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ABSTRACT 
We present a new approach to the design of 2D recursive 
filters, with a directionally-selective frequency response. 
Two analytical design methods are proposed, based on digi-
tal prototype filters and complex frequency transformations, 
determined using rational approximations and the bilinear 
transform. Design examples are presented for given specifi-
cations. The resulted filters are efficient, of low complexity 
and relatively high selectivity. They find useful applications 
in image processing, like detecting lines with a given orien-
tation from an image. 

1. INTRODUCTION 

The currently-used design methods of 2D recursive filters 
rely in a large measure on 1D digital filter prototypes, using 
spectral transformations from s to z plane via bilinear or 
Euler transformations followed by z to 1 2( , )z z  transforma-
tions [1], [2], [6]-[10]. There are 2D filters with various 
shapes and different applications in image processing. Sev-
eral classes of filters have an orientation-selective frequency 
response [4], [5], useful in image processing tasks like edge 
detection, motion analysis etc. An important class are the 
steerable filters, synthesized as a linear combination of a set 
of basis filters [3].  
The frequency transformation technique is a classical 
approach in obtaining desired 2D filters from 1D simple 
prototype filters [1], [2]. A major reference on this topic is 
[7], where a technique for rotating the frequency response of 
separable filters is developed. The method considers transfer 
functions in rational powers of z, realized by input-output 
signal array interpolations. For each specific method the 
filter stability must also be ensured. In [9], an efficient 
technique was given for stable IIR filters of various shapes 
and without interpolation. Other important papers in this 
field are [6], [8], [10]. 
In this paper we propose a design method for implementing 
a class of 2D spatially oriented low-pass filters which select 
narrow domains along specified directions in the frequency 
plane ( 1ω , 2ω ). Such filters with specified orientation and 
selectivity can be used in selecting lines with a given orien-
tation from an input image. Our approach is based on the 
design in the spatial frequency domain, starting from a 1D 
prototype filter. Since we envisage designing filters of 
minimum order, we will use recursive filters as prototypes, 

and the 2D oriented filters will result recursive as well. Sec-
tion 2 begins with the 1D prototype filters used and their 
frequency response; then two types of directional filters are 
presented, based on specific spectral transformations which 
also use the bilinear transform as an intermediate step. The 
first filter type starts directly from a very selective low-pass 
prototype. The second type of filter is more general and has 
an elliptical shape in the frequency plane, with a specified 
orientation. A selective directional filter may be obtained as 
a particular case by setting the adequate parameters. A zero-
phase version of the elliptically-shaped filter was ap-
proached in [11] and uses a real frequency transformation. 
Here we treat the general case using a complex frequency 
transformation. Other related methods for directional filter 
design were proposed in [12]. 

2. 2D DIRECTIONAL FILTERS DERIVED FROM 
1D PROTOTYPES 

This section introduces the 1D prototype filters and the 
general form of the 2D directionally-selective filters 
obtained through frequency transformations. 

 
2.1 1D Prototype Filters 
The idea behind the proposed design methods is to start from 
a 1D digital filter of a common type (maximally-flat, 
equiripple etc.) and to transform its transfer function using 
specific frequency mappings in order to derive the transfer 
function of the 2D filter with the desired shape. The 
advantage is that the prototype selectivity and stability 
properties are inherited by the designed 2D filter. 
We refer throughout this paper only to recursive filters, 
which are known to be more efficient than FIR filters, 
although generally more difficult to design. Let us consider 
a recursive digital filter ( )PH z  of order N with the transfer 
function: 

0 0

( )( )
( )

M N
i j

P i j
i j

P zH z p z q z
Q z

= =

= = ⋅ ⋅∑ ∑               (1) 

We consider now this general transfer function with M N=  
factorized into simpler rational functions of first and second 
order. For an odd order filter ( )PH z  will have at least one 
first order factor of the form: 

( ) ( )1 1 0 0( )H z b z b z a= + +                     (2) 
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The transfer function also contains second-order factor 
functions referred to as biquad functions: 

( ) ( )2 2
2 2 1 0 1 0( )H z b z b z b z a z a= + + + +            (3) 

where in general the second-order polynomials at the 
numerator and denominator have complex-conjugated roots. 
The main issue approached in this paper is to find the transfer 
function of the desired 2D filter 2 1 2( , )DH z z  using 
appropriate frequency transformations of the form 

1 2( , )Zz F z z→ . Since the transformations used map the real 
frequency variable ω  onto the plane 1 2( , )ω ω , first a 
mapping of the form 1 2( , )Fω ω ω→  will be found.  
Let us now consider the elementary transfer functions (2) and 
(3); these can be turned into the following form of complex 
numbers with real and imaginary parts: 

0 1 1
1

0

cos sin
( )

cos sin
b b jb

H j
a j

ω ωω
ω ω

+ +
=

+ +
                  (4) 

0 2 0 2 0
2

1 0 0

( ) cos ( )sin ( )( )
(1 ) cos (1 )sin ( )

b b b j b b PH j
a a j a Q

ω ω ωω
ω ω ω

+ + + −
= =

+ + + −
  (5) 

We notice that the first- and second-order functions have a 
similar form when expressed as a ratio of complex numbers. 
Therefore, as we will see further, the corresponding 2D 
transfer functions will be implemented with convolution 
kernels of the same size. 

 
2.2 Design of Directional Filters Using Frequency 

Transformations 
The next step starts from the expressions (4) and (5) of the 
frequency response and uses of the following accurate 
rational approximations for sine and cosine on [- , ]π π : 

2 4

2 4
1 0.435949 0.011319 ( )cos

( )1 0.06095 0.0037557
C
M

ω ω ωω
ωω ω

− ⋅ + ⋅≅ =
+ ⋅ + ⋅

     (6) 

2

2 4
(1 0.101046 ) ( )sin

( )1 0.06095 0.0037557
S
M

ω ω ωω
ωω ω

⋅ − ⋅≅ =
+ ⋅ + ⋅

     (7) 

The above expressions were obtained through the 
Chebyshev-Padé approximation, which can be found for a 
large class of functions using a symbolic computation 
software like MAPLE. 
The advantage of these rational approximations is that they 
have the same denominator and therefore they can be directly 
substituted into the expressions (4) and (5), yielding a low-
order rational expression of the frequency response ( )jH e ω . 
Given a prototype filter 1( )H ω  (which varies on one axis 
only), a 2D orientation-selective (directional) filter may be 
obtained by rotating the axes of the plane 1 2( , )ω ω  by an 
angle ϕ , through the linear transformation: 

1 1

2 2

cos sin
sin cos

ω ωϕ ϕ
ω ωϕ ϕ
⎡ ⎤ ⎡ ⎤⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦
                     (8) 

where 1 2,ω ω  are the original frequency variables and 1 2,ω ω  
the rotated ones [1]. The spatial orientation is specified by an 
angle ϕ  with respect to 1ω -axis and is therefore defined by 

the following 1D to 2D spatial frequency transformation in 
the frequency response 1 2( , )H ω ω :  

1 2cos sinω ω ϕ ω ϕ→ +                              (9) 
By substitution, we obtain the transfer function of the 
oriented filter 1 2( , )Hϕ ω ω : 

1 2 1 2( , ) ( cos sin )H Hϕ ω ω ω ϕ ω ϕ= +                   (10) 
The 2D filter 1 2( , )Hϕ ω ω  has the magnitude section along 
the line 0sincos 21 =ϕω+ϕω  identical with the prototype 

)(ωH , and constant along the filter longitudinal axis: 

1 2sin cos 0ω ϕ ω ϕ− = . 
We determine a 1D to 2D complex transformation which 
allows an oriented 2D filter to be obtained from a 1D 
prototype filter.  

In this paper the term template will be used, used in the 
field of cellular neural networks, referring to the coefficient 
matrices corresponding to the numerator and denominator of 
a 2D filter transfer function 1 2( , )H z z  (the originals of the 
2D Z transform). We will use here both odd-sized 
( 3 3× , 5 5× ) and even-sized ( 2 2× ) templates. 
The following step is to find the discrete approximation of 
the frequency transformation (9), in other words a mapping 
of the frequency variable ω  into the complex plane ( 1z , 2z ). 
In order to find the discrete approximation of these functions, 
the bilinear transform will be used. The sample interval in 
our case can be taken 1T =  so the bilinear transform for 

1s and 2s  in the complex plane 1 2( , )s s  has the form: 

( ) ( )1 1 12 1 1s z z= − +    ( ) ( )2 2 22 1 1s z z= − +       (11)   

Next we have to find discrete expressions for ω  and  2ω  in 
order to be used in the approximations (6) and (7). Since 

1 1s jω=  and 2 2s jω=  using expressions (11) we obtain:  

1 2 1 2cos sin ( cos sin )j s sω ω ϕ ω ϕ ϕ ϕ→ + = − +         (12) 

1 2

1 2

[1 ] [1 ]
[1 ] [1 ]

T

T

z z
z z

ϕω
× ×

→
× ×

F
G

                          (13) 

which corresponds to the 2 2×  templates j ϕF  and G: 

sin cos sin cos
2

cos sin sin cos
j jϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

+ −⎡ ⎤
= ⎢ ⎥− − −⎣ ⎦

F  
1 1
1 1

G ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

   (14) 

( )
( )

22
1 2

2 2
1 2 1 2

cos sin

0.5 (1 cos 2 ) (1 cos 2 ) 2 sin 2

s s

s s s s

ω ϕ ϕ

ϕ ϕ ϕ

→ − +

= − + + − +
     (15) 

( ) ( )2
1 2 1 2

T Tω → − × × × ×z P z z Q z                  (16) 

where 
1 sin 2 2cos 2 1 sin 2
2cos 2 4 2cos 2

1 sin 2 2cos 2 1 sin 2

ϕ ϕ ϕ
ϕ ϕ
ϕ ϕ ϕ

+ − −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − +⎣ ⎦

P
1 2 1
2 4 2
1 2 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q (17) 

2
1 1 11 z z⎡ ⎤= ⎣ ⎦z , 2

2 2 21 z z⎡ ⎤= ⎣ ⎦z                  (18) 

The matrix P depends on the orientation angle ϕ . It can be 
easily checked that ∗ =G G Q . Having the discrete ap-
proximations (13) and (16) for ω  and  2ω , the matrices C,  
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Figure 1 – 1D very selective low-pass prototype filter. 

 
j ⋅S  and M of size 5 5×  corresponding to the polynomials 

( )C ω , ( )S ω  and ( )M ω  result as: 

0.435949 0.011319= ∗ − ⋅ ∗ + ⋅ ∗C Q Q P Q P P        (19) 

( )0.101046j j ϕ⋅ = ⋅ ∗ ∗ + ⋅S F G Q P                   (20) 

0.06095 0.0037557= ∗ + ⋅ ∗ + ⋅ ∗M Q Q P Q P P        (21) 
The discrete mappings of cosω  and sinω  are therefore: 

( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

cos

sin

T T

T T

ω

ω

→ × × × ×

→ × × × ×

z C z z M z

z S z z M z
                (22) 

where 
2 3 4

1 1 1 1 11 z z z z⎡ ⎤= ⎣ ⎦z , 2 3 4
2 2 2 2 21 z z z z⎡ ⎤= ⎣ ⎦z (23) 

Substituting the above mappings into the biquad expression 
(5) we obtain the following filter templates of size 5 5× : 

0 0 2 0 2

1 0 0

( ) ( )
(1 ) ( 1)

b b b b b
a a a

= ⋅ + + ⋅ + − ⋅
= ⋅ + + ⋅ + − ⋅

B M C S
A M C S

               (24) 

We notice that finally the filter templates result with real 
elements. 
Design example: We will next present the design of a very 
selective directional filter. We will use the simplest possible 
1D prototype, for instance a first order Butterworth low-pass 
filter with a cut-off frequency 0.025cω = , the value 1.0 
corresponding to half the sample rate. The frequency 
response magnitude is shown in Fig.1. The transfer function 
in z has the general form (2), with 1 0b b= . For these 
specifications the coefficients are: 1 0 0.037804b b= = ,  

0 0.92439a = −  . 
Given this 1D prototype, the 2D oriented filter results by 
simply by substituting the frequency mappings (22) into (4). 
The 2D transfer function results as: 

( ) ( )1 2 1 2 1 2( , ) T TH z zϕ = × × × ×z B z z A z              (25) 

where the 5 5×  matrices B and A are given in this case by: 

( )0 0

0

b b
a

= ⋅ + − ⋅
= ⋅ + −

B M C S
A M C S

                          (26) 

These simple expressions corresponding to the frequency 
response (4) are simpler than the more general set given by 
(24), which correspond to a biquad section like (5).  

3. DESIGN OF ELLIPTICALLY-SHAPED 
FILTERS 

We study in this section a class of 2D low-pass filters having 
an elliptically-shaped horizontal section. These filters will 
be specified by imposing the values of the semi-axes of the 
ellipse, and the orientation is given by the angle of the large 
axis with respect to 2ω − axis. Starting from the frequency 
response for a 1D filter given by (4) or (5), we can derive a 
2D elliptically-shaped filter using the frequency 
transformation 1 2( , )Eϕω ω ω→ : 

2 2 2 2
2 2

1 2 1 22 2 2 2

2 2
1 2 1 2 1 22 2

cos sin sin cos( , )

1 1sin(2 )

E
E F E F

a b c
F E

ϕ
ϕ ϕ ϕ ϕω ω ω ω

ω ω ϕ ω ω ω ω

⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞+ − = ⋅ + ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (27) 

The elliptically-shaped filter can be considered as derived 
from a circular filter through the linear transformation: 

'
1 1

'
2 2

0 cos sin
0 sin cos
E

F
ω ωϕ ϕ
ω ϕ ϕ ω

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

            (28) 

where usually we consider E F> ; in (28) , 1 2( , )ω ω  are the 

current coordinates and ' '
1 2( , )ω ω  are the former (rotated) 

coordinates. Thus, the unit circle is stretched along the axes 
1ω  and 2ω  with factors E and F, then counter-clockwise 

rotated with an angleϕ , becoming an oriented ellipse, which 
is the shape of the proposed filter in horizontal section. 
Consequently, given a 1D prototype filter of the general form 
(4) or (5), we can obtain a corresponding 2D filter with an 
elliptical section, specified by the above-mentioned 
parameters which impose the shape and the orientation using 
the substitution: 

2 2
1 2 1 2 1 2( , )E a b cϕω ω ω ω ω ω ω→ = ⋅ + ⋅ + ⋅         (29) 

However, using (29) together with (6) and (7) leads to a more 
complicate design. Instead, we will find rational expressions 
for the functions cos ω  and sin ω  and then make the 
substitution: 

2 2
1 2 1 2 1 2( , )E a b cϕω ω ω ω ω ω ω→ = ⋅ + ⋅ + ⋅           (30) 

which is more convenient than (29). 
Replacing the real frequency variables 1ω  and 2ω  by the 
complex variables 1 1s jω=  and 2 2s jω= , the function 

1 2( , )Eϕ ω ω  can be written in the 2D Laplace domain: 
2 2

1 2 1 2 1 2( , ) ( )E s s a s b s c s sϕω → = − ⋅ + ⋅ + ⋅             (31) 
The next step is to find the discrete approximation 

1 2( , )E z zϕ  of (31). This can be achieved either using the 
forward or backward Euler approximations, or otherwise the 
bilinear transform, which in principle gives better accuracy. 
Using the Chebyshev-Padé method we find the following 
approximations for the functions cos ω  and sin ω , with 
the same denominator: 

2

2

( )1.05595 0.086514 0.13045cos
( )1 0.75 0.110583

S

S

C
A

ωω ωω
ωω ω

− ⋅ − ⋅≅ =
+ ⋅ − ⋅

 (32) 
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2

2

( )0.167 1.46287 0.259815sin
( )1 0.75 0.110583

S

S

S
A

ωω ωω
ωω ω

+ ⋅ − ⋅≅ =
+ ⋅ − ⋅

  (33) 

which are sufficiently accurate on the range [0, ]ω π∈ . Since 
these functions are developed on the range [0, ]π , their 
approximations result neither odd nor even. The above 
expressions were obtained through the Chebyshev-Padé 
approximation, which can be found for a large class of 
functions using a symbolic computation software.  
For the elementary functions 1( )H jω  and 2 ( )H jω  we find 
the corresponding functions of the 2D elliptically-shaped 
filter using the frequency mapping (27). Therefore we need 
discrete approximations for the functions 

1 2 1 2( , ) cos ( , )C Eϕω ω ω ω= , 1 2 1 2( , ) sin ( , )S Eϕω ω ω ω= .  

Substituting in (31) and (32) ω  by 1 2( , )Eϕ ω ω , we find the 

expressions 1 2( , )C ω ω , 1 2( , )S ω ω  in 2
1ω , 2

2ω .  
In order to find the discrete approximation of these functions, 
the bilinear transform will be used, as in the previous section.  
Substituting expressions (11) into (31), the frequency 
transformation 1 2( , )Eϕω ω ω→  in matrix form is: 

( ) ( )1 2 1 24 T Tω → − × × × ×z B z z A z                  (34) 

where: 
0 1 0 1 0 1 1 0 1

2 cos2 1 0 1 sin 2 0 0 0 0 4 0
0 1 0 1 0 1 1 0 1

2 cos 2 sin 2

α ϕ α ϕ β

α ϕ α ϕ β

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ⋅ + ⋅ + ⋅

B

M N P

 

(35) 
1 2 1
2 4 2
1 2 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A                                (36) 

 2
1 1 11 z z⎡ ⎤= ⎣ ⎦z , 2

2 2 21 z z⎡ ⎤= ⎣ ⎦z                  (37) 

In (35) the following notations were made: 2 21/ 1/E Fα = − , 
2 21/ 1/E Fβ = + .  

Using this approximation, the templates corresponding to 
the polynomials ( )SC ω , ( )SS ω  and ( )SA ω  from (32) and 
(32), namely SC , SS  and SA  of size 5 5×  result as: 

1.055951 0.346056 2.0872S = ⋅ ∗ + ⋅ ∗ − ⋅ ∗C A A A B Β B    (38) 
0.167 5.85148 4.15704S = ⋅ ∗ − ⋅ ∗ − ⋅ ∗S A A A B Β B       (39) 

3 1.769328S = ∗ − ⋅ ∗ − ⋅ ∗A A A A B Β B             (40) 
The final filter templates will be also of size 5 5×  and result 
taking into account (5) as: 

0 0 2 2 0( ) ( )S S S re imb b b j b b j= ⋅ + + ⋅ + − ⋅ = + ⋅P A C S P P (41) 

1 0 0(1 ) (1 )S S S re ima a j a j= ⋅ + + ⋅ + − ⋅ = + ⋅Q A C S Q Q   (42) 
Design example: 
We consider a second-order low-pass Butterworth prototype 
filter with passband-edge frequency 0.9pω = ; its transfer 
function has the general form (3) with the parameter values: 

2 0 0.800592b b= = , 1 02 1.601184b b= = , 1 1.561018a = , 

0 0.641351a = . The magnitude characteristics of this 

 
Figure 2 – 1D low-pass maximally-flat Butterworth prototype filter. 

 
(a) 

 
(b) 

Figure 3. (a) Frequency response and contour plot of an elliptically-
shaped filter with 3ϕ π= , 2.8E = , 1F = ; (b) Frequency response 

of directional filter with 025ϕ = , 3.4E = , 0.1F =  
 
maximally-flat low-pass filter is shown in Fig.2. The 
frequency characteristic and contour plot of an elliptically-
shaped filter using this prototype is shown in Fig.3(a), for the 
specified parameters. 
Let us design an elliptically-shaped filter with a large ratio 
E F , for instance 3.4E = , 0.1F = ; in this case we get a 
very selective directional filter which forms  the angle ϕ  
with 2ω − axis; we consider 025 0.1389ϕ = = rad. The 
frequency response for this filter is plotted in Fig.3(b). We 
get a complex template Q and a real matrix P with the form: 

0.10806 0.15743 0.08640 0.02117 0.00195
0.15649 0.60253 0.53342 0.17973 0.02106
0.08571 0.53226 1.00000 0.53226 0.08571
0.02106 0.17973 0.53342 0.60253 0.15649
0.00195 0.02117 0.08640 0.15743 0.10806

⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥=
⎢− − − − −⎢
⎢⎣ ⎦

P
⎥
⎥
⎥

 (43)  

Even if the stability of the 2D filters resulted through the 
presented methods is not analyzed here, it can be shown that 
the proposed frequency transformations preserve the stability 
of the 1D prototype filter since they are based on the bilinear 
transform and accurate approximations. Therefore, the only 
issue would be to ensure the stability of the prototype filter. 
The derived 2D filter could become unstable only if the 
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(a) (b) 

Figure 4 – (a) Test image; (b) directionally filtered image with  
parameters: (a) 2.5ϕ = rad., 6.4E = , 0.5F = ; 

 
numerical approximations used introduce large errors. In this 
case we would have to increase the approximation precision 
by taking more higher order terms, which would increase the 
filter complexity. 

4. APPLICATIONS AND SIMULATION RESULTS 

We present an example of detecting straight lines with a 
given inclination from an image, by means of a filtering with 
a 2D IIR oriented LP filter. The spectrum of a straight line is 
oriented in the plane ( 1ω , 2ω ) at an angle of 2π  with respect 
to the line direction. The image in Fig.4(a) contains straight 
lines oriented at various angles, and is filtered with a 
directional filter with 0.44ϕ = rad., designed using the 
method from section 3. In the filtered image from Fig.4(b), 
only the lines which have the spectrum oriented more or less 
along the filter characteristic, remain practically unchanged, 
while all the other lines are low-pass filtered. 

5. CONCLUSION 

We proposed two design methods for 2D orientation-
selective filters based on 1D selective LP prototypes and on 
complex frequency transformations. The methods are more 
general and can be applied also to other types of filters. The 
developed frequency transformations are based on efficient 
rational approximations and on the bilinear transform. The 
resulted filters are efficient and inherit the selectivity of their 
1D counterparts. The methods are versatile in the sense that 
once determined the adequate frequency transformation, the 
prototype specifications can be changed and different 2D 
filters will be obtained. Possible applications of these 
orientation-selective filters were suggested through 
simulation results on a test image. As design examples we 
considered filters of minimum order for the sake of 
simplicity and efficiency. Further research also envisages an 
efficient implementation of this class of filters. 
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