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Email: {zaka, oscarg}@isy.liu.se

ABSTRACT

In this work a new technique for design of narrow-band and
wide-band linear-phase finite-length impulse response (FIR)
frequency-response masking based filters is introduced. The
technique is based on a sparse FIR filter design method for
both the model (bandedge shaping) filter as well as the mask-
ing filter using mixed integer linear programming optimiza-
tion. The proposed technique shows promising results for
realization of efficient low arithmetic complexity structures.

1. INTRODUCTION

Frequency-response masking techniques offer certain attrac-
tive benefits over conventional single-stage filters and a num-
ber of such techniques have evolved which are known to be
highly efficient for achieving reduction of the number of mul-
tiplications and additions in narrow transition band linear-
phase finite-impulse response (FIR) filters [1–5]. A narrow-
band filter (narrow-band means here that for the passband
edge,ωcT , we haveωcT < π/2) can be realized as a cascade
of two filters, i.e., a periodic model filter and a masking filter
as shown in Fig. 1(a). This is also known as an interpolated
FIR filter. In the lowpass filter case, the masking filterF(z)
selects the passband in the baseband ofG(zM), and elimi-
nates the remaining passbands. This is outlined in Fig. 2,
where Fig. 2(a) illustrates the initial model filter, Fig. 2(b)
the periodic model filter, with period 2π/M, Fig. 2(c) the
masking filter, and Fig. 2(d) the overall cascaded frequency
response.

The filter order of an FIR filter and therefore the arith-
metic complexity (number of multiplications and additions)
is inversely proportional to the width of the transistion band
[3]. As the transition bands of the filtersF(z) andG(z) are
significantly wider that that ofH(z), one can expect a signif-
icant reduction of the arithmetic complexity for a correctly
chosenM.

SelectingF(z) as a highpass or a bandpass filter with the
same model filterG(zM), will produce an overall highpass
or bandpass filter, respectively. Similarly a wide-band filter
(wide-band means here that for a lowpass filterωcT > π/2)
can be easily obtained by complementing a linear phase
narrow-band filter as illustrated in Fig. 1(b).

Several techniques have been proposed for improving the
computational efficiency of narrow-band frequency-response
masking (NBFRM) which include single filter frequency
masking filters [6], where the same filter is used with differ-
ent periodicities, and the use of very simple subfilters, either
as prefilters [7–9] or as masking filters [10]. Furthermore, de-
signs using minimum-phase filters have been proposed [11].

In this work the application of sparse FIR filter design
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Figure 1: (a) Narrow-band FIR frequency response masking
filter. (b) Wide-band FIR frequency-response masking filter.

based on mixed integer linear programming to NBFRM is
presented. As we optimize for sparsity, we will in the ideal
case not have a periodic model filter, instead the optimiza-
tion procedure will find the sparsest possible model filter.
The model and masking filters are designed in separate steps,
and, hence, a globally optimal solution is not found. This is
in general not surprising since the design of two cascaded
FIR filters is a non-convex problem. Still, the results show a
significant computational complexity reduction compared to
conventional separate design.

In the next section we discuss the formulation of the
mixed-integer linear programming problem used and de-
scribe our proposed design method. Then, in Section 3 some
design examples are presented and elaborated to illustratethe
properties and benefits of the proposed design method. Fi-
nally, some concluding remarks are given in Section 4.

2. PROPOSED DESIGN APPROACH

2.1 Design of Sparse FIR Filters

The transfer function of anN:th-order FIR filter can be writ-
ten as [12]

H(z) =
N

∑
n=0

h(n)z−n (1)

whereh(n) are the impulse response coefficients. Usually,
the computational complexity of an FIR filter is largely de-
termined by the number of multiplications required to realize
the transfer function, i.e, the number of non-zerohi. Let us
denote the desired magnitude function asD(ωT ) where typ-
ically D(ωT ) is one in passband and zero in the stopband. If
we denote the maximum allowed deviation from the desired
magnitude, i.e., the ripple asδ (ωT ), it can be rewritten as
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Figure 2: Frequency responses for: (a) model filter, (b) peri-
odic model filter, (c) masking filter, and (d) overall narrow-
band filter.

two constraints
L

∑
i=0

hitrig(i,ωT )≤ δ (ωT )+D(ωT ) (2)

−
L

∑
i=0

hitrig(i,ωT )≤ δ (ωT )−D(ωT ) (3)

where we use the zero-phase magnitude response to formu-
late linear constraints. Here trig is a weighted trigonometric
function depending on whetherN is even or odd and if the
impulse response is symmetric or anti symmetric [13].

In order to minimize the number of non-zero coefficients,
two more constraints are introduced which are based on non-
zero binary variablesxi ∈ [0,1] such that [12]

|xi|=

{

0 hi = 0
1 hi 6= 0 (4)

The above equations can be written using linear constraints
as

hi ≤ kixi, ∀i (5)

−hi ≤ kixi, ∀i (6)

Here ki define the upper and lower bound of the variables
hi. These values can be determined using e.g. a bounding
approach as proposed in [12], it is also possible to assign
them a suitable value, e.g.,ki = 1 .

As the aim is to find a solution with minimum number
of multiplications the objective function is formulated asthe
sum of all xi. The complete optimization problem is then
formulated as

minimize
L

∑
i=0

xi (7)

subject to (2), (3), (4), (5), and (6). This problem can be
solved using standard MILP solvers employing techniques
such as branch and bound or branch and cut.

2.2 Proposed Design Method

Ideally one would design the model filter without any period.
However, since the solution of MILP problems are time con-
suming and the number of variables are roughly inversely
proportional to the periodicity, we will consider a design
problem with a periodMa, a for actual periodicity, for the
model filter, while the masking filter is designed for a peri-
odicity of Md , d for designed periodicity.

Consider a narrow-band lowpass filter with passband rip-
ple δc, stopband rippleδs, passband edgeωcT and stopband
edgeωsT . The minimum filter order for a single-stage FIR
filter meeting the specification isNS. The proposed design
method is as follows for a givenMd and Ma (in general a
search over possibleMd ≤ π/ωsT andMa ≤ Md is required):
1. Design an initial masking filterF(z) based on the follow-

ing specification:

δc,F = δc/2 δs,F = δs
ωc,F T = ωcT ωs,F T = 2π/Md −ωsT

(8)

For this filter linear programming [14] or the Remez ex-
change algorithm [15] can be used. It can be noted that
this filter is designed without any don’t care bands, which
is common for masking filters for a periodic model filter.
However, as the masking filter will be reoptimized, the
final masking filter will still have a low complexity.

2. Based on the discussion in the previous section formulate
a MILP design problem designing an optimized model
filter Go(z) which in combination with the masking filter
F(z) meets the filter specification. The constraint equa-
tions can be written as

|F(z)Go(z
Ma)−1| ≤ δc (9)

|F(z)Go(z
Ma)| ≤ δs (10)

where the filter coefficients ofF(z) are fixed. The fil-
ter order of the model filter can be set to approximately
NS/Ma.

3. Redesign the masking filter minimizing the number of
non-zero multiplication coefficients using a similar for-
mulation as in the previous step, but with the coefficients
of the model filterGo(z) fixed. Denote the resulting filter
Fo(z).

The two final steps can be iterated to possibly reduce the
complexity further. However, based on our experience this
rarely provides any improvements in practice.

It can be noted that for two differentMa valuesMa,1 and
Ma,2 such that one is an integer multiple of the other, say
Ma,1 = KMa,2 for an integerK, the complexity of the opti-
mized model filter can never be smaller for theMa,1 case as
those solutions are just a subset of theMa,2 design. However,
due to the non-convexity of the problem the total complexity
may not always be minimized for smallerMa,2.

3. DESIGN EXAMPLES

In our experiments we model the design problem using
GLPK [16] and solve the problems using either GLPK or
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Table 1: Complexity for narrow-band lowpass case
Period. Complexity

Proposed Conventional
Md Ma CF CGo CFo Total CF CG Total
10 7 39 5 22 27 39 6 45
9 3 28 5 19 24 28 6 34
8 7 22 5 13 18 22 7 29
7 1 15 5 11 16 15 8 23
6 1 12 7 11 18 12 10 22
5 1 10 8 9 17 10 12 22
4 1 7 11 5 16 7 14 21
3 3 5 16 4 20 5 19 24
2 1 3 21 3 24 3 28 31

Md = Design periodicity
Ma = Actual used periodicity
CF = Complexity of initial masking filter
CGo = Complexity of optimized model filter
CFo = Complexity of optimized masking filter
CG = Complexity of conventional model filter

SCIP [17]. For comparison we use separate design of the
masking and periodic model filters where the passband ripple
is equally divided between the model and the masking filters,
following [1]. The number of non-zero multiplications for a
filter H(z), utilizing symmetry, is denotedCH .

3.1 Example 1 – Narrow-Band Lowpass Filter

In this first example we consider a narrow-band lowpass filter
with the following specifications:

δc = 0.01 δs = 0.01
ωcT = 0.05π rad ωsT = 0.09π rad (11)

A single-stage design requires a minimum filter order of
97, leading to a complexity of 49 multiplications. An exhaus-
tive search is performed for all possibleMd with 2≤Md ≤ 10
and all possibleMa with 1≤ Ma ≤ Md . The best results for
eachMd is reported in Table 1. For comparison we have
also performed a conventional design and these results are
also presented in Table 1. As can be seen, the proposed de-
sign method reduce the complexity for all cases. The lower
complexity is reduced from 21 for the conventional design
to 16 for the proposed design method. This corresponds to
a reduction of about 24%. The magnitude responses for the
designed filters are shown in Fig. 3. As can be seen, the mag-
nitude response forMa = 1 did in fact end up to be periodic
with a periodicity of seven. However, this was not enforced
by the problem formulation.

To illustrate one of the properties of the proposed ap-
proach, we consider the detailed results obtained for the
Md = 8 case, as shown in Fig. 4, where the actual period-
icity used in the model filter design,Ma, varies from eight
to one. Based on the previous discussion, we would ex-
pect a non-increasing behavior for the model filter complex-
ity when numbers are integer multiples. For example, for
Ma = 8,4,2,1 we can see this. In this case it also holds that
the total complexity is non-increasing. However, the best
result for this case is obtained forMa = 7, despite that one
could expect thatMa = 1 should give as good or better re-
sults. The reason for this is that the model filter solutions
found forMa = 1 andMa = 7 are as good, with a complex-
ity of five multiplications (as are the solutions forMa = 2
andMa = 4). However, the solution forMa = 7 leads to a
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Figure 3: Magnitude responses for Example 1: (a) masking
filter, (b) optimized model filter, (c) optimized masking filter,
and (d) overall narrow-band filter.
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Figure 4: Masking filter, model filter, and total complexity
for Md = 8.

optimized masking filter with lower complexity. The reason
that this can happen is obviously the non-convex underlying
problem. Hence, it can make sense to try differentMa even if
the filter order is low enough to allow a solution forMa = 1.
On the other hand, as seen from Table 1, for most of the dif-
ferentMd values the solution forMa = 1 is the best.

3.2 Example 2 – Wide-Band Lowpass Filter

As already mentioned the technique is equally suitable for
wide-band filters as well, by utilizing the complement of the
corresponding narrow band as shown in Fig. 1b. In order to
further elaborate the design method and demonstrate the ap-
plicability of the technique for wide-band filters, the follow-
ing specification of a wide-band lowpass filter is considered

δc = 0.005 δs = 0.01
ωcT = 0.90π rad ωsT = 0.91π rad (12)

The filter order for a single-stage FIR filter meeting this
specification is 430. Hence, 216 multiplications are required.
This also gives that an optimization usingMa = 1 will require
about 216 variables. Using the current optimization approach
with too many coefficients, and to be able find a solution in
reasonable time we usedMa = Md in this case in the design.
The best result was found forMd = Ma = 6 and the resulting
magnitude responses are shown in Fig. 5. For this case the
number of multiplications are found to be 32 for the model
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Figure 5: Magnitude responses for Example 2: (a) optimized
model filter, (b) optimized masking filter, (c) narrow-band
highpass filter, and (d) overall wide-band lowpass filter.

filter and 16 for the masking filter leading to a total complex-
ity of 48 multiplications. A conventional design require 58
multiplications [10], and, hence, a complexity reduction of
17% is obtained.

4. CONCLUSIONS

In this paper we proposed a new technique for complexity re-
duction in narrow-band and wide-band frequency-response
masking filters by introduction of sparse filters resulting in
possibly non-periodic model filters. The technique is based
on subsequent design of the model and masking filter, which
introduces sub-optimality as the overall problem is non-
convex. However, from the example designs it can be seen
that the proposed design technique decreases the complexity
compared to conventional frequency-response masking fil-
ters.
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sity, 2007.

[14] L. Rabiner, “Linear program design of finite impulse
response (FIR) digital filters,”IEEE Trans. Audio Elec-
troacoust, vol. AU-20, pp. 280–288, Oct. 1972.

[15] J. H. McClellan, T. W. Parks, and L. Rabiner, “A com-
puter program for designing optimum FIR linear phase
digital filters,” IEEE Trans. Audio Electroacoust., vol.
AU-21, pp. 506–526, Dec. 1973.

[16] GNU Linear Programming Kit 4.43.
http://www.gnu.org/software/glpk, 2010.

[17] T. Achterberg, “Constraint integer programming,”
Ph.D. dissertation, Berlin, 2007.

1707


