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ABSTRACT

In this paper, we propose a novel multichannel noise reduction
method for a mechanical noise with a time-variant impulse re-
sponse. The mechanical noise source location moves depending
on the status of the actuator. In accordance with the move of the
noise-source location, a most suitable multichannel beamformer is
selected separately at each time-frequency bin. Each multichannel
beamformer is made from a corresponding multichannel noise co-
variance matrix which is learned in advance. The selection criteria
in the proposed method is to minimize the residual noise power in
the output signal. The multichannel beamformer that minimizes the
residual power after beamforming is selected. Furthermore, to re-
duce directional noise sources, the multichannel directional noise
covariance matrix is inserted into each multichannel mechanical
noise covariance matrix. Experimental results of mechanical noise
reduction show that the proposed method can reduce the mechanical
noise more accurately than the conventional method.

1. INTRODUCTION

Noise reduction techniques are strongly required for automatic
speech recognition of communication robots or speech communi-
cation systems. Especially, the mechanical noises such as a motor
noise of a communication robot or a noise source of a digital cam-
era which happens when optical zoom is active contaminate clean
speech, and degrades speech recognition performance or listenabil-
ity. Conventionally, there are few works about the mechanical noise
reduction. In this paper, we focus on the mechanical noise reduc-
tion. Optimized modified LSA proposed by I. Cohen [1] is the state
of the art noise canceller with single microphone. This method
outputs a amplitude-modified version of the microphone input sig-
nal. Noise reduction performance of these methods greatly depends
on the estimation accuracy of the noise-sources amplitude at each
time-frequency bin. However, the amplitude of nonstationary noise
sources are difficult with single channel microphone. An alterna-
tive noise-sources amplitude estimation method is the estimation
method with the indicator for the existence of the noise sources [2].
However, highly time-variant noise sources are also difficult to be
reduced. Furthermore, the speech distortion of the output signal is
also problematic in the single channel noise reduction techniques.

The multichannel noise reduction techniques have been actively
studied. Frost’ s minimum variance beamformer (MVBF) [3] is one
of the major multichannel noise reduction techniques. On contrary
to the single channel noise reduction techniques, when the location
of the desired source is set correctly, MVBF can reduce the point
noise sources theoretically without any distortion of the desired
source. GSC [4] is one of the online algorithms of MVBF. The noise
reduction performance is depending on the accuracy of the desired-
source location. Conventionally, robust GSC algorithms have been
studied [5] [6] [7]. These methods are robust against the error of
the desired-source location. Blind source separation techniques for
alternatives of beamforming techniques. Recently, internal noise
reduction technqiues based on independent component analysis [8]
have been proposed [9][10]. Conventional beamformers and ICA
can reduce noise sources whose spectrum are nonstationary. When

the impulse reponses of the noise sources are slowly time-variant
sources, these methods can track the change by updating informa-
tion about the noise sources such as a multichannel noise covari-
ance matrix. However, when the impulse responses of the noise
sources are highly nonstationary sources, conventional methods
cannot track the change effectively. The mechanical noise-source
location moves depending on the status of the actuator rapidly, and
the impulse response of the mechanical noise-source can be approx-
imated to be highly time-variant. Therefore, beamforming tech-
niques which can reduce noise sources with time-variant impulse re-
sponses are required. In this paper, we propose a novel mechanical
noise reduction technique. The proposed technique assumes that the
existence of the mechanical noise can be detected by the external in-
strument, because the actuator which causes the mechanical noise is
usually controlled systematically. The most important assumption
in the proposed method is that the time-variant multichannnel noise
covariance matrix of the mechanical noise at each time-frequency
bin can be approximated by a set of the pre-learned multichannel
mechanical noise covariance matrices. This assumption is often
valid, because the number of the patterns of the actuator is lim-
ited in an usual case. Under this assumption, the proposed method
discretizes the time-variant noise covariance matrix of the mechan-
ical noise. The discretized multichannel noise covariance matrices
are obtained in the offline learning period. Compared with single
channel noise reduction techniques which estimate spectral features
of the noise sources, the most discriminative point of the proposed
method in the offline learning period is that the proposed method
does Not learn power spectrum of the mechanical noise sources but
also learns the impulse responses of the mechanical noise sources.
In the online noise reduction period, the proposed method selects
one mechanical noise covariance matrix suitable for the mechanical
noise reduction at each time-frequency bin. Even when the impulse
response of the noise sources change rapidly time-by-time, the pro-
posed method can reduce the mechanical noise sources efficiently.
Furthermore, the directional noise covariance matrix is estimated to
reduce directional noise sources. Direction of arrival (DOA) based
segregation of each time-frequency bin is performed to obtain the
directional noise covariance matrix. From the segregation result,
multichannel covariance matrix of the directional noise sources are
updated. The multichannel directional noise covariance is inserted
into each multichannel mechanical noise covariance matrix. In this
paper, the proposed method was evaluated by two mechanical noise
problems. The first problem is the noise reduction problem of a dig-
ital camera when optical zoom is active. The second problem is the
noise reduction problem of a communication robot when it moves
its arm.

2. PROBLEM STATEMENT

2.1 Input signal model

Input signal in a microphone array is modeled as the sum of the
desired source convolved with a time-invariant impulse response,
the directional noise source convolved with a slowly time-variant
impulse response, and the mechanical noise source signal convolved
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with a time-variant impulse response. The multichannel input signal
is depicted as follows:

x(t) = [ x1(t) . . . xm(t) . . . xM(t) ]T , (1)

where M is the number of the microphones, T is an operator of the
transpose of a matrix or a vector, and xm(t) is the t-th sample of
the m-th microphone input signal. The multichannel input signal is
converted from the time domain to the time-frequency domain by
the short-term-Fourier transform as follows:

x( f ,τ)= s( f ,τ)a( f )+n( f ,τ)b( f ,τ)+
N−1

∑
i=0

di( f ,τ)ci( f )+v( f ,τ),

(2)
where x( f ,τ) is the multichannel input signal at ( f ,τ), f is the
frequency index, τ is the frame index, s( f ,τ) is the desired source
signal at the frequency f and the frame τ , a( f ) is the steering vector
of the desired source signal, which depends on the spatial location
of the desired source, n( f ,τ) is the mechanical noise source signal,
b( f ,τ) is the time-variant steering vector of the mechanical noise
source, di( f ,τ) is the i-th directional noise source, N is the number
of the directional noise sources, ci( f ) is the steering vector of the
i-th directional noise source, and v( f ,τ) is a back ground noise
signal. s( f ,τ), n( f ,τ), di( f ,τ), v( f ,τ) are defined as mutually
independent signals.

2.2 Noise reduction problem forthe mechanical noise with
time-variant impulse response

The conventional multichannel beamforming extracts the desired
source signal from the noisy multichannel input signal by using the
multichannel linear filter w( f ,τ) as follows:

y( f ,τ) = w( f ,τ)x( f ,τ), (3)

where y( f ,τ) is the output signal, which is required to be the desired
source signal s( f ,τ). One way to obtain the suitable w( f ,τ) is to
maximize the power ratio between the extracted desired signal after
filtering by w( f ,τ) and the residual noise signal in the output signal
[11]. The beamformer maximizing SNR, wSNR( f ,τ),is obtained
as follows:

wSNR( f ,τ) = argmax
w( f ,τ)

w( f ,τ)HRs( f ,τ)w( f ,τ)

w( f ,τ)HRn( f ,τ)w( f ,τ)
, (4)

= λmax eig(Rn( f ,τ)−1Rs( f ,τ)), (5)

where max eig is a function to extract the eigen vector whose eigen
value is maximum, Rs( f ,τ) is the multichannel covariance matrix
of the desired source signal, Rn( f ,τ) is the multichannel covari-
ance matrix of the noise source signal, and λ is an arbitrary complex
coefficient. Rs( f ,τ) and Rn( f ,τ) is expanded as follows:

Rs( f ,τ) = E[|s( f ,τ)|2]a( f )a( f )H , (6)

Rn( f ,τ) = E[|n( f ,τ)|2b( f ,τ)b( f ,τ)H ]

+
N−1

∑
i=0

E[|di( f ,τ)|2ci( f )ci( f )
H ]

+E[v( f ,τ)v( f ,τ)H ], (7)

where E[x] is an operator for the mathematical expectation, H is
defined as an operator of Hermite transpose of a vector or a matrix,
∗ is the operator for the complex conjugate. Rs( f ,τ) is a product of
the scalar coefficient Ps( f ,τ) = E[|s( f ,τ)|2] and the time-invariant
matrix R̃s( f ) = a( f )a( f )H . wSNR( f ,τ) can be also separated into
two terms as follows:

wSNR( f ,τ) = λw̃SNR( f ,τ), (8)

where w̃SNR( f ,τ) = max eig(Rn( f ,τ)−1R̃s( f )). Commonly , λ
is obtained as follows [12]:

λ ← argmin
λ

E[||s( f ,τ)a( f )−wSNR( f )s( f ,τ)a( f )||2]

=
E[x( f ,τ)Hx1( f ,τ)]w̃SNR( f ,τ)

w̃SNR( f ,τ)E[x( f ,τ)x( f ,τ)H ]w̃SNR( f ,τ)H
(9)

=
Ps( f ,τ)R̃s( f )[1]w̃SNR( f ,τ)H

w̃SNR( f ,τ)Ps( f ,τ)R̃s( f )w̃SNR( f ,τ)H
, (10)

=
R̃s( f )[1]w̃SNR( f ,τ)H

w̃SNR( f ,τ)R̃s( f )w̃SNR( f ,τ)H
, (11)

where R̃s( f )[1] is the first row of R̃s( f ). It is obvious that Ps( f ,τ)
is no influence on the estimation of w̃SNR( f ,τ) and λ . Therefore,
when R̃s( f ) is estimated at the time period when there is only the
desired source, the estimated value can be utilized at the noisy time
period. On the other hand, Rn( f ,τ) is the time-variant matrix. Es-
timation of Rn( f ,τ) is required at each frame. Therefore, the prob-
lem is that estimation of the time-variant noise covariance matrix
Rn( f ,τ) at each frame. Furthermore, Rn( f ,τ) is divided into 2
matrices as follows:

Rn( f ,τ) = Rmech( f ,τ)+Rd( f ,τ), (12)

where Rmech( f ,τ) is a multichannel mechanical noise covariance
matrix, Rd( f ,τ) is a multichannel noise covariance matrix of the
directional noise sources and the background noise.

3. PROPOSED METHOD

3.1 Discretization ofthe noise covariance matrix

The number of the patterns of the actuator is limited in an usual
case. For example, the patterns of the robot’s motions are limited.
Therefore, even when the multichannel mechanical noise covari-
ance are time-variant, the number of the patterns of the multichannel
mechanical noise covariance is also limited. Under this assumption,
the time-variant multichannnel noise covariance matrix of the me-
chanical noise at each time-frequency bin can be approximated by
a set of the pre-learned multichannel mechanical noise covariance
matrices. The time-variant noise covariance matrix, Rmech( f ,τ) is
discretized and divided into C clusters. The multichannel mechani-
cal noise covariance matrix at ( f ,τ) is depicted as follows:

Rmech( f ,τ) ≈ Rmech,index( f ,τ)( f ), (13)

where index( f ,τ) is the segregated cluster index of ( f ,τ), and
Rmech,c( f ) is the c-th cluster in the discretized C clusters of the
noise covariance matrix. Under the approximation of Eq. 13, when
the cluster index can be obtained at each ( f ,τ), the beamformer
maximizing SNR can be obtained by Eq. 8. The covariance matrix
of the c-th noise source, Rmech,c( f ), can be obtained by utilizing k-
means clustering of the multichannel input signals in the noise-only
period. k-means clustering is performed at each frequency sepa-
rately for the converted multichannel input signal x̄( f ,τ). The ob-
served multichannel input signal, x̄( f ,τ), is converted as follows:

x̄( f ,τ) =
x( f ,τ)|x1( f ,τ)|

|x( f ,τ)|x1
. (14)

x̄( f ,τ) has only the steering vector of the noise source, and this
vector has no information about the power spectrum of the de-
sired source. A distance function in k-means clustering is Eu-
clidean distance between x̄( f ,τ) and the centroid of each cluster.
After k-means clustering, index( f ,τ) which indicates that which
cluster each time-frequency component is segregated is obtained.
By using index( f ,τ), the proposed method estimates the c-th mul-
tichannel mechanical noise covariance matrix as Rmech,c( f ) =

∑index( f ,τ)=cx( f ,τ)x( f ,τ)H .
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3.2 Estimation ofthe multichannel directional noise covari-
ance matrixand the multichannel desired source covariance
matrix

The existence of the mechanical noise can be detected by the exter-
nal instrument. Updating of the multichannel covariance matrices
of the directional noise sources and the desired source is controlled
by information about the existence of the mechanical noise. These
two matrices are updated under the condition that the background
noise is small and there are both the desired source and the direc-
tional noise sources. To update two matrices, sparseness-based up-
dating technique [13] is utilized. When the directional noise sources
and the desired source are sparse enough, these sources are rarely
overlapped at the same time-frequency point [14]. The proposed
method detects which source is active at each time-frequency point
by using direction of arrival (DOA) estimation from multichannel
input signal. When there is no mechanical noise, the covariance
matrix of the desired source is updated by using the sparseness as-
sumption as follows:

Rs( f ,τ) ← α f ,τ Rs( f ,τ −1)+(1−α f ,τ )x( f ,τ)x( f ,τ)H , (15)

where α f ,τ controls speed of updating Rs( f ,τ). When estimated
DOA at ( f ,τ) is beyond the pre-defined desired speech area, α f ,τ is
set to be 0, otherwise α f ,τ is set to be a constant value α . Similarly,
the covariance matrix of the directional noise sources, Rd( f ,τ), is
updated as follows:

Rd( f ,τ) ← β f ,τ Rd( f ,τ −1)+(1−β f ,τ )x( f ,τ)x( f ,τ)H . (16)

When estimated DOA at ( f ,τ) is beyond the predefined desired
speech area, β f ,τ is set to be a constant value β , otherwise β f ,τ
is set to be 0. And when there is mechanical noise, the covari-
ance matrix of the desired source and that of the directional noise
sources are not updated. Therefore, Rs( f ,τ) = Rs( f ,τ − 1) and
Rd( f ,τ) = Rd( f ,τ −1) in this case.

3.3 Selection criterion ofnoise covariance matrixat eachtime-
frequencypoint

The proposed selection criterion of the noise covariance matrix at
each time-frequency point is shown. The multiple hypothesis of
the multichannel noise covariance matrix Rn( f ,τ) appears depend-
ing on the number of the multichannel mechanical noise covariance
matrices. The c-th multichannel noise covariance matrix Rn,c( f ,τ)
can be obtained as follows:

Rn,c( f ,τ) = γRmech,c( f ,τ)+(1− γ)Rd( f ,τ), (17)

where γ is a parameter which controls the balance between the me-
chanical noise reduction performance and the directional noise re-
duction performance. The multichannel noise covariance matrix of
the directional-noise source, Rd( f ,τ), is common in Eq. 17. The
c-th noise reduction filter wSNR,c( f ,τ) which is obtained by using
the desired covariance matrix Rs( f ,τ) and Rn,c( f ,τ) is obtained
by substituting Rn,c( f ,τ) for Rn( f ,τ) in Eq. 8 as follows:

w̃SNR,c( f ,τ) = max eig(Rn,c( f ,τ)−1Rs( f ,τ)), (18)

λc ←
Rs( f ,τ)[1]w̃SNR,c( f ,τ)H

w̃SNR,c( f ,τ)Rs( f ,τ)w̃SNR( f ,τ)H
, (19)

wSNR,c( f ,τ) = λcw̃SNR( f ,τ). (20)

The output signal after filtering by the c-th filter, yc( f ,τ) can be
expanded as follows:

yc( f ,τ) = wSNR,c( f )
H

x( f ,τ), (21)

= os,c+on,c+od,c+ov,c, (22)

where os,c is defined as s( f ,τ)wSNR,c( f )
H

a( f ), on,c is

defined as n( f ,τ)wSNR,c( f )
H

b( f ,τ), od,c is defined as

Fig. 1. Block diagram of proposed method

wSNR,c( f )
H ∑N−1i=0 di( f ,τ)ci( f ), and ov,c is defined as

wSNR,c( f )
H

v( f ,τ). when the λc is correctly estimated, os,c
is approximately independent of the noise cluster index c.
The common directional noise covariance matrix is inserted in
Rn,c( f ,τ), so the residual directional noise in the output signal is
independent of the noise cluster index. Assuming that distribution
of back ground noise is i. i. d, E[||ov,c||

2] = σv||wSNR,c( f )||
2, and

σv is the average power of back ground noise at each microphone.
When the background noise level is low or the l2-norm of each

filter is constant, ||ov,c||
2 is approximately independent of the noise

cluster index c. Therefore, the expectation of the spectral power of
the yc( f ,τ) is obtained as follows:

E[||yc( f ,τ)||2] = E[||os+on,c+od ,ov,c||
2]

≈ E[||os||
2]+E[||on,c||

2]+E[||od ||
2]+E[||ov||

2]. (23)

From Eq. 23, the noise reduction filter which minimizes the residual
noise is defined as follows:

wSNR( f ,τ) = argmin
wSNR,c( f )∈ΩC( f )

E[||wSNR,c( f )
H

x( f ,τ)||2],

≈ argmin
wSNR,c( f )∈ΩC( f )

||wSNR,c( f )
H

x( f ,τ)||2, (24)

where ΩC( f ) is composed of the C noise reduction filters (the c-th
element is wSNR,c( f )).

3.4 Blockdiagram ofproposed method

The block diagram of the proposed method is summarized in Fig. 1.

The proposed method is composed of two phases. The first
phase is the learning phase, in this phase, the microphone input
signal is only the noise signal. Discretized noise covariance ma-
trices are learned by using k-means clustering of the normalized
steering vectors. The second phase is the noise reduction phase. A
microphone input signal is assumed to be mixed with the desired
source and the noise sources. The multichannel desired source co-
variance matrix and the multichannel directional noise source co-
variance matrix are obtained by the sparseness based segregation
of the microphone input signal. The noise signal in input signal is
reduced by selecting the noise reduction filter which minimizes the
output power after filtering.

4. EXPERIMENT

The proposed method was evaluated by two types of real mechani-
cal noises. The first mechanical noise is mechanical noise reduction
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on a digital camera when optical zoom is active. The second one
is mechanical noise reduction on a communication robot when it
moves its arm. A communication robot which was used in this ex-
periment was EMIEW2 [15], which has been developed in Hitachi,
Ltd. The proposed method is compared with the conventional noise
reduction method with single noise reduction filter. The evalua-
tion measures are Source-to-Interferences Ratio (SIR), Source-to-
Distortion Ratio (SDR). These measures are defined in BSS EVAL
[16]. Noise reduction performance of the proposed method depends
on the number of the noise reduction filters. Therefore, the proposed
method was evaluated with various number of the noise reduction
filters. Furthermore, the proposed method also depends on signal-
to-noise ratio of the input signal. Therefore, the proposed method
was evaluated under various SNR conditions. The desired source
signal was set to be a male speech. At first, the mechanical noise
reduction of a digital camera when optical zoom is active is shown.
The reverberation time of the experimental room was about 100 ms.
The number of the microphones used in this experiment was 2, and
the sampling rate was 48 kHz. These are common settings for re-
coding on a digital camera. In Fig. 2, a spectrogram of the noise
signal is shown. At first, the experimental result when there are no

Fig. 2. A spectrogram of noise sources when optical zoom is active

directional noise is shown. The evaluation results of SDR is shown
in Fig. 3, SIR in Fig. 4.

It is shown that SIR is increasing with the number of the noise
reduction filters. When SNR of the input signal is low, SDR results
are also increasing. On the other hand, the improvement of SDR
with respect to the number of the noise reduction filters decreases
at higher-SNR results. That is because there is less noise signal at
the high SNR, so the noise signal can be reduced with the small
number of the noise reduction filters and using the excess number
of the noise reduction filters leads to degradation of SDR. However,
the optical zoom noise happens typically near the microphones, so
SNR tends to be less than 0 dB.

The proposed method was also evaluated under the condition
that there is a directional noise source on a communication robot,

Fig. 3. SDR results of noise reduction for digital camera

Fig. 4. SIR results of noise reduction for digital camera

Fig. 5. Microphone alignment of EMIEW2

EMIEW2. EMIEW2 has 14 microphones. The microphone align-
ment of EMIEW2 is shown in Fig. 5. The sampling rate is 8 kHz.
The reverberation time of the experimental room was about 300 ms.
The desired speech source was located in front of EMIEW2. The
distance between the desired source and EMIEW2 was 1 m. The
mechanical noise that is used in this evaluation is the mechanical
noise which occurs when EMIEW2 moves its arm. The directional
noise source was located just beside EMIEW2. The distance be-
tween the directional noise source and EMIEW2was 1 m. Averaged
power of the directional noise is set to be equivalent to that of the de-
sired speech source. The evaluation result under the condition that
the number of the noise reduction filters is 2 is shown in Table. 1.
γ is defined in Eq. 17. When the γ is a big value, noise reduction
performance for the directional noise source degrades. “dir”is the
multichannel noise reduction result when the mechanical noise is
regarded as one of the directional noise sources and reduced by a
conventional maximum SNR beamformer which maximizes the ra-
tio between the desired source and the directional noise sources in
the output signal. The noise reduction performance of the proposed
method is shown to be higher than this a conventional maximum
SNR beamformer. By comparison γ = 1.0 with γ = 0.1 or γ = 0.5,
SNR is shown to be improved by using a combined multichannel
noise covariance matrix defined in Eq. 17.

Table 1. Evaluation result for both a directional noise source and
mechanical noise reduction: evaluation measure is SIR [dB].

dir γ = 0.1 γ = 0.5 γ = 1.0
SNR=-10 dB -4.2 12.0 13.7 11.4
0 dB 5.8 15.0 14.3 11.4
10 dB 13.3 15.6 14.4 11.4

A sample of the output signal is shown in Fig. 6. In “Section A”,
the mechanical noise is mixed into the input signal. By using the
proposed method, the mechanical noise is shown to be reduced. In
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Fig. 6. A sample of output signal by proposed method

“Section B”, the directional noise source is dominant, but the direc-
tional noise source is reduced in the output signal of the proposed
method.

5. CONCLUSION

In this paper, we proposed a noise reduction method for a mechani-
cal noise whose impulse response is time-variant. The multichannel
noise covariance matrix of a mechanical noise is also regarded as a
time-variant matrix. In the learning phase, the proposed method
discritizes the multichannel noise covariance matrix by k-means
clustering and obtained multiple noise covariance matrices. Un-
like conventional multichannel noise reduction methods with sin-
gle noise reduction filter, the proposed method use multiple noise
reduction filter. Each noise reduction filter is made from the cor-
responding noise covariance matrix in the learning phase. In the
noise reduction phase, the proposed method selects a filter which
minimizes output power after noise reduction, and the output signal
of this filter is regarded as output signal of the proposed method. We
applied the proposed method for noise reduction of a digital cam-
era and a communication robot. Experimental results show that the
proposed method is superior to conventional maximum SNR beam-
former with single noise reduction filter especially at lower SNR.
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