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ABSTRACT
This paper proposes to estimate the reliability of each
direction-of-arrival (DOA) estimate explicitly. Observed
spatial features, which give DOA estimates, are usually dis-
torted by acoustical noise and reverberation. Then, distorted
spatial features are filtered out by particle filters with a sys-
tem model, which describes sound source dynamics on spa-
tial state space. After particle filtering is carried out, set of
the weighted particles can be considered as the discrete ap-
proximation of the true spatial feature. It is reasonable that
particles with large weights concentrate around the true DOA
on spatial state space. In this paper, crest factor, skewness,
and kurtosis are calculated based on the second, third, and
forth order moments from the particle set for representing
how particles concentrate simply. It is confirmed that the
skewness confidence measure is the most suitable for esti-
mating DOA reliability under both directional and distributed
noise conditions.

1. INTRODUCTION

Direction-of-arrival (DOA) plays an important role in mul-
tichannel signal processing [1]. In the field of acoustical
signal processing, DOA contributes to achieve beamforming,
sound source separation, dereverberation, and voice activity
detection. DOA estimation has been a popular issue, but the
almighty approach has not been established yet until now.
Problems on background noise, reverberation, and multiple
target sources make DOA estimation challenging in the real
world. Observed spatial feature, which gives a DOA esti-
mate, is distorted by interferences. Filtering the spatial fea-
ture is indispensable for achieving robust DOA estimation.
Recently, particle filters are widely used for such purpose as
flexible non-linear filters [2]. Particle filters can deal with
non-linear models with non-Gaussian noises as system mod-
els and observation models. Particles are distributed time by
time according to a system model, and their weights are up-
dated by likelihood. We obtain better spatial features through
state estimation by particle filtering than observed spatial fea-
tures. Robust DOA estimation is achieved with particle filters
even under noisy and reverberant environments [3]-[6].

In this paper, we focus on estimating reliability of each
DOA estimate under noisy environments. Once we obtain a
DOA estimate with its reliability, advanced signal process-
ing can be applied for many applications. For example, in
case of noise reduction, spatial filtering is not suitable when
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a DOA estimate is not reliable, and then spectral subtraction
might be substituted for beamforming. It is also possible to
understand complexity of acoustic scene and estimate scene
change based on DOA reliability roughly. In this paper, dis-
crete approximation of a spatial feature is prepared in the
framework of particle filtering. Particles with weights are di-
verted from DOA estimation to reliability estimation. It is
the key to measure how convergent the particles are around
the true direction of a target sound source on spatial state
space. Descriptive statistics, which are calculated from a
set of weighted particles, are investigated as confidence mea-
sures for DOA estimates. Crest factor as the 2nd order statis-
tics, skewness as the 3rd order statistics, and kurtosis as the
4th order statistics are candidates as the confidence measures.
Feasibility of the higher-order statistical measures is exam-
ined for estimating the reliability of each DOA estimate un-
der both diffused and directional noise conditions.

Finally, advanced DOA estimation is proposed using the
higher-order statistical confidence measure. The author has
previously proposed a robust DOA finder with a sequentially-
updated noise model under noisy environments[7]. In this
paper, the noise model is adaptively switched over depend-
ing on reliability of each DOA estimate automatically. Ro-
bustness of DOA estimation with the adaptive noise model is
examined under time-variant noise conditions.

2. CONVENTIONAL DOA ESTIMATION

DOA of an acoustic signal can be estimated using stereo ob-
servations, x(t) ≡ (x1(t),x2(t)), which are signals observed
by spatially-separated two microphones.

x1(t) = h1(t)∗ s(t − τ1)+n1(t), (1)
x2(t) = h2(t)∗ s(t − τ2)+n2(t), (2)

where h1(t) and h2(t) are acoustical impulse responses be-
tween a target sound source and each of two microphones,
s(t) is the signal presented by the target sound source, and
n1(t) and n2(t) are background noises, respectively. Time
difference between τ1 and τ2 is the time difference of arrival
(TDOA). TDOA estimate gives a DOA estimate straightfor-
wardly on single-dimensional state space in [−90 degrees,
+90 degrees].

Conventional DOA finders employ cross-correlation-
based functions [8] or MUSIC spectra [9] as spatial features.
In this paper, a cross-correlation function is employed as a
non-parametric spatial feature, and the spatial feature can
be regarded as a probability distribution for DOA existence.
DOA estimate θ̂ is given as the direction with the maximum

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 666



in the spatial feature p(θ |x).

θ̂ = argmax
θ

{p(θ |x)}. (3)

Difficulty in DOA estimation is caused by distortion on the
spatial feature p(θ |x) due to noise n(t) and room reverbera-
tion h(t). In this paper, we focus on the problem on noise.

3. DOA ESTIMATION WITH SOURCE DYNAMICS
MODEL

Knowledge on dynamics of a target sound source contributes
to obtain a robust spatial feature in adverse conditions. Pro-
vided that DOA estimation is performed frame by frame
independently, it is hard to obtain accurate DOA estimates
even under moderate noise conditions. Temporal trajectory
of DOA can be modeled by a state space model, and it is
estimated through state estimation procedure using particle
filters. Markov modeling of temporal DOA trajectory con-
tributes to yielding accurate and stable DOA estimates, as-
suming that the target sound source moves smoothly in be-
tween short-term frames. Here, random walk process is ap-
plied to model stochastic source movement as follows:

θk = θk−1 +νk, νk ∼ N(0,σ2), (4)

where θk represents the true DOA at the k-th time frame, and
ν means the zero-mean Gaussian noise with the variance σ2.

The true DOA trajectory and the sampled observations
up to the k-th frame is noted as follows.

θ1:k = {θ1,θ2, · · · ,θk}, (5)
x1:k = {x1,x2, · · · ,xk}. (6)

Spatial feature is prepared from a cross correlation function,
rxk(τ), and is normalized by half-wave rectification. The
half-wave rectified cross-correlation function ranges from 0
to 1. Now, the spatial feature, p(xk|θk), can be regarded as
likelihood.

p(xk|θk) ∝ max{rxk(τ), 0}. (7)

State estimation is formally done in a recursive form of
the posterior distribution, p(θ1:k|x1:k), as follows [2].

p(θ1:k|x1:k) ∝ p(θ1:k−1|x1:k−1)p(xk|θk)p(θk|θk−1). (8)

Sequential state estimation is carried out by particle filter-
ing in the Bayesian framework [2]. We employ a bootstrap
filter, which uses the system model as proposal [2]. DOA
estimation is performed with a filtered spatial feature by par-
ticle filtering, where weighted particles are sequentially up-
dated according to Eq. (8) as below.

STEP 0: (initial distribution)
To represent a distribution probability of the initial DOA
θ0, particles {z(l)

0 }M
l=1, where l = {1,2, · · · ,M} means the

particle index, are drawn in the single-dimentional spatial
domain according to an uniform distribution. Initially, each
particle has the same weight w0 = 1/M.

STEP 1: (filtering by CC likelihood)
Particles at the k-th frame are drawn from the system model
in Eq. (4), and weight for each particle is updated by the

likelihood in Eq (7) as follows:

z(l)
k ∼ p(θk|θ

(l)
k−1), (9)

w(l)
k = p(xk|θ

(l)
k ), (10)

where l = {1,2, · · · ,M}.

STEP 2: (resampling)
The particles {z(l)

k }M
l=1 are sampled with replacement in

proportion to the weight {w(l)
k }M

l=1 . The resampled parti-

cles are used as the proposal particle distribution {z(l)
k+1}

M
l=1

in the next (k+1)-th frame.

STEP 3: (finding DOA)
DOA is estimated by finding the peak of the filtered spatial
feature, which is obtained from the filtered, weighted par-
ticles {z(l)

k }M
l=1 convolved with Gaussian kernels.

STEP 4:
go to STEP 1.

4. STATISTICAL CONFIDENCE MEASURES FOR
DOA ESTIMATES

The author has previously proposed a confidence measure for
estimating reliability of each DOA estimate [10]. It is im-
portant for estimating DOA reliability to measure how con-
vergent the particles with large weights are around the true
direction of a target sound source on the spatial state space.
Effective sample size (ESS),

ESSk =
1

∑M
l=1{w(l)

k }2
, (11)

which had been originally proposed for deciding necessity of
the resampling process in particle filtering [11], has been di-
verted to a DOA reliability measure. It represents how much
particles are concentrated in the spatial domain. Feasibil-
ity of the ESS-based confidence measure has been confirmed
under diffused noise conditions [10].

In this paper, availabilities of well-known higher-order
descriptive statistics are also investigated for measuring reli-
abilities of DOA estimates. To measure the degree of con-
vergence of weighted particles, crest factor as the 2nd order
statistics, skewness as the 3rd order statistics, and kurtosis
as the 4th order statistics are calculated from the weighted
particles in Eq. (10). They are defined using the mean,
wmean = 1

M ∑M
l=1 w(l)

k , and the root mean square, wrms =√
1
M ∑M

l=1{w(l)
k }2, of the weighted particles as follows.

Crest factor:

CrestFactork =
w(lmax)

wrms
, (12)

where lmax = argmax
l

{w(l)} for l = {1,2, · · · ,M}.

Skewness:

Skewnessk =
1
M

M

∑
l=1

{w(l) −wmean}3

w3
rms

. (13)
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Kurtosis:

Kurtosisk =
1
M

M

∑
l=1

{w(l) −wmean}4

w4
rms

. (14)

5. PERFORMANCE EVALUATION OF THE
PROPOSED CONFIDENCE MEASURES
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Fig. 1. True DOAs and two kinds of DOA estimates, er-
rors in DOA estimation with particle filtering, and SNR in
each frame are given in upper, middle, and lower panels
under diffused noise condition.

Feasibility of the crest factor, skewness, kurtosis, and
ESS are examined as DOA confidence measures. The target
signal, which was a female speech from the TI-digit speech
database, was re-recorded using a paired-microphone with
the spacing of 0.10 m in a sound-proofed room. The tar-
get sound source moved smoothly and continuously. In this
paper, feasibility of each confidence measure is investigated
individually under either diffused or directional noise condi-
tion. The diffused noises were channel-independent, white
Gaussian noises. In the directional noise condition, another
white Gaussian noise was generated at the direction of −15
degrees. 500 particles were used for particle filtering, that
is, M = 500. The system noise in Eq. (4) is optimized in
advance using the above data.

Figures 1 and 3 show the true DOAs, DOA estimates by
the conventional cross-correlation method in Section 2 and
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Fig. 2. ESS, crest factor, skewness, and kurtosis are given for
each DOA estimate under diffused noise condition.

the robust method with the source dynamics model in Sec-
tion 3 in the upper panels, errors in DOA estimation by the
robust method in the middle panels, and signal-to-noise ra-
tios in the lower panels, for diffused and directional noise
conditions, respectively. Both noises appeared during from
the 11th frame to the 20-th frame, and were added into the
recorded target signal later in a computer. Figures 2 and 4
give ESS, crest factor, skewness, and kurtosis in each frame
under diffused and directional noise conditions, respectively.

From Figs. 2 and 4, it is considered that the ESS con-
fidence measure is not suitable under directional noise con-
ditions. Behavior of the crest factor is similar to that of the
ESS. The skewness value bears a close resemblance to the
kurtosis value in both noise cases. Comparing the behavior
at the 11th frame in the directional noise condition in Fig. 4,
the skewness has slight advantage over the kurtosis as a DOA
confidence measure. Those trends are preserved in real noise
conditions: stationary car interior noise and non-stationary
factory floor noise.
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Fig. 3. True DOAs and two kinds of DOA estimates, er-
rors in DOA estimation with particle filtering, and SNR in
each frame are given in upper, middle, and lower panels
under directional noise condition.

We discuss why the confidence measure based on skew-
ness of a spatial feature is the most suitable. First of all, the
confidence measures based on the second order statistics do
not work well under directional noise conditions as shown
in Fig. 4. In the case of the kurtosis confidence measure, it
evaluates the sharpness of the distribution of a spatial feature,
and does not take the Gaussianity of the distribution into ac-
count. The skewness confidence measure can evaluate both
the sharpness and the asymmetry of a spatial feature. There-
fore, the skewness confidence measure is the most suitable
for estimating the reliability of each DOA estimate theoreti-
cally.

6. APPLICATION TO ROBUST DOA ESTIMATION

Robust DOA estimation can be achieved relying on DOA
reliability given by the skewness confidence measure, be-
cause the proposed method uses amplitude spectrum of back-
ground noise for estimating the dominant frequency of the
target speech signal [7]. In the previous method [7], the noise
model is updated compulsory by beamforming with a DOA
estimate.

Noise model is adaptively updated based on both exis-
tence probability of a target signal and reliability of a DOA
estimate as shown in Table 1. In other words, estimation of
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Fig. 4. ESS, crest factor, skewness, and kurtosis are given for
each DOA estimate under directional noise condition.

noise spectrum is performed by noise reduction. In the view
point of noise reduction, either spectral subtraction or beam-
forming is properly employed based on reliability of a DOA
estimate as shown in Table 2.

The adaptive noise reduction method is incorporated into
DOA estimation. As the performance of the advanced DOA
finder with the adaptive noise model, DOA estimates are
given by a blue line in Fig. 5. In Fig. 5, the true DOA
trajectory and DOA estimates by the previous method [7] are
also plotted by black and red lines, respectively. The tar-
get speech signal is female utterances in the TI-digit speech
database [12] . Noise scenarios is as follows. Factory floor
noise [13] is presented in the whole section, and some sudden
white noises appeared around 150th-250th and 450th-550th
frames. It is obvious that the proposed adaptive noise model
contributes to improve noise robustness in DOA estimation.
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Signal DOA reliability Noise model
no - Update using observation
yes low Nothing to do
yes high Update by beamforming

Table 1. Adaptive scheme for updating noise model based
on both signal existance probability and reliability of DOA
estimate.

Signal DOA reliability Noise reduction
no - Nothing to do
yes low Spectral subtraction
yes high Beamforming

Table 2. Adaptive noise reduction for updating noise model.

7. CONCLUSIONS

This paper proposed some kinds of confidence measures for
estimating reliability of a DOA estimate under noisy environ-
ments. Degree of sharpness of the main-lobe in a spatial fea-
ture was represented by each of descriptive statistics, which
are crest factor, skewness, kurtosis as the second, third, and
fourth order moments, for weighted particles in particle fil-
tering. Feasibility of the crest factor, skewness, kurtosis be-
sides the effective sample size are investigated as confidence
measure for measuring reliabilities of DOA estimates under
diffused and directional noise conditions. The skewness con-
fidence measure was the most suitable for estimating the re-
liability of each DOA estimate. It is also confirmed that the
DOA confidence measure contributes to improve noise ro-
bustness in DOA estimation. In future, the proposed DOA
confidence measures will be tested under various kinds of
noise conditions.

REFERENCES

[1] M. S. Brandstein and D. B.Ward (eds.), Microphone Ar-
rays: Signal Processing Techniques and Applications,
Springer-Verlag, 2001.

[2] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Se-
quential Monte Carlo Methods in Practice, Springer-
Verlag, New York, 2001.

[3] J. Vermaark and A. Blake, ”Nonlinear filtering for
speaker tracking in noisy and reverberant environ-
ments,” Proc. Intl. Conf. on Acoust., Speech, and Sig-
nal Processing (ICASSP ’01), Vol. 5, pp. 3021–3024,
2001.

[4] D. B. Ward, E. A. Lehmann, and R. C. Williamson,
”Particle filtering algorithms for tracking an acous-
tic source in a reverberant environment,” IEEE
Trans. Speech, and Audio Process., Vol. 11, No. 6,
pp. 826–836, 2003.

[5] M. Mizumachi and K. Niyada, ”DOA estimation using
cross-correlation with particle filter,” Proc. Joint Work-
shop on Hands-Free Speech Communication and Mi-
crophone Arrays (HSCMA2005), CD-ROM, 2005.

[6] M. Mizumachi and K. Niyada, ”DOA estimation
based on cross-correlation by two-step particle filter-
ing,” Proc. 14th European Signal Process. Conf. (EU-
SIPCO2006), CD-ROM, 2006.

0 100 200 300 400 500 600
−5

0

5

10

15

20

D
O

A
 e

st
im

at
e 

[d
eg

.]

# frame (time)

Fig. 5. DOA estimates with the proposed adaptive noise
model in Table 1 and a static noise model are plotted in each
time by blue and red lines, respectively. Black line shows a
true DOA trajectory.

[7] M. Mizumachi and K. Niyada, ”Synergic integration
of noise reduction and DOA estimation with stochas-
tic target sound source and deterministic noise mod-
els,” Proc. Intl. Congress of Acoustics (ICA2007), CD-
ROM, 2007.

[8] C. H. Knapp and G. C. Carter, ”The generalized cor-
relation method for estimation of time delay,” IEEE
Trans. Acoust., Speech, Signal Process., Vol. 24,
pp. 320–327, 1976.

[9] R. O. Schmidt, ”Multiple emitter location and signal
parameter estimation,” IEEE Trans. Antennas Propaga-
tion, Vol. 34, No. 3, pp. 276–280, 1986.

[10] M. Mizumachi and K. Niyada, ”Robust direction-of-
arrival estimation by particle filtering with confidence
measure based on effective sample size under noisy en-
vironments,” Proc. SCIS&ISIS 2008, CD-ROM, 2008.

[11] J. S. Liu and R. Chen, ”Blind deconvolution via se-
quential imputations,” J. Amer. Stat. Assoc., vol. 90,
pp. 567-576, 1995.

[12] R. G. Leonard,“ A database for speaker independent
digit recognition,”Proc. Intl. Conf. on Acoust., Speech,
and Signal Process. (ICASSP ’84), vol. 9, pp. 328-331,
1984.

[13] A. Varga, H.J.M. Steeneken,“ Assessment for auto-
matic speech recognition: II. NOISEX-92: A database
and an experiment to study the effect of additive noise
on speech recognition systems,”Speech Comm., vol.
12, no. 3, pp. 247-252, 1993.

670


