2 illustrates well the later context. The studied
sequence here is a synthetic set of images generated with the
EUROPIV Synthetic Image Generator (SIG) [6] consisting
in a series of 30 vortices. We present in figure 1 an image
from this sequence and the norm of the ground truth. Figure 2
shows the qualitative differences between the local approach,
the global approach and the proposed combined local global
method. We see here the contour plot of the norm of the
solutions given by these three methods in a close-up on the
seventh vortex (starting from the top left). The global method
solution looks noisy while the local method gives a smooth
but inaccurate solution. The CLG method clearly gives the
better result.

Our contribution concerns the large displacement context
where the so called optical flow constraint (OFC) is not suf-
ficient. Indeed, in figure 4 the maximum flow reaches 8 pix-
els. Bruhn et al. adopt a classical iterative OFC approach in
their original work on CLG. It consists in iteratively rewrit-
ing an OFC equation with images warped by the previously
estimated flow.

Figure 1: Left: Example of a frame from a synthetic PIV
sequence representing a grid of vortices with different radius
and velocity. Right: Norm of the ground truth.

Figure 2: Zoom on the seventh vortex of the PIV sequence
of figure 1. First: L2-norm of the ground truth. Second: L2-
norm of the local method FOLKI [4] result using a window
radius equal to 10 pixels. Third: L2-norm of the TV-L1 [12]
global method result with λ = 40, θ = 0.25, ε = 0.1 and no
edge weighting. Fourth: L2-norm of our CLG implemen-
tation result using α = 60 and a window radius equal to 3
pixels.

This iterative warping approach has been justified in the
global context [8]. However we show that this demonstration
does not work in the CLG framework and we explicit the
approximation made by Bruhn et al.

Starting from the intensity conservation criterion in the
large displacement context, we propose a finer approxima-
tion which can be considered as an original justification of
warping technique in CLG.

The resulting method leads to results very close to CLG
actually slightly smoother for identical parameters. It ap-
pears well adapted to PIV flow field estimation as shown in
our results.

In the next section we recall basic notions concerning lo-
cal and global estimation in the large displacement context.
We then develop the theoretical foundation of warping ap-
proach in CLG and elaborate our modified iterative warping
scheme (MIWS).

In the fourth section we describe our algorithm which
uses a preconditioned block relaxation method that improves
the robustness of the solver. Finally we give some experi-
mental results and concluding remarks.
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2. BASIS NOTIONS ON OPTICAL FLOW
ESTIMATION

Estimation of the optical flow rely on the intensity conserva-
tion (IC) assumption:

I(x) = I(x+u(x)). (1)

Here, I : Ω ⊂ R2×R→ R is a rectangular image sequence,
x , (x,y, t) represents the spatio-temporal coordinates and
u , (u,v,1) is the unknown optical flow between images at
time t and t +1.

Loosely speaking, assumption (1) means that the inten-
sity variation of an image in a sequence is mainly explained
by motion of intensity patterns.

Many methods start from a first order linearization of (1)
around an uniformly null flow, the so-called optical flow con-
straint (OFC):

Ixu+ Iyv+ Iz = 0 (2)

where Ix , ∂ I
∂x , Iy , ∂ I

∂y and Iz , I(x)− I(x+u(x)). Using

∇3I , (Ix, Iy, Iz)T , (2) can be written as uT ∇3I = 0.
Initially, optical flow methods where based on the OFC,

because they assumed small motions between frames. Meth-
ods based on the non linear IC criterion (1) have been intro-
duced to deal with the large displacement context [1, 4, 8].

2.1 Local approach
The Lukas-Kanade method [7] assumes constant motion
within a window centered at each pixel and deals with square
displaced frames difference. According to this, we have to
minimize on every x ∈Ω the least-squares problem:

min
u

Kρ ∗
(
(I(·)− I(·+u(x)))2) (3)

where Kρ is a truncated Gaussian window with standard de-
viation ρ > 0. The symbol “·” is here the dummy variable
for the convolution operation.

We obtain an approximation to (3) using (2):

min
u

uT [∇3I∇
T
3 I]ρu (4)

where [·]ρ , Kρ ∗ (·).

2.2 Global linearized approach
Horn and Schunck [5] decided to suppose a global regularity
of the flow in Ω. This leads to minimize the global energy
functional:

min
u

∫∫
Ω

uT
∇3I∇

T
3 Iu︸ ︷︷ ︸

data term

+α(|∇u|2 + |∇v|2)︸ ︷︷ ︸
smoothing term

dxdy

α ∈ R+ is a tuning parameter controlling the regularization.

2.3 CLG approach
Combining these two points of view in [3], Bruhn et al. pro-
posed to minimize the following global energy functional:

min
u

∫∫
Ω

uT [∇3I∇
T
3 I]ρu+α(|∇u|2 + |∇v|2)dxdy (5)

Criteria (4) is the integrand in the first term of (5).
Problem (5) is equivalent to the Euler-Lagrange system:{

α∆u− [I2
x ]ρ u− [IxIy]ρ v− [IxIz]ρ = 0

α∆v− [IxIy]ρ u− [I2
y ]ρ v− [IyIz]ρ = 0.

(6)

Bruhn et al. , in their implementation, used a stable approx-
imation of the L1-norm by applying a convex ψ-function to
both the regularization and data term.

3. DEALING WITH LARGE DISPLACEMENTS

Note that both HS and Bruhn et al. start from a linearized
OFC constraint.

3.1 Bruhn et al. approach
To handle large displacement, Bruhn et al. rely on a so-called
iterative warping scheme (IWS), ie. they iterate on (5) with
Iz replaced by

In
z , I(x+un(x))− I(x) (7)

where un is the previously estimated flow.
Introducing the motion increment δun , (δun,δvn,0) at

step n, the sought flow writes:

un+1 = un(x)+δun(x). (8)

The problem at hand is

min
δun

∫∫
Ω

δun
T [∇3In

∇
T
3 In]ρ δun +α(|∇un+1|2 +|∇vn+1|2)dxdy

(9)
where In(x) , I(x+un(x)) and ∇3In , (In

x , In
y , In

z )T . Finally,
the derived Euler-Lagrange equations are:{

α(∆un +∆δun)− [(In
x )2]ρ δun− [In

x In
y ]ρ δvn− [In

x Iz]ρ = 0
α(∆vn +∆δvn)− [In

x In
y ]ρ δun− [(In

y )2]ρ δvn− [In
y Iz]ρ = 0.

3.2 How to justify an IWS approach in CLG ?
Let us consider a large displacement framework from the
start by seeking the minimum of the following energy:

min
u

∫∫
Ω

Kρ ∗ (I(·)− I(·+u(x)))2 +α(|∇u|2 + |∇v|2)dxdy.

(10)
In 2004, Papenberg [8] showed that minimizing (10) with

ρ = 0 can be done by an IWS. However, we show in the fol-
lowing that this result does not extend trivially to the case
ρ 6= 0.

3.3 How to interpret Bruhn et al. IWS ?
Can we interpret the Bruhn et al. criterion (9) as a first order
expansion of (10) using the increment (8)?

Injecting (8) in (10), the integrand of the data term writes:

Kρ ∗ (I(·+un+1(x))− I(·))2

=
∫∫

R
Kρ(x′−x)(I(x′+un(x)+δun(x))− I(x′))2dx′dy′

≈
∫∫

R
Kρ(x−x′)

(
I(x′+un(x))− I(x′)+

δun(x)Ix(x′+un(x))+

δvn(x)Iy(x′+un(x))
)2dx′dy′. (11)
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In general, the data term which derives from (11) is not
equal to the one of (9).
The difference is that intensity and gradient of the image I
are taken at point x′+un(x′) in (9) while they are taken at
x′+un(x) in (11). Actually they are two cases where (9) and
(11) can be identified:

- the case where un is uniformly constant.
- the case where ρ = 0, which reduces to the usual global

context.
we conclude that the reasoning of Papenberg et al. [8] can not
be extended to justify Bruhn et al. iterative CLG technique.

3.4 A modified IWS
The problem discussed in section 3.3 has been identified in a
purely local context in [4]. While the classical IWS linearizes
the image intensity I(x′+un+1(x)) around (x′+un(x) ris-
ing (8), we propose a modified IWS based on the lineariza-
tion of I(x′+un+1(x)) around (x′+un(x′)).

This way, we expand the data term of the large displace-
ment CLG criterion (10) as:

Kρ ∗ (I(·+un+1(x))− I(·))2

=
∫∫

R
Kρ(x−x′)

(
I(x′+un(x′)+un+1(x)−un(x′))

− I(x′)
)2dx′dy′

≈
∫∫

R
Kρ(x−x′)

(
I(x′+un(x′))− I(x′)+

(un+1(x)−un(x′))Ix(x′+un(x′))+

(vn+1(x)− vn(x′))Iy(x′+un(x′))
)2dx′dy′

= Kρ ∗
(
(un+1(x)T

∇̄3In(·))2)
= un+1

T [∇̄3In
∇̄

T
3 In]ρun+1, (12)

where we defined

Īn
z , In(x)− I(x)−unIn

x (x)− vnIn
y (x). (13)

∇̄3In , (In
x , In

y , Īn
z )T .

At each step n of the proposed MIWS approach we opti-
mize the criterion:

min
un+1

∫∫
Ω

un+1
T [∇̄3In

∇̄
T
3 In]ρun+1 +α(|∇un+1|2 +|∇vn+1|2)dxdy.

(14)
This criterion is very similar to (9), the differences being

in the computation of Īn
z (13) which includes additional

terms with regards to (7) and that minimizing the quadratic
form (14) gives the total flow field un+1 rather the increment
δun as (9).

The corresponding Euler-Lagrange equations are similar
to (6):{

α∆un+1− [(In
x )2]ρ un+1− [In

x In
y ]ρ vn+1− [In

x Īz]ρ = 0
α∆vn+1− [In

x In
y ]ρ un+1− [(In

y )2]ρ vn+1− [In
y Īz]ρ = 0.

4. ROBUST NORM

For the sake of simplicity and for shorthand writing, we de-
scribed previously our approach using the L2-norm, but we

choose in our implementation to approximate the L1-norm as
in [8]. In fact, used in the data term, the L1-norm ensure ro-
bustness in occlusion regions, and in the regularization term,
it allow regularization while preserving the flow discontinu-
ities. So we apply ψ(|x|2) =

√
|x|2 + ε ≈ |x| to both data and

regularization term (where ε = 10−6 ensure the differentia-
bility of ψ in 0).

This way, the Euler-Lagrange equations for CIWS be-
come:

0 = ψD ·
(
[(In

x )2]ρ δun +[In
x In

y ]ρ δvn +[In
x In

z ]ρ
)

−α ·div(ψR ·∇un+1)

0 = ψD ·
(
[(In

y )2]ρ δvn +[In
x In

y ]ρ δun +[In
y In

z ]ρ
)

−α ·div(ψR ·∇vn+1) (15)

where

ψD , ψ
′(δun

T [∇3In
∇

T
3 In]ρ δun)

ψR , ψ
′(|∇un+1|2 + |∇vn+1|2).

To obtain the Euler-Lagrange equations corresponding to
MIWS, we just need to replace respectively (δun, In

z ,∇3In)
by (un+1, Īn

z , ∇̄3In) in (15):

0 = ψD ·
(
[(In

x )2]ρ un+1 +[In
x In

y ]ρ vn+1 +[In
x Īn

z ]ρ
)

−α ·div(ψR ·∇un+1)

0 = ψD ·
(
[(In

y )2]ρ vn+1 +[In
x In

y ]ρ un+1 +[In
y Īn

z ]ρ
)

−α ·div(ψR ·∇vn+1). (16)

5. IMPLEMENTATION DETAILS

To make some comparisons between CIWS and MIWS, we
wrote a python code [9] using the weave1 package to embed
C++ code and accelerate some critical part of the program.
We will now describe the algorithm that we designed.

We discretize the equations (15) and (16) using finite
difference schemes: image derivatives Ix and Iy are approx-
imated at the third order and the flow derivatives (in ψR) at
the second order.

We then implemented a 2×2 block SOR solver [10] also
known as coupled point solver [2]. To this end, we ordered
our linear system to put the 2× 2 blocks corresponding to
(15) for each pixel on the diagonal and we solved them us-
ing Cramer’s method. This allows us to update a flow vector
(u,v) per SOR loop step instead of updating u or v one at a
time.
The CIWS Euler-Lagrange equation (15) (respectively the
MIWS one (16)) is still non-linear due to the terms with the
ψ function. We fix that by using an implicit scheme ie. by
freezing ψD with δun−1 (respectively un) and ψR with the
previous SOR iterate of δun (respectively un+1).

5.1 Preconditioned SOR solver
During our experiments, it appeared that some of the 2×2
systems that we solve in the loop of our smoother may have
a very large condition number. This makes the result of these

1http://www.scipy.org/Weave
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local systems erroneous and may affect the convergence and
the quality of the global solution. To address this, we choose
to apply the Jacobi preconditioner [10] that simply consists in
taking the diagonal of the matrix as preconditioner. Finally,
rather then solving(

a b
b c

)(
u
v

)
=
(

e
f

)
we solve the equivalent system(

a−1 0
0 c−1

)(
a b
b c

)(
u
v

)
=
(

a−1 0
0 c−1

)(
e
f

)
which has a smaller condition number.

We embed our preconditioned block-SOR solver in a
multilevel scheme performed on a non-dyadic image pyra-
mid with a reduction factor of 0.8 obtained using bilinear in-
terpolation. The image’s warping was also made by bilinear
interpolation and extrapolation.

5.2 Algorithmic differences between CIWS and MIWS
Algorithm 1 describes the Iterative Warping Scheme. There
are three differences between CIWS and MIWS implemen-
tations:
(i) The linear systems creation (line 5) is performed accord-

ing to the corresponding Euler-Lagrange equations: (15)
for CIWS and (16) for MIWS,

(ii) care has to be taken with the regularization term in CIWS.
In fact, un+1 = un +δun appear in the divergence part of
(15), so we have to freeze ψR with the last SOR iterate of
δun and to separate the gradient of un+1 into known and
unknown part,

(iii) in CIWS we need to add δun to un to obtain un+1 after
each solving step (line 6).

Algorithm 1 Iterative Warping Scheme
1: Starting from a given initial flow un = u0

2: for all levels (starting from the coarsest) do
3: repeat
4: Warp the image with un→ In

5: Create the linear system
6: Solve it using block-SOR→ un+1
7: until the number of needed update at each level is

reached
8: if current level 6= finest level then
9: Prolongate un+1 to the next level

10: end if
11: end for

5.3 Complexity operation comparison
MIWS saves computational time compared with CIWS. In
fact, for an m×n image sequence:

- MIWS needs 4mn arithmetic operations more than CIWS
per warp due to Īn

z computation (13)
- CIWS needs 5mn additional arithmetic operations per

preconditioned block SOR iteration compared to MIWS,
due to the management of the regularization term (ii) and
the update of un after each δun computation (iii).

Table 1: Comparison of the CIWS and MIWS algorithms re-
garding the measured average angular error (in degrees) and
average endpoint error (in pixels). Parameters: α = 20 and
window radius = 2 pixels.

Angular Error Endpoint Error
CIWS MIWS CIWS MIWS

Dimetrodon 2.42 2.36 0.13 0.12
Grove2 2.69 2.66 0.19 0.19
Grove3 6.47 6.62 0.67 0.71
Hydrangea 2.24 2.23 0.18 0.19
RubberWhale 4.46 4.55 0.14 0.14
Urban2 3.02 2.99 0.39 0.39
Urban3 6.79 7.30 0.74 0.80
Venus 4.67 4.88 0.31 0.31

Table 2: Comparison of the local and global methods
with our two implementation of CLG method (CIWS and
MIWS) on the synthetic PIV sequence presented in figure 1.
Parameters: α = 60 and window radius = 3 pixels.

Local Global CIWS MIWS
Angular error 5.31 4.03 2.93 2.91
Endpoint error 0.28 0.17 0.15 0.16

Let us say that we perform Niter SOR iteration and Nwarp
warp in our implementation, so we save mnNwarp(5Nwarp−
4) arithmetic operations.

Knowing that in practice Niter may be large, the saved
computational time becomes non negligible: In a typical run,
MIWS is 12% faster than CIWS.

6. EXPERIMENTAL RESULTS

In order to validate the new iterative algorithm MIWS, we
first tested the two algorithms on the frames 10 and 11 of
the well known Middlebury’s public data set2 using the same
fixed parameter α = 20 and a Gaussian convolution window
of radius 2.

Knowing the ground truth flow uGT = (uGT,vGT,1), we
measured the endpoint error using the formula EPE(u) =√

(u−uGT)2 +(v− vGT)2 , and the angular error according

to AE(u) = arccos
(

uGT ·uT

‖u‖ · ‖uGT‖

)
.

We present in table 1 the obtained average errors on the
solution given by our CIWS and MIWS algorithms. We
obtain essentially the same performances with CIWS and
MIWS. Actually, with the same parameters, MIWS leads to
slightly smoother results than CIWS. this explains the bet-
ter performances on Urban3 which is an example with large
motion discontinuities.

We also present in table 2 the measured average errors
on the solutions obtained on the synthetic PIV sequence pre-
sented in figure 1. As expected looking at figure 2, CLG
methods gives the best measured results with almost no dif-
ference between our two implementations CIWS and MIWS.

Figure 3 is a study of the case ’A’ [11] from the PIV chal-
lenge 3 2001 which is a set of experimental images represent-

2http://vision.middlebury.edu/flow/data/
3http://www.pivchallenge.org/
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Figure 3: Top left: A PIV image from the sequence “A”
of the PIV challenge 2001 [11]. Top right: L2-norm of
FOLKI [4] result using a window radius equal to 7 pixels.
Bottom left: L2-norm of TV-L1 [12] result with λ = 40,
θ = 0.25, ε = 0.1 and no edge weighting. Bottom right:
L2-norm of MIWS result using α = 60 and a convlution win-
dow with radius equal to 3 pixels.

Figure 4: Comparison of a cut along the horizontal line pass-
ing through the vortex core of the results presented figure 3.

ing a strong vortex. We present an image from this sequence
and the norm of the flows obtained using the FOLKI local
method [4], the TV-L1 global method [12] and the proposed
combined local global method MIWS. We also present in fig-
ure 4 three curves representing a cut of the vertical compo-
nent of the estimated flow fields along the horizontal axes
passing through the vortex core. The PIV images presents a
highly pitched texture that penalizes pixelwise matching cost
methods. In fact, the TV-L1 solution exhibits a strong resid-
ual noise clearly observable in the region far from the core.
While the local and CLG methods have a satisfactory be-
havior regarding the noise, they differ noticeably in the core
region. In this region the flow gradient is strong and the SNR
is low due to the lack of particles (see figure 3): CLG leads
to a smoother solution which is physically sound. The CLG
method appears here as a good compromise.

Regarding our experiments, we can say that CIWS
and MIWS provide equivalent results. We also observed
that MIWS gives smoother solutions than CIWS. This is
certainly due to its formulation (12) that better modelizes
window warping than the original one (9).

Acknowledgment: We thank Benjamin Leclaire from
the Department of Fundamental and Experimental Aerody-
namics of ONERA (French Aerospace Lab) for providing us
with the synthetic PIV sequence and for his valuable com-
ments on our experimental results on PIV images.

7. CONCLUSION

This paper proposed to give some clarifications of the imple-
mentation of warping in the combined local global method.
In fact, considering the large displacement framework, we
identified a shortcoming arising while embedding the CLG

method in an iterative warping scheme. We then designed
a theoretically justified formulation, and showed a compu-
tational time improvement. We presented some experimen-
tal results and observed that the two implementations give
equivalent results.

We also proposed the use of CLG on the hard real world
application PIV and showed its advantages in this field. We
believe that combining local and global approach is a good
way to address PIV problem.

This work targeted the data part of the CLG method, we
plan now to study the regularization part of the optical flow
problem looking for a formulation better suited for PIV prob-
lem.
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