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ABSTRACT
The problem of acoustic source localization is important in
many acoustic signal processing applications, such as dis-
tant speech acquisition and automated camera steering. In
noisy and reverberant environments, the source localization
problem becomes challenging and many existing algorithms
deteriorate. Three-dimensional source localization presents
advantages for certain applications such as beamforming,
where we can steer a beam to both the desired azimuth and
the desired elevation. In this paper, we present an acoustic
source localization method with low computational complex-
ity which, instead of using individual microphone signals,
combines them to form eigenbeams. We then use the zero-
and first-order eigenbeams to compute a pseudointensity vec-
tor pointing in the direction of the sound source. In an exper-
imental study, the proposed method’s localization accuracy
is compared with that of a steered response power localiza-
tion method, which uses the same eigenbeams. The results
demonstrate that the proposed method has higher localization
accuracy.

1. INTRODUCTION

While linear and planar microphone arrays have been the
subject of much research, and are now relatively well under-
stood, spherical microphone arrays, on the other hand, have
only recently become a topic of interest. They offer the ad-
vantage of being able to analyze sound fields in three dimen-
sions, and in this paper we will look at their ability to perform
source localization in three dimensions, which is useful in
applications such as beamforming for hands-free telephony,
noise source identification (in vehicles or aircraft), or auto-
matic camera steering.

Acoustic localization in two dimensions has been widely
studied, using time difference of arrival (TDOA) based meth-
ods, subspace-based methods (ESPRIT, MUSIC), or steered
response power (SRP). MUSIC [1] and ESPRIT [2] have
also been generalized to three dimensions, although they are
computationally inefficient due to the need for an exhaustive
search, and are typically not robust to reverberation.

In this paper, we propose a new method of three-
dimensional source localization for a single active source,
based on a pseudointensity vector, pointing in the direction of
the sound source. This vector is calculated using eigenbeams
which describe the sound pressure signals in the spherical
harmonic domain. We compare this method to a spherical

The authors acknowledge the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET-Open grant
number: 226007 SCENIC

harmonic domain implementation of the SRP method which
is commonly used in the time and frequency domains.

This paper is organized as follows: in Section 2 we in-
troduce background theory relevant to spherical harmonics,
in Section 3 we introduce the SRP method, in Section 4 we
present the pseudointensity vector, in Section 5 we briefly
discuss the computational complexity of the two methods
and finally in Section 6 we evaluate their accuracy.

2. SPHERICAL HARMONICS

In this section, we briefly review some of the theory behind
spherical harmonics. For a more exhaustive introduction, the
reader is referred to [3, 4, 5].

Consider a sound pressure field at a point (r,Ω) ,
(r,θ ,φ) (in spherical polar coordinates, with elevation θ and
azimuth φ ), denoted by p(k,r,Ω), where k is the wavenum-
ber. The raw acquired pressure signals p(n,r,Ω) are in the
discrete-time domain, and hence first need to be Fourier-
transformed to give p(k,r,Ω). The spherical Fourier trans-
form of this field is then given by [3, p. 192]:

plm(k,r) =
∫

Ω∈S2
p(k,r,Ω)Y ∗lm(Ω)dΩ, (1)

where
∫

Ω∈S2 dΩ ,
∫ 2π

0
∫

π

0 sinθdθdφ , and (·)∗ denotes the
complex conjugate.

The spherical harmonics Ylm(Ω) of order l and degree (or
mode) m, are given by [3, p. 190]:

Ylm(Ω) =

√
(2l +1)

4π

(l−m)!
(l +m)!

Plm(cosθ)eimφ , (2)

where Plm is the associated Legendre function and i =
√
−1.

They exhibit an orthogonality property which we will make
use of when calculating the sound field in the spherical har-
monic domain [3, p. 191]:∫

Ω∈S2
Ylm(Ω)Y ∗pq(Ω)dΩ = δl pδmq, (3)

where δ is defined as follows:

δi j =
{

1, if i = j;
0, if i 6= j. (4)

The pressure field can be calculated from the Fourier
transform using the inverse relation:

p(k,r,Ω) =
∞

∑
l=0

l

∑
m=−l

plm(k,r)Ylm(Ω). (5)
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If we assume that a sound source is in the far-field, the
wavefront impinging on a spherical array of radius ra can be
assumed to be planar, and if we call its arrival direction Ω0,
we can write plm as [6]:

plm(k,r) = a(k)bl(kr,kra)Y ∗lm(Ω0), (6)

where a(k) is the wave amplitude and bl(kr,kra) are the mode
coefficients or mode strengths. For the sound field on the
surface of a rigid sphere (as used in our experimental study),
again assuming far-field conditions [3, p. 228]:

bl(kr,kra) = 4πil
[
Jl(kr)−

J ′
l (kra)

H
(2)′

l (kra)
H

(2)
l (kr)

]
, (7)

where Jl is the spherical Bessel function of order l, H
(2)

l
is the spherical Hankel function of the second kind and of
order l, and (·)′ denotes the first derivative with respect to kr.
As our microphones are on the surface of the sphere, we let
r = ra and define bl(k) , bl(kra,kra).

In a system with M microphones whose polar coordinates
are (rq,Ωq),q = 1, . . . , M, we must approximate the integral
in (1) with a sum:

plm(k)≈
M

∑
q=1

gq,lm(k)p(k,rq,Ωq). (8)

Weights gq,lm(k) are chosen to ensure that (8) is an ac-
curate approximation of (1). The number of microphones
M must be sufficiently high: if N is the highest har-
monic order, p(k,r,Ω) has (N + 1)2 independent harmonics
(∑N

l=0 ∑
l
m=−l 1 = ∑

N
l=0(2l + 1) = (N + 1)2), therefore in or-

der to not lose information, we need to sample with at least
this many microphones. The number of microphones M must
therefore satisfy [5]:

M ≥ (N +1)2. (9)

3. LOCALIZATION USING THE STEERED
RESPONSE POWER

As a baseline for comparison, we will now present a con-
ventional method for source localization: computing a map
of the SRP which allows us to find the direction with the
highest power. In order to produce this acoustic map, we
must first introduce the theory of beamforming in the spher-
ical harmonic domain.

3.1 Beamforming
The spherical Fourier transform allows us to represent the
sound field in terms of orthogonal basis functions and can
therefore be interpreted as an eigenbeamformer. The signals
plm(k) that result from the spherical Fourier transform are
known as eigenbeams [4] and can be interpreted as individ-
ual sensors in the classical sensor array processing frame-
work. It is important to note that the directivity pattern of the
eigenbeams is frequency invariant while each magnitude re-
sponse depends on the order l. Once we have computed the
eigenbeams, we can synthesize an arbitrary beam pattern by
applying a modal beamformer. In general, the output of the
modal beamformer can be expressed by

y(k) =
N

∑
l=0

l

∑
m=−l

w∗lm(k)plm(k), (10)

where N is the highest array order and wlm(k) are the beam-
forming weights in the spherical harmonic domain. Often it
is sufficient to use a beam pattern which is rotationally sym-
metric around the look direction Ωu [7]:

w∗lm(k,Ωu) =
dl(k)
bl(k)

Ylm(Ωu), (11)

where dl(k) allows us to change the beam pattern. While the
above interpretation has some practical advantages, it should
be noted that the inverse spherical Fourier transform given
by (5) is done implicitly as it is incorporated into the beam-
former weights.

By combining (10) and (11) and reorganizing the terms
we obtain

y(k,Ωu) =
N

∑
l=0

l

∑
m=−l

dl(k)
bl(k)

plm(k)Ylm(Ωu) (12a)

=
N

∑
l=0

dl(k)
bl(k)

l

∑
m=−l

Ylm(Ωu)plm(k). (12b)

As shown in (12b) we can compute the output of the beam-
former in two steps. In the first step (second term on the
right hand side) the beamformer is steered to the look direc-
tion Ωu. In the second step (first term on the right hand side)
the beam pattern is synthesized.

3.2 Steered Response Power Map
An acoustic map can be computed and depicted in different
ways. Here we choose to compute the power corresponding
to the output of a beamformer steered in different directions.
The location with the highest power provides an estimate of
the location of the sound source. It should be noted that the
power of the beamformer output does not relate to one par-
ticular spatial location. The resolution of the acoustic map
depends on the directivity pattern of the beamformer (which
in turn depends on the highest array order N), and the number
of beams for which power is measured.

We take advantage of the orthogonality of the spherical
harmonics in (3) and choose weights gq,lm(k) given by:

gq,lm(k) = Y ∗lm(Ωq), (13)

which makes the approximation in (8) exact if (9) is satisfied
and our microphones are equally spaced on the sphere. How-
ever for non-trivial microphone configurations, it is not pos-
sible for the microphones to be perfectly equidistant, there-
fore there is a small error involved.

By substituting the expression for the weights gq,lm(k) in
(13) into (8) we obtain:

plm(k)≈
M

∑
q=1

Y ∗lm(Ωq)p(k,rq,Ωq), (14)

and substituting this expression into the beamformer output
y(k) expression in (12b), if we choose dl(k) = 1 (which max-
imizes the directivity [8]), we find:

y(k,Ωu)≈
N

∑
l=0

1
bl(k)

l

∑
m=−l

Ylm(Ωu)
M

∑
q=1

Y ∗lm(Ωq)

· p(k,rq,Ωq).

(15)
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The spherical harmonics Ylm for angles Ωu (the angles of
our beams) can be efficiently computed from those for an-
gles Ωq (the angles of our microphones) using the addition-
theorem for Legendre functions.

Once we have the beamformer output as a function of the
look direction Ωu, we can compute a power map M (Ωu) at
a certain number of points on a sphere with polar coordinates
Ωu , (θu,φu):

M (Ωu) = ∑
k

β (k) |y(k,Ωu)|2, (16)

where β (k) is a weighting function which allows us to, for
example, ignore all beams based on recordings below a cer-
tain frequency, which are likely to contain low frequency
noise and little speech, or to apply an A-weighting function.
We can also smooth the map over multiple time frames. In
our experimental study, we applied a moving average filter.

Assuming a single active source, the source location Ωs
is then the direction with maximum power:

Ωs = argmax
Ωu

M (Ωu). (17)

4. LOCALIZATION USING THE
PSEUDOINTENSITY VECTOR

4.1 Motivation
Unfortunately the SRP method, while intuitively simple, is
computationally complex: as the cost function M (Ωu) is
non-convex, we must steer a beam in every direction to deter-
mine which direction has the highest power, and hence where
the sound source is likely to be located. We now present a
novel alternative method based on intensity vectors.

In acoustics, sound intensity is a measure of the flow of
sound energy through a surface per unit area, in a direction
perpendicular to this surface. The idea of a pseudointensity
vector is inspired by the concept of intensity vectors, defined
as [9]:

I =
1
2

Re{p∗ ·v} , (18)

where p is the sound pressure, v = [vx vy vz]T is the particle
velocity vector, va (with a ∈ {x,y,z}) is the particle veloc-
ity in the ith direction (with a dipole directivity pattern), and
Re{·} denotes the real part of a complex number. For a plane
wave,

v =− p
ρ0c

u (19)

where c is the speed of sound in the medium, ρ0 is the ambi-
ent density, and u is a unit vector pointing towards the acous-
tic source.

The intensity vector corresponds to the magnitude and
direction of the transport of acoustical energy, indicating
its utility for determining the direction of arrival (DOA)
of a sound wave. Unfortunately in practice it is difficult
to measure particle velocity, although attempts have been
made using vibrating surfaces and accelerometers, or more
successfully, using the finite difference method with two-
microphone arrays [9]. More recently particle velocity has
been measured with a micromachined transducer, the Mi-
croflown [10]. In order to be able to use only one type of
sensor, we would like to compute the intensity vector using
a spherical microphone array.
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Figure 1: Beam pattern of a linear combination of spheri-
cal harmonics, aligned to the x-axis: |αx,(−1)Y1(−1)(θ ,φ)+
αx,0 Y10(θ ,φ)+αx,1 Y11(θ ,φ)|.

4.2 Definition
We propose a pseudointensity vector I(k) which is concep-
tually similar to an intensity vector, but is calculated using
the zero- and first-order eigenbeams plm(k) (l = 0,1), and is
defined as follows:

I(k) =
1
2

Re

{
p∗00(k)

[ px(k)
py(k)
pz(k)

]}
(20)

where the first term, p∗00(k) is the complex conjugate of the
zero-order eigenbeam, and the second term corresponds to
the particle velocity vector in (18). The components px(k),
py(k) and pz(k) of this vector are dipoles steered in the direc-
tion of the x, y and z axes which are proportional to the par-
ticle velocity. Since we are only interested in the pseudoin-
tensity vector’s direction, the scale factor (ρ0c)−1 is omitted
here.

In order to form the beams px(k), py(k) and pz(k), we
make use of the available eigenbeams p1(−1)(k), p10(k) and
p11(k). This can be done by forming a linear combination of
rotated eigenbeams:

pa(k) =
1

b1(k)

1

∑
m=−1

αa,m p1m(k), a ∈ {x,y,z} (21)

where the b1(k) factor is required to make the beam patterns
wavenumber independent.

To rotate each of the eigenbeams in the appropriate di-
rection (θr,φr), we multiply them by the spherical harmonics
Y1m(θr,φr). It can be shown that we therefore require:

αx,m = Y1m(π/2,0), (22a)
αy,m = Y1m(π/2,π/2), (22b)
αz,m = Y1m(0,0). (22c)

The beam pattern of px, which is aligned to the x-axis, is
shown as an example in Fig. 1.

4.3 Localization
The pseudointensity vector is calculated for every discrete
wavenumber; we therefore have a number of vectors which
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Figure 2: Position errors for the SRP and pseudointensity vector methods as a function of reverberation time (left) and source-
array distance (right). In the first case (left) the source-array distance is 1.5 m and ensures that the direct to reverberation
energy ratio remains above 0 dB. In the second case (right) the reverberation time is 300 ms. The boxes show the median,
upper and lower quartiles, and the whiskers extend to 1.5 times the interquartile range.

point in slightly different directions. While they provide an
approximate location for the sound source, some averaging
is necessary to locate it more precisely. The intensity vector
averaged across frequency is given by:

I = ∑
k

γ(k)I(k) (23)

where γ(k) is a weighting function similar to β (k) in (16).
Note that even with γ(k) = 1, ∀k we are implicitly giving a
higher weight to the intensity vectors with the highest norm.

An estimate of the unit vector u pointing in the direction
of the sound source, as in (19), is given by:

û =
I
||I||2

(24)

where || · || indicates a vector’s `2 norm. When multiple time
frames are available, one can additionally smooth û over
time.

5. COMPUTATIONAL COMPLEXITY

The pseudointensity method requires only the computation
of the four zero- and first-order eigenbeams, and three
weighted averages px(k), py(k) and pz(k) of these eigen-
beams. The SRP method, on the other hand, requires us to
compute these eigenbeams, and additionally steer beams in
all directions as shown in (12).

A fair comparison of these two methods would therefore
be to compute the SRP with only three beams, however for
this number of beams it is impossible to obtain a reasonable
DOA estimate from SRP. As we will see in Section 6, to ob-
tain accuracy of the same order as the pseudointensity vector
method, we must steer several thousands of beams.

In practice, however, it is not efficient to steer this many
beams indiscriminately in all directions: a coarse grid ap-
proach can be taken at first, to determine the DOA within
±30◦, for example, and we can then apply a finer grid to
the area of interest, thus reducing the amount of unnecessary
detail in areas where the acoustic source cannot be located
(based on the results of the first search).

6. PERFORMANCE EVALUATION

6.1 Using simulated data
In order to evaluate objectively the accuracy of the pseudoin-
tensity vector as a localization method, we must be able to
generate pseudointensity vectors in a simulated environment
where the true source positions are known precisely. We
achieve this by using a Room Impulse Response Generator
[11] based on Allen & Berkley’s image method [12], which
allows us to generate the three necessary beams px(k), py(k)
and pz(k). Using these beams and (21), we can also recover
the first order eigenbeams p1(−1)(k), p10(k) and p11(k) in or-
der to compute the SRP.

In order to evaluate and compare the performance of
these two localization methods, we choose to calculate the
angle ε between a vector pointing in the correct direction u,
and a vector pointing in the direction estimated by either of
the two methods û, as in [13]. If these vectors are normal-
ized, ε is given by:

ε = cos−1(uT û) (25)

For these simulations we place a receiver close to the cen-
ter of a room with dimensions 10×8×12 m in which a sin-
gle source is present. The source signal consists of a white
Gaussian noise sequence of duration 1 s. We choose a sam-
pling frequency of 8 kHz and a frame length of 32 ms with
a 50% overlap. We use the same number of eigenbeams for
the SRP as for the pseudointensity vector, i.e. we choose the
limit N = 1. We do not apply any weighting in (16) and (23),
that is, we set β (k) = γ(k) = 1,∀k.

In the first simulation, the reverberation time T60 is var-
ied from 0 (anechoic room) to 600 ms while the source-array
distance is fixed at 1.5 m. With such a configuration, rever-
beration times between 300 and 600 ms correspond to di-
rect to reverberant energy ratios between approximately 10
and 0 dB. In the second simulation the source-array distance
ranges between 0.5 and 2.5 m while the reverberation time is
fixed at 300 ms.

A statistical analysis of the results of these simulations
is shown in Fig. 2 (the boxes show the median, upper and
lower quartiles, and the whiskers extend to 1.5 times the in-
terquartile range), based on Monte Carlo simulations with
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Figure 3: Plot of pseudointensity vector elevations and az-
imuths for a source at approximately (0◦,−90◦). The dark-
ness of the data points indicates the norm of the correspond-
ing vector.

100 runs. For each run a new DOA was randomly selected
from a uniform distribution around the sphere. The accu-
racy of the pseudointensity vector method is significantly
higher than that of the SRP method with a small number of
beams (4096 or less). For a larger number of beams (16384),
the pseudointensity vector method still outperforms the SRP
method, but by a smaller margin. This is still the case even
as the source-array distance increases above 2 m.

6.2 Using spherical microphone array measurements
To experimentally test our proposed method, we measure a
sound field using an em32 Eigenmike from mh acoustics,
which is a spherical microphone array of radius ra = 4.2 cm
with M = 32 microphones. We choose N = 1. Measurements
are taken in a room with dimensions 2.9× 2.7× 3.3 m with
a reverberation time of approximately 300 ms.

Unfortunately as it was not possible to take precise mea-
surements of the true DOAs, a quantitative assessment of the
accuracy of the two methods would not be meaningful, how-
ever for illustrative purposes Fig. 4 shows a power map ob-
tained using the SRP method, and Fig. 3 is a plot of the
azimuths and elevations of some pseudointensity vectors we
obtained for a source located at approximately (0◦,−90◦). In
Fig. 3 we note a cluster of DOA estimates centered around
the correct DOA, and Fig. 4 confirms that the direction of
highest power corresponds to this same DOA.

7. CONCLUSION

The pseudointensity vector offers the possibility of fast
source localization without the computational complexity of
steering beams in all directions. Furthermore the results it
yields are relatively accurate when compared to the SRP
method with a viable number of beams: in typical environ-
ments the mean error is below 0.5◦.
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