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ABSTRACT

Following our recently developed method we provide
a proof of convergence of the average consensus algo-
rithm with quantized communication links as proposed
by Censi and Murray. Using a state-space framework
for describing distributed algorithms, we can derive ac-
curate bounds on the drift from the mean for algorithms
with noisy links, either caused by an external noise or
by quantization. We then test these bounds for several
network topologies and compare with simulations.

1. INTRODUCTION

Reaching the capabilities of serial processing hardware
and increased usage of inter-connected devices over the
past several years have led to increased research interest
in parallel and distributed algorithms. While consider-
ing a network of, more or less, computationally con-
strained devices, simple gossip-based message-passing
algorithms, were proposed, solving also more complex
problems.

Distributed averaging algorithms, e.g. push-sum [5],
average consensus [7] or consensus propagation [6], have
been studied from different points of view using ma-
trix theory, theory of Markov chains, control theory, and
more. Since the real environments introduce significant
constraints on the performance and accuracy, quantized
algorithms have also appeared in the literature [1, 3, 4]
and quantization errors have been widely studied [2, 8].

In our previous paper [8] we proposed a framework
which naturally arose from the connection between the
local, node-based, and the global, network-based, algo-
rithm, leading to a state-space description of distributed
algorithms. With this formalism we were able to study
the impact of computational and communicational im-
perfections on the behaviour of distributed averaging
algorithms.

Organization of the paper: In Section 2 we
briefly recall the applied formalism. In Section 3 we
derive the convergence behaviour of quantized consen-
sus and show the form of the steady-state. In Section 4
a-priori bounds for several network topologies are com-
pared with bounds proposed by Censi and Murray [3]
and with simulation results.

This work has been funded by the NFN SISE project (Na-
tional Research Network ”Signal and Information Processing in
Science and Engineering”).

2. FRAMEWORK

First, we briefly revise the framework which we are going
to use throughout this paper.

If not stated otherwise we always consider a network
to be a directed graph G = (V, ℰ), where V is a set of
∣V∣ vertices (nodes) and ℰ is a set of ∣ℰ∣ edges (links).
The graph is described by its adjacency matrix

(AG)i,j =

{
1 if (i, j) ∈ ℰ

0 if (i, j) /∈ ℰ .
(1)

The graph is supposed to have no self-loops (e =
(v, v) /∈ ℰ) and each element of ℰ is unique. More-
over, we implicitly consider the graph G to be strongly-
connected.

2.1 Linear homogeneously distributed algo-
rithms

A distributed algorithm is said to be homogenously dis-
tributed(HDA) when each node processes messages and
calculates data in the same manner. There is no qualita-
tive difference between processing nodes, meaning that
they can be interchanged without any impact on the
global behaviour of the algorithm.

A linear homogenously distributed algorithm is
then an HDA with update and communication strategy
being linear functions. We can formalize it in the
following definition.

Definition 1 (Linear HDA). If update strategy and
the communication strategy in the node v are linear
functions, then the algorithm is said to be linear ho-
mogeneously distributed and can be described as fol-
lows1:

xv(k + 1) = �v

∑

u∈Recv(k)

yu(k) + �vxv(k), (2)

yv(k + 1) = v
∑

u∈Recv(k)

yu(k) + �vxv(k), (3)

where �v ∈ ℝ
nX×nY (receptivity), �v ∈ ℝ

nX×nX

(self-transmissivity), �v ∈ ℝ
nX×nU (absorptivity), v ∈

ℝ
nY ×nY (transmissivity), �v ∈ ℝ

nY ×nX (distributivity)
and #v ∈ ℝ

nY ×nU (emissivity) are constant matrices.

1,2 We omit here the measurements and the algorithm in the
node; for a more extensive definition see [8].
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2.2 Global algorithm

If we further aggregate parameters

� ≜ diag(�1, . . . , �v, . . . , �∣V∣) ∈ ℝ
(∣V∣nX)×(∣V∣nY ), (4)

� ≜ diag(�1, . . . , �v, . . . , �∣V∣) ∈ ℝ
(∣V∣nX)×(∣V∣nX), (5)

 ≜ diag(1, . . . , v, . . . , ∣V∣) ∈ ℝ
(∣V∣nY )×(∣V∣nY ), (6)

� ≜ diag(�1, . . . , �v, . . . , �∣V∣) ∈ ℝ
(∣V∣nY )×(∣V∣nX), (7)

and vectors xv(k) and yv(k), we can make connections
between local (node-based) and global (network-based)
algorithm.

Proposition 1 (Global algorithm). Using the set of
parameters (4)–(7), a global algorithm (the aggregation
of the algorithms of all the nodes) can be formulated by2:

x(k + 1) = �
(
AG′(k) ⊗ InY

)
y(k)+�x(k), (8)

y(k + 1) = 
(
AG′(k) ⊗ InY

)
y(k) +�x(k). (9)

If we aggregate data x(k) and y(k), i.e. Γ(k) ≜

(

x(k)
y(k)

)

,

we can rewrite the equations in a compact state-space
form as

Γ(k + 1) =

(
� �(AG′(k) ⊗ InY

)
� (AG′(k) ⊗ InY

)

)

︸ ︷︷ ︸

P(k)

Γ(k). (10)

Considering noises on x(k) and y(k), due to impre-
cise computation and limited communication, we model
this by adding a noise term, thus having a noisy process

Γ★(k + 1) = P(k)Γ★(k) +R�(k), (11)

where R is any linear transformation of the noise term
�(k)3.

Theorem 1. Considering a case where P is constant
in time. Then, the term ΔΓ★(k) ≜ Γ★(k) − Γ(k) is the
noise added to Γ(k) and satisfies

ΔΓ★(k + 1) = PΔΓ★(k) +R�(k). (12)

Thus, the first and second moment order of ΔΓ★ are
given by

�ΔΓ★ = ��(I−P)−1R, �2
ΔΓ★ = tr(W), (13)

where W is the solution of the Lyapunov equation W =
PWP⊤ +RΨ�R

⊤.

Proof: See [8].

3�(k) contains �(k) (noise on x(k)) and/or �′(k) (noise on
y(k)).

3. STEADY-STATE FOR QUANTIZED
AVERAGE CONSENSUS

In our previous paper [8] we analyzed a feed-back type
algorithm proposed by Censi and Murray [3] (We will
refer to this type of algorithm as ”Censi’s algorithm” in
the text) in terms of Theorem 1. We showed by simu-
lations that Eq. (13) holds. However, nor Censi neither
we proved explicitly that the algorithm converges in the
mean to a consensus for any quantization scheme.

After finding a general solution for the steady-state,
we can easily compute bounds on the drift from the
mean.

3.1 Average consensus over quantized channels

As shown in [8] the parameters describing Censi’s algo-
rithm [3] in our framework, Eq. (10), are as follows:

� = I∣V∣ ⊗

⎛

⎝

�
Δ
�
Δ

0

⎞

⎠

︸ ︷︷ ︸

L

, (14)

� = �
ΔD⊗

K

︷ ︸︸ ︷
(
−1 0 0
−1 0 0
0 0 0

)

+I∣V∣ ⊗

(
1 0 0
2 −1 −1

−1 1 1

)

(15)

� = �
ΔD⊗ (−1 0 0)

︸ ︷︷ ︸

M

+I∣V∣ ⊗ (2 −1 −1)
︸ ︷︷ ︸

N

, (16)

 = �
ΔI∣V∣, (17)

and quantization noise on the links is transformed
according to the matrix

R =

⎛

⎜
⎝
I∣V∣ ⊗

(
0
1
0

)

I∣V∣

⎞

⎟
⎠ . (18)

With Censi’s notation the update data consists of
x⊤(k) = (x1(k),x2(k),x3(k))

⊤ ≡ (x(k), y(k), c(k))⊤

and communication data y⊤(k) ≡ y⊤(k). Since
the algorithm broadcasts messages, the adjacency
matrix is constant in time, i.e. AG′(k) = AG ≡
A (in the following text). Matrix D is the degree
matrix, I∣V∣ the identity matrix of size ∣V∣; Δ is the
maximum degree and � is the step size.

The idea behind this approach is that the commu-
nication quantization error is fed-back into the system,
thus preserving convergence to a steady-state which can,
however, differ from the true average of the initial state.

In general, having no assumptions on �(k), except
being bounded, it can model any quantization noise on
links as well as any independent disturbance in trans-
mission.

3.2 Steady-state of Censi’s algorithm

We will now show that under some assumptions on the
network topology and the noise on the links, Censi’s
algorithm always converges to a steady-state.
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Theorem 2. Using the state-space Equation (12) with
parameters (14)–(17), and satisfying the conditions:
1. The graph G is strongly connected,
2. The noise on the links �(k) is bounded and converges

to �,
the Censi’s algorithm (Section 3.1) asymptotically

converges to a steady-state

ΔΓ★=P∞ΔΓ★(0)
︸ ︷︷ ︸

Mean value

+

+

⎡

⎢
⎣

⎛

⎜
⎝
I∣V∣ ⊗

(
0
0
1

)

0∣V∣

⎞

⎟
⎠+

([
1
∣V∣11

⊤A
]

⊗ L
1
∣V∣11

⊤ �
ΔA

)
⎤

⎥
⎦ �

︸ ︷︷ ︸

d – drift from the mean

(19)

where P∞ =

(

P∞,1 P∞,2

P∞,3 P∞,4

)

with

P∞,1 =

[
1

∣V∣
11⊤

(
�2

Δ2
AD−

( �

Δ
D− I

)2
)]

⊗K+

+

[
1

∣V∣
11⊤A

]

⊗ LN (20)

P∞,2 =

[
1

∣V∣
11⊤A

]

⊗ L (21)

P∞,3 =

[
1

∣V∣
11⊤

(
�2

Δ2
AD−

( �

Δ
D− I

)2
)]

⊗M+

+

[
1

∣V∣
11⊤ �

Δ
A

]

⊗N (22)

P∞,4 =
1

∣V∣
11⊤ �

Δ
A (23)

and � being determined by the statistics of the noise
�(k).

Proof: Taking Equation (12), for time K we can write:

ΔΓ★(K) = PKΔΓ★(0) +
K−1∑

k=0

PkR�(K − 1− k).

After inserting parameters (14)-(17) in P and applying
K ≥ 2 multiplications we obtain

PK =

(

PK,1 PK,2

PK,3 PK,4

)

, (24)

where

PK,1 =

[( �

Δ
(A−D) + I

)K−2
(

�2

Δ2
AD−

( �

Δ
D− I

)2
)]

⊗K+

+

[( �

Δ
(A−D) + I

)K−2

A

]

⊗ LN

PK,2 =

[( �

Δ
(A−D) + I

)K−1

A

]

⊗ L

PK,3 =

[( �

Δ
(A−D) + I

)K−2
(

�2

Δ2
AD−

( �

Δ
D− I

)2
)]

⊗M+

+

[( �

Δ
(A−D) + I

)K−2 �

Δ
A

]

⊗N

PK,4 =
( �

Δ
(A−D) + I

)K−1 �

Δ
A.

where K,L,M,N are as in (14)-(17).

Since the term
(
�
Δ (A−D) + I

)K
is

the only term growing with K, we only
need to show that this term converges as
K � ∞. As the term is nothing else than the so-
called Perron matrix [7], which, for strongly connected
graphs, has a trivial maximum eigenvalue �n = 1 with
corresponding eigenvector vn = 1/

√

∣V∣1, we obtain

lim
K�∞

( �

Δ
(A−D) + I

)K

= lim
K�∞

(UΛU)
K

=

= U

⎛

⎜
⎜
⎝

1 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0
...

. . .
...

0 0 ⋅ ⋅ ⋅ 0

⎞

⎟
⎟
⎠

U⊤ = vnv
⊤
n =

1

∣V∣
11⊤. (25)

Thus, we proved that P∞ converges.
Now we prove also the convergence for the drift from

the mean.
First, we assume that the disturbance noise

�(k) asymptotically converges to a value �, i.e.
∣
∣�(k0)− �

∣
∣ < �. As shown by Censi [3], for determin-

istic quantization this assumption hold only in mean,
i.e. converged states tend to oscillate around a common
mean. However, if the links are disturbed by an inde-
pendent noise, or a probablistic quantization scheme is
used, e.g. [1], this assumption holds accurately.

Secondly, we will show that PkR � 0 for some k ≥
k0 ≫ 0, i.e., for the drift from the mean we can write

K−1∑

k=0

PkR�(K − k − 1) =

k0−1∑

k=0

PkR�+

+

K−1∑

k=k0

PkR�(K − k − 1)

︸ ︷︷ ︸

=0

.

(26)

Now let’s determine
∑k0−1

k=0 PkR. Multiplying P by
R we obtain

PR =

⎛

⎜
⎝
I∣V∣ ⊗

(
0

−1
1

)

+A⊗ L

�
ΔA− I∣V∣

⎞

⎟
⎠ , (27)

respectively by taking the power of K ≥ 2

P
K
R =

�

Δ

([

(A−D)
( �

Δ
(A−D) + I

)K−2
A
]

⊗ L
[

(A−D)
( �

Δ
(A−D) + I

)K−2
A
]

�

Δ
A

)

.

(28)

From (25) we find

( �

Δ
(A−D) + I

)

v = 1v

⇒ (A−D)v = 0, (29)
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and therefore for K ≥ k0

lim
K�∞

P
K
R =

�

Δ

(

(A−D)
( �

Δ
(A−D) + I

)K−2
A⊗ L

(A−D)
(

�

Δ
(A−D) + I

)K−2 �

Δ
A

)

=

=
�

Δ

⎛

⎝(A−D)v
︸ ︷︷ ︸

=0

v
⊤ A⊗ L

�

Δ
A

⎞

⎠ =
�

Δ

(
03∣V∣×∣V∣
0∣V∣×∣V∣

)

= 0.

(30)

It means that for K large enough, i.e. K ≥ k0, P
KR�0

and since PkR is bounded and decreasing for ∀k, also
the series

∑∞
k=0 P

kR must exists.

We can then directly show that, for K � ∞

lim
K�∞

K−1∑

k=0

PkR = R+PR+P2R+ ⋅ ⋅ ⋅ =

=

⎛

⎜
⎝
I∣V∣ ⊗

(
0
1
0

)

I∣V∣

⎞

⎟
⎠+

⎛

⎜
⎝
I∣V∣ ⊗

(
0

−1
1

)

+A⊗

( �
Δ�
Δ
0

)

�
ΔA− I∣V∣

⎞

⎟
⎠+

+
�

Δ

⎛

⎜
⎜
⎜
⎜
⎝

(A−D)

∞∑

k=0

( �

Δ
(A−D) + I

)k

A⊗

( �
Δ�
Δ
0

)

(A−D)
∞∑

k=0

( �

Δ
(A−D) + I

)k �

Δ
A

⎞

⎟
⎟
⎟
⎟
⎠

.

(31)

Thus, for 0 < � < 1, K ≥ k0

K−1∑

k=0

PkR=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

I∣V∣ ⊗

(
0
1
0

)

I∣V∣

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

I∣V∣ ⊗

(
0

−1
1

)

+A⊗

( �
Δ�
Δ
0

)

�
ΔA− I∣V∣

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

+
�

Δ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Δ
�

(
1
∣V∣11

⊤ − I
)

A⊗

( �
Δ�
Δ
0

)

Δ
�

(
1
∣V∣11

⊤ − I
)

�
ΔA

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

=

⎛

⎜

⎜

⎜

⎜

⎝

I∣V∣ ⊗

(
0
0
1

)

0∣V∣

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
∣V∣11

⊤A⊗

( �
Δ�
Δ
0

)

1
∣V∣11

⊤ �
ΔA

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (32)

Thus, Theorem 2 is proved completely.

It must be noted that comparing Eq. (13) with Eq.
(19), � corresponds to �� , and the term (32) replaces the
non-invertible term (I−P)−1R for Censi’s algorithm.

As mentioned in [8], term (I−P) is not invertible in
this case, nonetheless, we had made an assumption that
the matrix R acts as a stabilizing term, thus ensuring
convergence. Taking the result of Theorem 2 we can
conclude that this assumption was correct.

4. BOUNDS ON THE DRIFT FROM THE
MEAN

In (19) we assumed that the noise �(k) converges to
some value �. However, as mentioned before, in case
of deterministic quantization noise this value depends
on the step size �, initial states, quantization scheme
and also topology. Therefore it is not easy to estimate
it before-hand (see Tab. 2). However, bounds on drift
from the mean can be set straightforwardly.

In Tab. 1 we recall the bounds on � for few simplest
quantization schemes.

quantization
scheme

lower
bound

upper
bound

round to
nearest

−0.5 0.5

round up 0 1
round
down

−1 0

Table 1: Lower and upper bounds on � for few simple
quantization schemes.

Topology
quantization
scheme

∣V∣ �ave

complete rounding 10 0.0128±0.46
30 −0.0077±0.459

ceiling 10 0.49±0.468
30 0.502±0.459

star rounding 10 0.0034±0.49
30 0.0106±0.48

ceiling 10 0.4922±0.4932
30 0.504±0.396

ring rounding 10 −0.0093±0.468
30 −0.004±0.46

ceiling 10 0.5139±0.455
30 0.5005±0.403

geometric4 rounding 9 0.0012±0.47
30 −0.000462±0.45

ceiling 9 0.4988±0.4721
30 0.4925±0.4612

Table 2: Average � after 1000 randomly initialized runs,
for few topologies and 2 different quantization schemes.

When considering the Censi’s bound, we consider
the bound as defined in Censi [3], i.e. �� where
∣q(x)− x∣ < �, for any quantization function q(⋅).

4.1 A-priori bounds on the drift from the mean

For several typical network topologies, we can generate
an adjacency matrix AG and provide a-priori bounds on
the drift from the mean if the sent data is rounded to the
nearest integer (see Tab. 3) and if the data is rounded
up (operation ceiling) (see Tab. 4). The values are for
x1, i.e. for the stored data in the nodes. Similarily, we
can provide bounds on x2,x3 and y.

4Geometric graph is a randomly distorted rectangular grid
where each node communicates with neighbours only in its prede-
fined range.
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Topology ∣V∣
worst-case
steady-state

value

bound
Eq.
(32)

Censi’s
bound

complete 10 0.0459 ±0.05 0.05
30 −0.0459 ±0.05 0.05

star 10 0.0077 ±0.01 0.05
30 −0.003 ±0.0033 0.05

ring 10 0.045 ±0.05 0.05
30 −0.045 ±0.05 0.05

geometric 9 0.0315 ±0.033 0.05
30 0.0382 ±0.0408 0.05

Table 3: Bounds on the drift dx(k), Eq. (19). Quantiza-
tion scheme – rounding to the nearest integer, � = 0.1,
worst case of true steady-state value after 1000 ran-
domly initialized runs.

Topology ∣V∣

worst-case
steady-state

value
(max/min)

bound
Eq.(32)

(max/min)

Censi’s
bound

complete 10 0.0705/0.0188 0.1/0 0.1
30 0.0961/0.0042 0.1/0 0.1

star 10 0.0188/0.0011 0.02/0 0.1
30 0.0051/0.0015 0.00666/0 0.1

ring 10 0.0953/0.0045 0.1/0 0.1
30 0.078/0.0236 0.1/0 0.1

geometric 9 0.0648/0.0019 0.066/0 0.1
30 0.0778/0.0048 0.0817/0 0.1

Table 4: Bounds on the drift dx(k), Eq. (19). Quan-
tization scheme – ceiling, � = 0.1, worst case of true
steady-state value after 1000 randomly initialized runs
(maximum/minimum value).

In Figure 1 we observe a typical behaviour for the
first 7 states in case of a geometric random network with
30 nodes, with the bounded asymptotic phase.

25.0

25.1

25.2

25.3

25.4

25.5

25.6

25.7

0 1000 2000 3000 4000 5000 6000 7000 8000

x
i
(k
)

iterations

Figure 1: Example of convergence behaviour of
xi(k) (i = 1, 2, . . . , 7) and bounds for a random geo-
metric network; ∣V∣ = 30,Δ = 6.

5. CONCLUSION

We have proved and analyzed convergence of a quan-
tized averaging algorithm with noise which is fed-back
to system. We have proved that under simple require-
ments on the network and the noise, this type of al-
gorithm always asymptotically converges to a consen-
sus which can, however, be drifted from the true ini-
tial average. Moreover, in case of simple deterministic
quantization schemes, the convergence is satisfied only
in average. Nevertheless, also in this case, we can pro-
vide bounds on the drift from the steady-state. We
must, however, emphasize that these bounds depend
on the topology of network given by AG , while Censi’s
bounds do not. As considered in one step of the proof
in Censi [3, proof of Proposition 1 ], x(k) can also be
bounded by 1

∣V∣
�
ΔTr(D)�, which gives the same quali-

tative bounds on x1(k) like ours. Nevertheless, our ap-
proach using state-space description provides not only
the bound on the drift from the mean for x1(k) but
also for average y(k), and last, but not least, provides a
different insight to this problem.
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