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ABSTRACT
In the context of Independent Component AnalySi&)(lwe

Enabled Source Separation (CHESS, [3]), whose ttarge
matrices are empirical Hessians of the joint log-

propose a near-optimal weighting scheme for ther@pp
mate joint diagonalization of empirical Hessiang®dsnd
derivative matrices taken at selected "processioigig") of
the observations' log-characteristic function. Queighting
scheme is based on the observation, that whendinees
are nearly-separated, the covariance matrix of ¢hespiri-
cal Hessians takes a convenient block-diagonalcsire.

We exploit this property to obtain reliable estiemf the
blocks directly from the observed data, and userd¢leently
proposed WEighted Diagonalization using Gauss itiares
(WEDGE) to conveniently incorporate the weight ncats
into the joint diagonalization estimation. Simudatiresults
demonstrate the importance of proper weighting eegly

for mitigating uncertainties in the selection ofr@pessing
points". As we show, the properly-weighted versiam lead
to a significant performance improvement, not owligh

respect to the unweighted version, but also witipeet to a
common benchmark like the popular JADE algorithm.

1. INTRODUCTION *

characteristic functions of the observations, takersome
selected "processing-points” (see more detail&ati@ 2).
Since AJD can essentially be regarded as an ateimpt
Least-Squares (LS) fit of the target-matrices ® jthint di-
agonalization model, significant improvement of tiasult-
ing estimation accuracy can often be attained Iplyam
proper weighting to the AJD process, thereby taking
Weighted LS (WLS) approach. The optimal weight matr
assuming sufficiently small errors in the estimatadyet-
matrices, is well-known to be given by the invecdethe
joint covariance matrix of these errors. In gendnalvever,
this covariance matrix is unknown in a blind scémaand
must be obtained from the observed data.

Such an approach was first proposed in [4] for SQBlere
it was termed "Weights-Adjusted SOBI" (WASOBI), libe
performance improvement in [4] was attained atcthet of a
significant computational complexity. A simplifiegproach
to the covariance estimation and to the subsequeighted
AJD was later proposed in [5,7], which offered anpota-
tionally efficient version of WASOBI. The simplifyg idea
is based on the observation that in a nearly-stgghraix-

We consider the framework of Independent Componentre, the required covariance matrix (and, hentsn the
Analysis (ICA), whered statistically-independent (real- \eight matrix) take a (nearly) block-diagonal foramnd

valued) sources are instantaneously mixed by amawk
constant mixing matrixA, e R™“, such thatx[t]=As|t],

therefore admit more convenient manipulations. eAfin
initial separation step, which is assumed to tamsfthe
demixed observation into a nearly-separated "mextwof

dx1 :
1<t<T where x[t].s[t]eR™ are the observations and the sources, the demixing can be further refineddswen-

sources vectors at time. Given T observation vectors, the jent estimation and application of the block-diagjon
goal is to obtain an estimat¥ of the demixing matrix, Weights. A similar idea was used in [6] for applyioptimal

Y% ~A", which in turn provides an estimate of the sourceg

via §[t]= Vx(t].
A popular approach to ICA is to apply approximatént

diagonalization (AJD) to a set d¥l matrix-form statistics
(frequently termed "target-matrices"), having tippealing
property of being strictly diagonal for random \ast with

pairwise independent components. Some examplethare
Eigenmatrices

Joint Approximate Diagonalization of
(JADE, [1]), whose target-matrices are derived frtim
observations' empirical fourth order cumulants; dbee
Order Blind Identification (SOBI, [2]), whose tatge
matrices are the observations' empirical covarianatrices
taken at different delay lags; And CHaracteristineftion-
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eighting in JADE.

ur goal in this paper is to use the same philogaplap-

plying asymptotically-optimal weighting to the CHESl-

gorithm. CHESS was shown in [3] to potentially ettsig-

nificant performance improvement with respect tésting

alternatives (such as JADE). However, the perforaanf
CHESS generally depends on the specific choicepafc*

essing-points" for the target-matrices. When antrary

selection of processing-points is used, the "badihtp

(points at which the respective empirical Hessias & large
variance and little information content) can obsctire po-
tential performance gain of the "good" points (dick the
respective empirical Hessian has a small variamcerizh

information content). However, if proper (let aloogtimal)

weighting is used, the effect of the "bad" pointsuld be
out-weighted by that of the "good" points, and thesired

%erformance gain would become evident. An initiaigt-
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ing scheme was presented in [8], but, like theiahit
WASOBI formulation [4], was extremely computatiolgal
demanding. Here we follow the computationally afipga
"near-separation” philosophy of [5,7]. We rely anpérical
estimation of the required covariance matrix (ekplg its
block-diagonal structure) by partitioning the olsgion
interval into blocks, followed by the efficient cpnitation
of the weighted AJD using the recently proposedditeid
Exhaustive Diagonalization using Gauss
(WEDGE, [5)).

The remainder of this paper is organized as folldwsec-
tion 2 we provide a brief overview of the principlef

It is easy to observe (see [3] for details), th#be elements

of s are statistically independent, thdif (t) is a diagonal
matrix for all T. Therefore, any set of Hessian matrices of
the log-GCF ofx taken at severalMl ) processing-points,
say ¥, (1,),...¥, (1, ), is jointly diagonalized byA;".
Therefore, these Hessian matrices can be usedr(umitte
conditions, see [3]) for estimating the mixing matusing

itEration§exact) joint diagonalization. In practice, howevérese

matrices are obviously unknown, and have to bemestid
from the data.

CHESS and of WEDGE. In section 3 we present the prdt is shown in[3], that convenient and consistent estimation

posed weighting scheme in terms of the weightsresibn

of the Hessian of the log-GCF can be formulatedspe-

approach and the WEDGE-based reweighted AJD alg&ially-weighted empirical covariance matrices",

rithm. Some experimental results are presenteceatich 4
and conclusions are summarized in section 5.

2. PRELIMINARIES

For completeness of the exposition, we providehia sec-
tion a brief overview of CHESS [3] (for the basiingiples
of exploiting empirical off-origin Hessians of theg charac-
teristic function), followed by a brief descriptioof
WEDGE [5] (for the weighted AJD stage).

2.1 CHESS CHaracteristic-function-Enabled
Source Separation

Let T denote a real-valuéarbitrarily-selected "processing-

¥, (1) X | S d-R([d-%) )

where w, éexp{rTx[t]}eR can be regarded as weights,
T 1T

and Yé[ZWtj D wx[t]leR™ is a similarly-averaged
t=1 t=1

empirical mean.

Note that for real-valued processing points R**, all the
weights w, e R are positive, leading to positive-definite

Hot I dx1 . . .
point" in R®*. The Generalized Characteristic Func“onweighting, and to guaranteed positive semi-definitgrices

(GCF) of a random vectose R** at t is defined as
o.(1)2 E[exp{rTs}]. lts first derivative (gradient) and

second derivative (Hessian) with respectrtoare denoted
s 00 (T) T K1
gos(r):T:E[exp{r s}-s|e R,

209, (1)
aTT

®,(1)=

The log-GCF is defined ag, (1) £loge,(t), and its gradi-

and

= E[ssT -exp{rTs}]e RO | respectively.

ent and Hessian are similarly defined and denager)
and ¥, (), respectively.
Now, the we have

assuming model x=As,

o (1)= E[exp(rTx)] = E[ exp(rTAOs)J =o,(AT),

which implies thaty, (1) =y, (Agr) , and therefore that the
Hessiansy, (t) and y (t) are related by

¥, (1)=AY, (ATT)A]

2 Generally, the processing-points can be compléxeda
However, to simplify the exposition we only consideal-
valued processing points in here.
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v, (x,7). Also, for the particular case=0, all weights

equal one, and¥, (x,0) is the sample covariance. There-

fore, the sample covariance-matrix is often natyratluded
as one of the empirical Hessian matrices in thefkttrget-
matrices for AJD, corresponding to one particulescpss-
ing-point (t=0). The other empirical Hessians in the set
correspond to other (off-origin) processing-points.
Unsurprisingly, the performance of CHESS dependshen
selection of processing-points, and without prinowledge
regarding the observations' distributions, it iiailt to pre-
dict which processing points would yield better azagion
performance. Since the number of processing-pdmtbe
used (namely, the number of matrices in the AJEhesreti-
cally unrestricted, a natural tendency is to aality take as
many processing-points as computationally afforelabbp-
ing that at least some of these points would b@dgoBut
then, if no weighting is used in the AJD procebgrd is a
risk that the presence of (unknown) "bad" pointtha group
would result in degraded performance, relativeh® per-
formance that could have been attained if the timy(un-
known) "good" points were taken. By estimating to@ari-
ance of the elements of these matrices (from tladiadole
data) and properly incorporating its inverse in Ad® proc-
ess, the "good" points are automatically given 'tipper-
hand" in the combination (loosely speaking, of selr



2.2 WEDGE WEighted Diagonalization using

Gauss itErations

The WEDGE algorithm is developed [f], where its use is
described for the weighted AJD of estimated lagemdela-

tion matrices — giving rise to an efficient implamtegion of

WASORBI. Following is a brief outline of the algdit.

WEDGE
1. Inputs:
a.  Set of target-matrice¥, [m]e R™,1< m< M

b.  Set of weight matricedv,, e R™*" 1<l <k <d
c. Aninitial guessv™ e R**, e.g., V" = (¥, [1]) *
2. j«1
3. Repeat 4-9 until convergence:
4. W [m]=VI, [n(VU )T for lI<m< M.
~ ~ T
5 =[[‘I’S [1]]M [‘I’S[M ]Jm:' for each
1</<k<d.
6. Set,&kyk =1 for 1<k <d, whereas forl</=k<d
substitute the solutions of:
Ak,/ :|:f¢T/Wk/rA/¢ rAM Vw }lI:W rwawi| (2)
Al‘,k r’:lj;(Wk!,r’\ll rAM IE‘Akk W rl(Ak
7. SetVll—(A) V0
8. Normalize the rows of VI such that
[\“/“hi'x [1](\7[”” -1 1<k<d
k,k
9. jej+1

10. Outputs: The estimated demixing matvix

(Note that[+] , denotes the(k,/)-th element of the en-

k.0
closed matrix, wherea§, and W,, are the(k, /) -th vector

and weight-matrix, as defined above).
It was shown in [5] that equation (2) is the saatodf a sin-

gle Gauss iteration in the nonlinear WLS problem of

weighted AJD (with the specified block-diagonalisture of

the weight matrix), starting from an initial gues=1 . The

algorithm consists of re-transforming the targetrivas (in

step 7) after each iteration, such that the ingigss for the
next iteration can again be taken as the identarixy lead-

ing to the conveniently decoupled solution of tteuss itera-
tion in (2).

The solution of thed (d—1) /2 sets of2x 2 equations in (2)

has complexityO( M?d?) , and this is also the complexity of
each iteration.
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3. WEIGHT MATRICES FOR CHESS

As already mentioned above, the optimal weight im&in
the sense of minimum mean square error in the astimof

elements of the demixing matrb?) for the weighted AJD
process is (assuming small errors in the estimtdeget-
matrices) the inverse of the covariance matrix Ibfo#-

diagonal elements in the target-matrices (propsegked in
a single vector). When the signals are nearly sépdyr this
covariance matrix possesses the appealing propeliging

block diagonal, withd (d—1)/2 blocks across the diagonal,
each of sizeM xM  defined as:

W,, =Cov*(f,, ) eR"™, 1</ < k< d, ®3)

wheref,, has been defined in the description of the WEDGE
algorithm above, on step 5. This was rigorouslyshto be
the case for the SOBI target-matrices (in [5]) dod the
JADE target-matrices (in [6]).

An explicit, exact analytical expression for the pacal
Hessians' covariance matrices is difficult to aitdut an
empirical estimate of this covariance from the dzda be
obtained by dividing the observation interval ibtocks and
estimating the covariance (over blocks) of the eicgdiHes-
sians obtained in each block. The weight matrigés are

then set to the inverses of these matrices.

3.1  Error-covariance Estimation:
1. Inputs: the observed dafqt], 1<t<T and M arbi-
trarily-selected "processing-pointsy,...,t, .

Partition the observation intervdl<t<T
blocks of equal lengths.

into P

3. Foreach block< p< P, repeat steps 4, 5:
. Estimate¥!” [m],1< m< M using equation (1).
5. \Vectorize:
T
£(p) 2| [ p(p) p(P)
fe 2 (e, - (B, |
1<l<k<d
For eachl<| <k <d, obtain the covariance esti-
mate:
~ 1 &, = ~ = \T
- - (p) _ (p)
Ck/{ - P_lpZ:l(rk/ rk/)(r 4 — )
N A P ~ ,
wheref, £ =3 (p)
P p:l
8. Outputs: The weight matrices
W, =C, , 1<l<k<d .
3.2  The iterative reweighting algorithm

The efficiency benefit of WEDGE is achieved wher th
signals are nearly separated. However, usuallygikien
mixture is far from this state, and a preliminagparation
step should be applied first. Therefore the follugwvterative



algorithm is proposed. In our simulation exampin in
Section 4), convergence was attained within 2-fafikens.

Weighted CHESS:
1. Input: the observed dast], 1<t<T and M arbitrar-

ily-selected "processing-points,...,t,, .

2. \70 <« an initial guess for the separation matrix, pro-
vided by some consistent BSS algorithm — e.g., un
weighted CHESS, s&, [t]=x[t],1<t<T.

3. j«1

4. Repeat steps 5-9 until convergence:

5. X [t]« V. & ,[t], 1<t<T

6. (Re-)generate the target-matrices:

¥ [m«¥, ()?j,rm) using (1) forl<m< M ;

7. (Re-)estimate the weight matrices:

{W,, ), < Weight-Estimatior with %, [t];

8. V|« WEDGE with (¥, [m]|" (W}

9. jej+1 ,

10. Upon convergenceg EJ ):

Output: Y =\A/J\7 J—1"'\7 , the estimated separated

0
signals are S[t]=%, [t], 1<t<T

4. SIMULATION

As mentioned earlier, the relative computationdicieincy
of our proposed reweighted CHESS algorithm is based
the assumed block-diagonality of the covariancerimatf
the concatenated vector of the sample Hessianseolfog-
GCF of the observation in a "near-separation” diomli
Evidently, such (near) block-diagonality implies ath
fof . are (nearly) uncorrelated for glk,?)=(k',¢"). A
rigorous proof of that property is too long to beluded in
this contribution, but we illustrate this block-g@anality in
Figure 1 for a particular case with=3,M = 5. The figure
shows the intensity of absolute values of the eiggdilco-
variance  matrix of the concatenated  vector
~T

st- The expected block-diagonal structure

of d(d-1)/2=3block of dimension MxM =5x5 is
clearly observed.

AT AT
rz[r12 s T

To capture the essence and effectiveness of theoged
weighted approach, we consider a simple scenarih-of

sources, each with a zero-mean unit-variance bligtan.
We present the results of five experiments:

points used in the second experiment (shown and
marked by *' in Figure 2);

3. The proposed weighted version of CHESS with the
same processing-points as in Experiment 1;

4. The proposed weighted version of CHESS with the
same processing-points as in Experiment 2;

5. For reference we also provide the performance of

JADE.
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Figure 1: Visualization of the covariance matrixtod off-diagonal
elements of the sample-Hessian of the observatmmp&CF

& 1 ‘ : ' 1 T

e S e e

2
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Figure 2 — The processing-points constellations irse
Experiments 1-4

The results are shown in Figure 3 vs. the obsenvdéingth

1. Unweighted CHESS wittM =8 processing-points
(the selected processing-points are shown and
marked with 'o" in Figure 2);

2. Unweighted CHESS withM =8+ 7 processing-

T, in terms of the attained mean Interference tor&@Ra-

points, which are the same processing-points used fio (ISR) of the two channels, averaged along 4@@pend-

the first experiment, with additional 7 processingent t.rials. In all the experilments, th_e variousathms were
applied to the same data in each trial.
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As evident in Figure 3, while the initial choicetbé process-
ing-points for ordinary (unweighted) CHESS in BExpemt

1 slightly outperforms JADE, the performance is rddgd

when the additional processing-points are adde@ximeri-

ment 2. Initially, this may possibly appear as sotmi

counter-intuitive: although more target-matrices added to
the joint diagonalization process, the performategrades.
This is exactly where the optimal weighting comas play:

obviously, the addition of data (target-matricasyuaranteed
not to degrade (or even to improve) the performaonky if

such additional data is properly weighted into ¢ék@mation

process. If the additional data is "worse" than ohiginal

data, then attributing uniform weight to all thetadavould

evidently result in loss of performance.

Indeed, from the results of Experiment 4 we obsémaéthe
proper weighting of Hessians from all of the preieg-

points attains a significant performance improvetnaot

only with respect to the performance attained hgy tim-

weighted use of Hessians from the original processi
points in Experiment 1, but also with respect te dpti-

mally-weighted use of these Hessians alone in Hxgeit

3. In other words, while in an unweighted framewtike

additional processing-points degrade the performainc a

properly-weighted framework the same additionahdzan

improve the performance.

-=+- JADE
—B— Unweighted 8+7 pts
—P— Weighted B+7 nts
=—6— Unweighted 8 pts
—— Weighted 8 pts

=
T
N
i

ISR [4B]

1 1
E000 8000

1
4000
Wumber of samples

10000

Figure 3: The Result of the five experiments: I18R][vs. the ob-
servation lengthl .

5. CONCLUSIONS

We considered optimal weighting of the sample Hessof
the observations' log-GCF in the AJD process in GHE
Generally, such optimal weighting involves therestion of
the covariance matrix of all the elements of theda Hes-
sians, followed by inversion of this covariance mxatn
order to obtain the estimated optimal weight matrow-
ever, when the sources are nearly-separated, diaggiance
matrix becomes block-diagonal, such that its egtonais

894

conveniently reduced to estimation of the particblacks;
Likewise, the optimal weight matrix is reduced tdlack-
diagonal matrix, whose blocks are obtained as rikierses
of the respective blocks in the covariance mawiareover,
such block-diagonal weighting is conveniently apglio the
AJD process using the recently proposed WEDGE algo-
rithm.

Thus, our proposed approach first applies an Irstpara-
tion stage, and then further refines the separdiipitera-
tively applying the aforementioned weighting schemé¢he
nearly-separated observations.

Using simulation results we demonstrated the ghilftthe
proper weighting to better exploit any given chaaéeproc-
essing-points: When optimal weighting is used, dtldition
of processing-points cannot degrade the mean peafure,
since, in the "worst case", a "bad" processing{poeould be
naturally out-weighted by the algorithm, and wititrcause
any damage. Of course, with any finite data-lentith,esti-
mated weights might not be the true optimal weightsd
therefore in practice such monotonic improvemerth(\an
increase in the number of processing points) i@y not
guaranteed. With a restricted number of processaigts,
the CHESS results are still quite sensitive tosflection of
the processing points. A future direction of tt@search is to
find optimal choice and number of processing poidis-
pending solely on the observed data (and with soreble
computational complexity).
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