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ABSTRACT
In this paper a multichannel and multicomponent restoration
scheme is introduced for hyperspectral images (HSI) with the
aim of improving target detection. This noise reduction (NR)
method takes advantage of the whole data along all dimen-
sion simultaneously by defining data as a tensor. The aim
of this paper is to prove the improvement in considering the
cross-dependency of spatial and spectral information. Using
jointly spatial and spectral processing enables better spec-
tral signature restoration and consequently increase the target
discrimination. Defining a tensor model, our method is based
on tensor decomposition without any dimensional splitting
during the processing. The optimization criterion used is
the minimization of the mean square error between the es-
timated and the desired signals. This minimization leads to
some estimatedn-mode filters for each dimension, which can
be considered as the extension of the well-known Wiener fil-
ter in a particular mode (such that dimension). In order to
take into account the mode cross-dependency, an Alternating
Least Square (ALS) algorithm is proposed to jointly deter-
mine then-mode Wiener filter. Comparative studies with the
classical bidimensional filtering methods show that our algo-
rithm presents better performances by improving the detec-
tion probability.

1. INTRODUCTION

Although hyperspectral images (HSI) exhibits a correct
signal-to-noise ratio (SNR), in general the SNR is not suf-
ficient to allow anoptimum information extraction. Indeed,
the noise corrupting hyperspectral images depends not only
on the performance of sensors but also on the conditions
during the data acquisition including illumination and atmo-
spheric effects. Under such conditions, noise reduction (NR)
is a necessary preprocessing step to increase the SNR in or-
der to improve the detection or classification processing by
both decreasing the target spectral variability and spatially
smoothing homogeneous areas [5–10]. A basic estimation
scheme processes all channels separately. It is a band-by-
band processing, considering each one as an independent
signal. This NR method does not take advantage of inter-
channel relationships which is one of the principal hyper-
spectral characteristics. In order to make use of this inter-
channel information, a Karhunen-Loeve domain orthogonal-
ization that decorrelates the channels is proposed. Actually,
the most common in NR when deal with multichannel data
is to perform an hybrid filter which consists first in making a
Principal Component Analysis (PCA) transform and then in
removing noise with one spatial restoration for each decor-
related channel [12, 14–16]. But those classical processing
techniques consist in splitting data set into matrices or vec-
tors and operate in the spatial and spectral domains indepen-
dently. The splitting reduces considerably the information
quantity related to the all data without separate spatial and

Figure 1: Tensor of hyperspectral images.

spectral information and hence as a result the possibility of
studying the relations between components of different chan-
nels is lost. In this study, data are modeled as a tensor. Tensor
models are used in a large range of fields such as data analy-
sis or signal and image processing . Each mode (dimension)
of the tensor is associated with a physical quantity. Hence,
we propose a multiway filtering [1], for denoising hyperspec-
tral images. This new approach implicitly implies the use of
multilinear algebra and mathematical tools [1] that extend
the singular value decomposition (SVD) to tensors.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the tensor formulation of the classical
noise-removing problem. Section 3 presents a new version
of Wiener filtering based on then-mode signal subspace and
tensor decomposition. Section 4 presents some comparative
detection results concerning the multiway filtering, channel-
by-channel based Wiener filtering and an hybrid Wiener fil-
ter. Finally, conclusions are presented in Section 5.

2. TENSOR MODEL FOR HYPERSPECTRAL
IMAGES

2.1 Tensor modeling

Hyperspectral images can be modeled by a three-order tensor
X ∈R

I1×I2×I3 (see Fig.1) whereI1 is the number of rows,I2
the number of columns, andI3 the number of spectral chan-
nels. Each dimension of the tensor is calledn-mode wheren
refers to thenth index. Using tensor model enables to gener-
alize the theory to the N order corresponding to the number
of dimensions.

The interest of tensor modeling is the multilinear alge-
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Figure 2:n-mode unfolding of tensorX .

braic tools associated which allow for example to study the
properties of data tensorX in a givenn-mode. An illustra-
tion of then-mode unfolding of a tensor is represented in Fig.
2.

In each unfolding of the tensor data are rearranged along
all tensor dimension and the whole information contained in
the tensor is present.

2.2 Problem setting

We assume that the hyperspectral tensorR is the sum of the
desired informationX and an additive white Gaussian noise
N :

R = X +N . (1)

Our aim is to estimate the desired signalX thanks to a mul-
tidimensional filtering of the data:

X̂ = R×1 H1×2 H2×3 H3...×N HN , (2)

where×n is then-mode product. Then-mode product gen-
eralize the product between both the data tensorR and the
matrix Hn along then-mode. From a signal processing point
of view, then-mode product is an-mode filtering of data ten-
sorR by n-mode filterHn. In the following, we review the
expression of the multiway Wiener filtering for a tensor of
orderN [1].

The optimization criterion chosen to determine the opti-
mal n-mode filters{Hn, n = 1, . . .N} is the minimization of
the the mean square error between the estimated signalX̂

and the initial signalX :

e(H1, . . . ,HN) = E
(
‖X −R×1 H1 · · ·×N HN‖

2
)

. (3)

In extension of the first order case,n-mode filtersHn corre-
spond ton-mode Wiener filters.
In the classical multidimensional and multi-mode signal pro-
cessing assumptions,E(n) is the superposition of two orthog-

onal subspaces: the signal subspaceE(n)
1 of dimensionKn,

and the noise subspaceE(n)
2 with dimensionIn−Kn, such as

E(n) = E(n)
1 ⊕E(n)

2 .

3. WIENER MULTIWAY FILTERING

3.1 Expression ofn-mode Wiener filters

Following [1] by developing the squared norm of equation
(3), and unfolding it over then-mode and after some compu-
tations, the final expression ofHn n-mode filter associated to
fixed Hm m-mode filters,m 6= n, expression (3) becomes:

Hn = V (n)
s ΛnV (n)T

s (4)

where,V (n)
s is theKn largest eigenvectors originally from

the eigenvalue decomposition along then-mode unfolding of
R

and where,

Λn = diag





λ γ

1 −σ (n)2

γ

λ Γ
1

, ...,
λ γ

Kn
−σ (n)2

γ

λ Γ
Kn




 (5)

in which {λ γ
i ,∀i = 1, . . . ,Kn} and {λ Γ

i ,∀i = 1, . . . ,Kn} are
theKn largest eigenvalues, respectively of matrices

E
[
Xnq

(n)RT
n

]
and E

[
RnQ

(n)RT
n

]

with

q(n) = H1⊗·· ·Hn−1⊗Hn+1 · · ·⊗HN , (6)

Q(n) = HT
1 H1⊗·· ·H

T
n−1Hn−1⊗HT

n+1Hn+1 · · ·⊗HT
N HN . (7)

The symbol⊗ defines the Kronecker product.

Also, σ (n)2

γ can be estimated by determining theIn−Kn

smallest eigenvalues mean ofγ(n)
RR :

σ (n)2

γ =
1

In−Kn

In

∑
i=Kn+1

λ γ
i . (8)

Note that this expression requires the unknown parameter
Kn. To apply it on real data, withouta priori knowledge, we
have to estimate it. We propose in the following section one
criterion for this purpose.

3.2 Estimation of the lowern-mode rank

The Kn parameter is the lowern-mode rank approximation.
In other word,Kn is the usefuln-mode signal subspace di-
mension of the noisy imageR. Actually,
• if Kn is too low , information is lost
• if Kn is too elevated , noise is included in the restoration.

In those two cases, the necessary number of eigenvalues
is not well approximated and the estimated tensor is not
optimum. In this paper, we extend the well-know detection
criteria [17, 18] in order to estimateKn for eachn-mode.
Thus, the estimated signal subspace dimension is obtained
merely by minimizing one of AIC criterion.
Consequently, for eachn-mode unfolding ofR, the detection
criterion AIC can be expressed as

AIC(k) =−2N
i=In

∑
i=k+1

logλi

+N(In− k) log

(
1

In− k

i=In

∑
i=k+1

λi

)
+2k(2In− k) (9)

where(λi)1≤i≤In areIn eigenvalues of the covariance ma-
trix of the n-mode unfoldingR: λ1 ≥ λ2 ≥ . . . ≥ λKn >

λKn+1 = λKn+2 = . . . = λIn = σ2, and N is the number of
columns of then-mode unfoldingR.
Then-mode rankKn is the value ofk (k = 1, . . . , In−1) which
minimizes AIC.
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In this step, we have defined then-mode filters which
now require noa priori knowledge. But our aim is to pro-
pose a multiway filtering, it means then-mode filters must
not be estimated independently. We have to take advantage
of then-mode cross-dependency to propose a coherent multi-
way filter. The way to overcome it is summarized in the next
subsection.

3.3 ALS algorithm

An Alternative Least Square algorithm needs to be used to
jointly find Hn n-mode Wiener filters that enables to reach the
global minimum of mean square errore(H1, . . .HN) given by
(3). This algorithm overcome a non linear optimization. One
ALS algorithm can be summarized in the following steps:
1. initialization k = 0: R0 = R⇔ H0

n = IIn for all n = 1 to
N.

2. ALS loop: while
∥∥X −Rk

∥∥2
> a priori fixed threshold

(a) Kn estimation, for n = 1 to N:
i. Kn = argmink AIC(k), k=1,...,In , eq.(9)

(b) Hn estimation, for n = 1 to N:
i. Rk

n = R ×1 Hk
1 · · · ×n−1 Hk

n−1×n+1 Hk
n+1 . . .×N

Hk
N

ii. Hk+1
n = argmin

∥∥∥X −Rk
n×n Q(n)

∥∥∥
2

subject to

Q(n) ∈ R
In×In .

(c) Multiway filtering ,
Rk+1 = R×1 Hk+1

1 · · ·×N Hk+1
N , k← k +1.

3. output:X̂ = R×1 Hk
s · · ·×N Hks

N , whereks is the conver-
gence iteration index.
Iteration after iteration the multiway filtering improves

the SNR of the estimated tensor. Indeed, for example
some signal-independent white Gaussian noise is added to
a 150x150x158 tensor with a power noise resulting in a
0.9dB, we apply the ALS algorithm and for the iteration
{1,2,10,24} we obtained a estimated tensor with a SNR
equal to{16.12dB,16.98dB,18.15dB,19dB}. These results
prove the fitting of then-mode filters together.
The Figure?? shows the improvement of the SNR output
when the values of the spatial and spectral dimensions of HSI
are well estimated using AIC or MDL criteria.

4. IMPROVEMENT OF TARGET DETECTION

A high spatial resolution HYperspectral Digital Imagery Col-
lection Experiment (HYDICE) is considered in all our ex-
periments. To highlight the advantages of multiway filter-
ing, we compare it detection result with those given by the
classical signal subspace based methods. The first one basi-
cally consists of a consecutive Wiener filtering of each two-
dimensional spectral channel, that we denote hence after by
2D-Wiener. The second one consists of a preprocessing by
projection on the spectral mode to decorrelate the channels,
then Wiener filtering is applied on each two-dimensional
spectral channel, denoted byPCA-2D Wiener.

This noise,N , can be modeled by

N = α ·G (10)

in which every element ofG ∈ R
I1×I2×I3 is an independent

realization of a normalized centered Gaussian law, and where
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Figure 3: SNR output versus SNR input with the optimal
ranks estimated by AIC or MDL.

α is a coefficient that permits to set the SNR in noisy data
tensorG .

Fig. 4a) shows the target test (the second one) in the ini-
tial HYDICE image we want to detect. This target is difficult
to discriminate as the spectral signatures of the 1st , 2nd and
3rd targets are similar, as shown on Fig.4b). To perform the
target detection we use the adaptive coherence / cosine esti-
mator (ACE) detector [13] a well-known constant false alarm
rate (CFAR) and adaptive matched filter (AMF).

The ACE can be expressed as :

DACE(x) =

(
sT Γ̂−1x

)2

(sT Γ̂−1s)(xT Γ̂−1x)
(11)

the adaptive matched filter (AMF) is given by

DAMF(x) =
sT Γ̂−1x

sT Γ̂−1s
, (12)

whereΓ̂ is the estimated covariance matrix,s andx are re-
spectively the target and test spectra.s is assumeda priori
known from a supervised method directly on the initial hy-
perspectral tensor. So when,

{
DACE or DAMF > η , the target is present;
DACE or DAMF < η , the target is absent. (13)

Whereη is a detection threshold which allows the probabil-
ity of detection and of false alarms estimation.

Figs. 5 and 6 represent the receiver operating charac-
teristic (ROC) curves for the second target detection on an
average of ten noise realizations with a standard deviation
of 25. The zone of interest corresponds to false alarm prob-
abilities from 10−4 up to 100. The multiway Wiener filter
gives better results than the other NR methods. This ten-
dency is confirmed in Fig. 7 with respect to theSNRin vary-
ing from –3 to 13 dB and with a probability of false alarm
fixed at 10−3. Whatever noise power the multiway Wiener
filter improves the detection performance of Hyperspectral
tensor. This can be explained by its good spectral signature
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a) HYDICE image at wavelength 1718 nm.
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b) Spectral signatures.

Figure 4: Targets and spectral signatures.
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Figure 5: ROC curves obtained by ACE for the initial and
estimated hyperspectral tensors.

restoration by considering simultaneously spectral and spa-
tial processing. Figures 8 and 9 show examples of the results
obtained on spectral pixel vectors.
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Figure 6: ROC curves obtained by AMF for the initial and
estimated hyperspectral tensors.
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Figure 7: Probability of detection with respect to theSNRin
and with a fixed probability of false alarm equal to 10−3

5. CONCLUSION

In this paper, we described a new algorithm for multidimen-
sional and multicomponent restoration in order to improve
the target detection. For hyperspectral images, we proposed
a tensor model to consider all data as a whole tensor. The
proposed multiway filtering is an extension of the bidimen-
sional wiener filtering to tensor signal which is applied onn-
mode unfolding of the noisy tensor. In order to estimate the
signal subspace for each mode we have extended the well-
known AIC criteria to the tensor signal. Since filters that
minimize the mean squared error need to be determined si-
multaneously, an ALS algorithm was developed: both spatial
and spectral information are jointly taken into account. The
importance of the non-separability of both spatial and spec-
tral information is highlighted and it impact on target detec-
tion detection was demonstrated. We conclude that multiway
filtering realizes valuable target detection of HSI by restoring
the spectral signature.
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Figure 8: Error after denoising the spectral signatures with
different methods
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Figure 9: Error after denoising the spectral signatures with
different methods

REFERENCES

[1] D. Muti and S. Bourennane, “Multidimensional filter-
ing based on a tensor approach,”Signal Proceesing
Journal, Elsevier, vol. 85, pp. 2338–2353, May 2005.

[2] ——, “Multiway filtering based on fourth order cumu-
lants,”Applied Signal Processing, EURASIP, vol. 7, pp.
1147–1159, May 2005.

[3] D. Muti and S. Bourennane, “Survey on tensor signal
algebraic filtering,”Signal Proceesing Journal, Else-
vier, vol.87 , no. 2, pp.237-249, 2007.

[4] Manolakis D., Shaw G., Detection algorithms for hy-
perspectral imaging applications,IEEE signal process-
ing magazine pp. 29–43, Jan. 2002.

[5] B. Aiazzi, L. Alparone, A. Barducci, S. Baronti, and
I. Pippi, “Information-theoretic assessment of sampled
hyperspectral imagers,”IEEE Trans. on Geosc. and Re-
mote Sensing, vol. 39, no. 7, pp. 1447–1457, July 2001.

[6] A. Green, M. Berman, and M. Craig, “A transformation

for ordering multispectral data in terms of image qual-
ity with implications for noise removal,”IEEE-TGARS,
vol. 26, no. 1, pp. 65–74, 1988.

[7] B. Corner, R. Narayanan, and S. Reichenbach, “Noise
estimation in remote sensing imagery using data mask-
ing,” International Journal of Remote Sensing, vol. 24,
no. 4, pp. 689–702, Feb. 2003.

[8] J. Kerekes and J. Baum, “Hyperspectral imaging sys-
tem modeling,”Lincoln Laboratory Journal, Special Is-
sue on Spectral Imaging, vol. 14, no. 1, pp. 117–124,
2003.

[9] B. Aiazzi, L. Alparone, A. Barducci, S. Baronti, P. Mar-
coinni, I. Pippi, and M. Selva, “Noise modelling and
estimation of hyperspectral data from airborne imaging
spectrometers,”Annals of Geopysics, vol. 49, no. 1, Feb
2006.

[10] T. Hazan, S. Polak, and A. Shashua, “Sparse image
coding using a 3d non-negative tensor factorization,”
in Computer Vision, IEEE International Conference on
Computer Vision (ICCV), vol. 4179, no. 1, Beijing,
(China), Oct 2005, pp. 50–57.

[11] Hunt B. R., Kubler O., Karhunen-love multispectral
image restoration, part 1: Theory,IEEE Transactions
on Acoustique, Speech, and Signal Processing, 32, pp.
592–599, Jun. 1984,.

[12] Nason G., Silverman B.,The Stationary Wavelet Trans-
form and Some Statistical Applications, in Wavelets
and Statistics, Lecture Notes in Statistics 103, Anto-
niadis A. and Oppenheim G. (eds), New-York, pp. 281–
300, 1995.

[13] N. Renard and S. Bourennane, “Improvement of target
detection methods by multiway filtering,”IEEE Trans.
on Geosc. and remote sensing, vol. 46, no.8, pp. 2407-
2417, 2008.

[14] H. Othman and S. Qian, “Noise reduction of hyperspec-
tral imagery using hybrid spatial-spectral derivative-
domain wavelet shrinkage,”IEEE Trans. Geoscience
and Remote Sensing, vol. 44, no. 2, pp. 397–408, Feb
2006.

[15] N. Renard, S. Bourennane, and J. Blanc-Talon, “De-
noising and dimensionality reduction using multilinear
tools for hyperspectral images,”IEEE Geoscience and
Remote Sensing Letters,, vol. 5, no. 2, pp. 138 142,
April 2008.

[16] D. Letexier, S. Bourennane, and J. Blanc-Talon,
“Nonorthogonal tensor matricization for hyperspectral
image filtering,”IEEE Geosc. and Remote Sensing Let-
ters, DOI=10.1109/LGRS.2008.905117, 2008.

[17] S. Bourennane and A. Bendjama , “Locating wide band
acoustic sources using higher order statistics,”Applied
Acoustics, vol. 63, no. 3, pp. 235-251, Mar. 2002.

[18] M. Frikel and S. Bourennane, “High-resolution meth-
ods without eigendecomposition for locating the acous-
tic sources,”Applied Acoustics, Vol. 52, No. 2, pp. 139-
154, Oct. 1997.

308


