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ABSTRACT 

In the context of Independent Component Analysis (ICA), we 
propose a near-optimal weighting scheme for the approxi-
mate joint diagonalization of empirical Hessians (second 
derivative matrices taken at selected "processing-points") of 
the observations' log-characteristic function. Our weighting 
scheme is based on the observation, that when the sources 
are nearly-separated, the covariance matrix of these empiri-
cal Hessians takes a convenient block-diagonal structure. 
We exploit this property to obtain reliable estimates of the 
blocks directly from the observed data, and use the recently 
proposed WEighted Diagonalization using Gauss itErations 
(WEDGE) to conveniently incorporate the weight matrices 
into the joint diagonalization estimation. Simulation results 
demonstrate the importance of proper weighting, especially 
for mitigating uncertainties in the selection of "processing 
points". As we show, the properly-weighted version can lead 
to a significant performance improvement, not only with 
respect to the unweighted version, but also with respect to a 
common benchmark like the popular JADE algorithm. 

1. INTRODUCTION 1 

We consider the framework of Independent Component 
Analysis (ICA), where d statistically-independent (real-
valued) sources are instantaneously mixed by an unknown 
constant mixing matrix 0

d d×∈A ℝ , such that [ ] [ ]0t t=x A s , 

1 t T≤ ≤  where [ ] [ ] 1, dt t ×∈x s ℝ  are the observations and 

sources vectors at time t . Given T  observation vectors, the 

goal is to obtain an estimate V̂ of the demixing matrix, 
1

0
ˆ −≈V A , which in turn provides an estimate of the sources  

via [ ] [ ]ˆˆ t t=s Vx . 

A popular approach to ICA is to apply approximate joint 
diagonalization (AJD) to a set of M  matrix-form statistics 
(frequently termed "target-matrices"), having the appealing 
property of being strictly diagonal for random vectors with 
pairwise independent components. Some examples are the 
Joint Approximate Diagonalization of Eigenmatrices 
(JADE, [1]), whose target-matrices are derived from the 
observations' empirical fourth order cumulants; Second-
Order Blind Identification (SOBI, [2]), whose target-
matrices are the observations' empirical covariance matrices 
taken at different delay lags; And CHaracteristic-function-
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Enabled Source Separation (CHESS, [3]), whose target-
matrices are empirical Hessians of the joint log-
characteristic functions of the observations, taken at some 
selected "processing-points" (see more details in Section 2). 
Since AJD can essentially be regarded as an attempted 
Least-Squares (LS) fit of the target-matrices to the joint di-
agonalization model, significant improvement of the result-
ing estimation accuracy can often be attained by applying 
proper weighting to the AJD process, thereby taking a 
Weighted LS (WLS) approach. The optimal weight matrix, 
assuming sufficiently small errors in the estimated target-
matrices, is well-known to be given by the inverse of the 
joint covariance matrix of these errors. In general, however, 
this covariance matrix is unknown in a blind scenario, and 
must be obtained from the observed data.  
Such an approach was first proposed in [4] for SOBI, where 
it was termed "Weights-Adjusted SOBI" (WASOBI), but the 
performance improvement in [4] was attained at the cost of a 
significant computational complexity. A simplified approach 
to the covariance estimation and to the subsequent weighted 
AJD was later proposed in [5,7], which offered a computa-
tionally efficient version of WASOBI. The simplifying idea 
is based on the observation that in a nearly-separated mix-
ture, the required covariance matrix (and, hence, also the 
weight matrix) take a (nearly) block-diagonal form, and 
therefore admit more convenient manipulations.  After an 
initial separation step, which is assumed to transform the 
demixed observation into a nearly-separated "mixture" of 
the sources, the demixing can be further refined by conven-
ient estimation and application of the block-diagonal 
weights. A similar idea was used in [6] for applying optimal 
weighting in JADE. 
Our goal in this paper is to use the same philosophy in ap-
plying asymptotically-optimal weighting to the CHESS al-
gorithm. CHESS was shown in [3] to potentially attain sig-
nificant performance improvement with respect to existing 
alternatives (such as JADE). However, the performance of 
CHESS generally depends on the specific choice of "proc-
essing-points" for the target-matrices. When an arbitrary 
selection of processing-points is used, the "bad" points 
(points at which the respective empirical Hessian has a large 
variance and little information content) can obscure the po-
tential performance gain of the "good" points (at which the 
respective empirical Hessian has a small variance and rich 
information content). However, if proper (let alone optimal) 
weighting is used, the effect of the "bad" points would be 
out-weighted by that of the "good" points, and the desired 
performance gain would become evident. An initial weight-
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ing scheme was presented in [8], but, like the initial 
WASOBI formulation [4], was extremely computationally 
demanding. Here we follow the computationally appealing 
"near-separation" philosophy of [5,7]. We rely on empirical 
estimation of the required covariance matrix (exploiting its 
block-diagonal structure) by partitioning the observation 
interval into blocks, followed by the efficient computation 
of the weighted AJD using the recently proposed Weighted 
Exhaustive Diagonalization using Gauss itErations 
(WEDGE, [5]). 
The remainder of this paper is organized as follows: In sec-
tion 2 we provide a brief overview of the principles of 
CHESS and of WEDGE. In section 3 we present the pro-
posed weighting scheme in terms of the weights-estimation 
approach and the WEDGE-based reweighted AJD algo-
rithm. Some experimental results are presented in Section 4 
and conclusions are summarized in section 5. 

2. PRELIMINARIES 

For completeness of the exposition, we provide in this sec-
tion a brief overview of CHESS [3] (for the basic principles 
of exploiting empirical off-origin Hessians of the log charac-
teristic function), followed by a brief description of 
WEDGE [5] (for the weighted AJD stage). 
 
2.1 CHESS – CHaracteristic-function-Enabled 

Source Separation 
Let τ  denote a real-valued2 arbitrarily-selected "processing-
point" in 1d×

ℝ . The Generalized Characteristic Function 
(GCF) of a random vector 1d×∈s ℝ  at τ  is defined as 

( ) { }exp TEϕ   s τ τ s≜ . Its first derivative (gradient) and 

second derivative (Hessian) with respect to τ  are denoted 

( ) ( ) { } K 1exp RTE
ϕ ×∂

 = ⋅ ∈ ∂
s

s

τ
τ τ s s

τ
≜ϕϕϕϕ , and  

( ) ( ) { }
2

K Kexp RT T
T

E
ϕ ×∂

 = ⋅ ∈ ∂ ∂
s

s

τ
Φ τ ss τ s

τ τ
≜ , respectively. 

The log-GCF is defined as ( ) ( )logψ ϕs sτ τ≜ , and its gradi-

ent and Hessian are similarly defined and denoted ( )sψ τ  

and ( )sΨ τ , respectively. 

Now, assuming the model 0=x A s , we have 

 

( ) ( ) ( ) ( )0 0exp expT T TE Eϕ ϕ   = = =   x sτ τ x τ A s A τ , 

 

which implies that ( ) ( )0
Tψ ψ=x sτ A τ , and therefore that the 

Hessians ( )xψ τ  and ( )sψ τ  are related by 

 

( ) ( )0 0 0
T T=x sΨ τ A Ψ A τ A  

 

                                                           
2 Generally, the processing-points can be complex-valued; 
However, to simplify the exposition we only consider real-
valued processing points in here. 

It is easy to observe (see [3] for details), that if the elements 
of s  are statistically independent, then ( )sΨ τ  is a diagonal 

matrix for all τ . Therefore, any set of Hessian matrices of 
the log-GCF of x  taken at several (M ) processing-points, 
say ( ) ( )1 ,..., Mx xΨ τ Ψ τ , is jointly diagonalized by 1

0
−A . 

Therefore, these Hessian matrices can be used (under mild 
conditions, see [3]) for estimating the mixing matrix using 
(exact) joint diagonalization. In practice, however, these 
matrices are obviously unknown, and have to be estimated 
from the data. 
 
It is shown in  [3], that convenient and consistent estimation 
of the Hessian of the log-GCF can be formulated as "spe-
cially-weighted empirical covariance matrices", 

 

 ( ) [ ]( ) [ ]( )
1

1 1

ˆ ,
T T

T

t t
t t

w w t t
−

= =

 
= − − 
 
∑ ∑xΨ x τ x x x x , (1) 

 

where [ ]{ }exp T
tw t ∈τ x≜ ℝ  can be regarded as weights, 

and [ ]
1

1

1 1

T T
d

t t
t t

w w t
−

×

= =

 
∈ 

 
∑ ∑x x≜ ℝ  is a similarly-averaged 

empirical mean. 
 

Note that for real-valued processing points 1d×∈τ ℝ , all the 
weights tw ∈ℝ  are positive, leading to positive-definite 

weighting, and to guaranteed positive semi-definite matrices 

( )ˆ ,xΨ x τ . Also, for the particular case =τ 0 , all weights 

equal one, and ( )ˆ ,xΨ x 0  is the sample covariance. There-

fore, the sample covariance-matrix is often naturally included 
as one of the empirical Hessian matrices in the set of target-
matrices for AJD, corresponding to one particular process-
ing-point ( =τ 0 ). The other empirical Hessians in the set 
correspond to other (off-origin) processing-points. 
Unsurprisingly, the performance of CHESS depends on the 
selection of processing-points, and without prior knowledge 
regarding the observations' distributions, it is difficult to pre-
dict which processing points would yield better separation 
performance. Since the number of processing-points to be 
used (namely, the number of matrices in the AJD) is theoreti-
cally unrestricted, a natural tendency is to arbitrarily take as 
many processing-points as computationally affordable, hop-
ing that at least some of these points would be "good". But 
then, if no weighting is used in the AJD process, there is a 
risk that the presence of (unknown) "bad" points in the group 
would result in degraded performance, relative to the per-
formance that could have been attained if the only the (un-
known) "good" points were taken. By estimating the covari-
ance of the elements of these matrices (from the available 
data) and properly incorporating its inverse in the AJD proc-
ess, the "good" points are automatically given "the upper-
hand" in the combination (loosely speaking, of course). 
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2.2 WEDGE – WEighted Diagonalization using 
Gauss itErations 

The WEDGE algorithm is developed in  [5], where its use is 
described for the weighted AJD of estimated lagged correla-
tion matrices – giving rise to an efficient implementation of 
WASOBI. Following is a brief outline of the algorithm. 

 
WEDGE 

1. Inputs: 

a.  Set of target-matrices: [ ]ˆ ,1d dm m M×∈ ≤ ≤xΨ ℝ    

b.  Set of weight matrices: ,1M M
kl l k d×∈ ≤ < ≤W ℝ   

c.  An initial guess [ ]0ˆ d d×∈V ℝ , e.g.,
 

[ ] [ ]( )
1
20 ˆˆ 1

−
= xV Ψ    

2. 1j ←   

3. Repeat 4-9 until convergence: 

4.  [ ] [ ] [ ] [ ]( )1 1ˆ ˆˆ ˆ T
j jm m− −=s xΨ V Ψ V  for 1 m M≤ ≤ . 

5.   [ ] [ ]
, ,

ˆ ˆˆ 1
T

k k k
M    =      s sr Ψ Ψℓ

ℓ ℓ
⋯  for each 

1 k d≤ ≤ ≤ℓ . 

6.  Set ,
ˆ 1k k =A  for 1 k d≤ ≤ , whereas for  1 k d≤ ≠ ≤ℓ

 
substitute the solutions of: 

 

  
1

,

,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T T T
k k kk k k k

T T T
kk k ll kk k kk kk k kk

−     
=     

      

A r W r r W r r W r

r W r r W r r W rA

ℓ ℓℓ ℓ ℓℓ ℓ ℓℓ ℓℓ ℓ ℓ

ℓ ℓ ℓ ℓℓ

 (2) 

 

7.  Set [ ] ( ) [ ]1 1ˆˆ ˆj j− −=V A V  

8.  Normalize the rows of [ ]ˆ jV  such that 

[ ] [ ] [ ]( )
,

ˆˆ ˆ1 1 1
Tj j

k k

k d  = ≤ ≤  xV Ψ V  

9.  1j j← +  

10.  Outputs: The estimated demixing matrix V̂  
 

(Note that [ ] ,k ℓ
i  denotes the ( ),k ℓ -th element of the en-

closed matrix, whereas ˆkr ℓ  and kW ℓ  are the ( ),k ℓ -th vector 

and weight-matrix, as defined above). 
It was shown in [5] that equation (2) is the solution of a sin-
gle Gauss iteration in the nonlinear WLS problem of 
weighted AJD (with the specified block-diagonal structure of 
the weight matrix), starting from an initial guess =A I . The 
algorithm consists of re-transforming the target-matrices (in 
step 7) after each iteration, such that the initial guess for the 
next iteration can again be taken as the identity matrix, lead-
ing to the conveniently decoupled solution of the Gauss itera-
tion in (2). 
The solution of the ( )1 / 2d d−  sets of 2 2×  equations in (2) 

has complexity ( )2 2O M d , and this is also the complexity of 

each iteration.  
 

3. WEIGHT MATRICES FOR CHESS 

 
As already mentioned above, the optimal weight matrix (in 
the sense of minimum mean square error in the estimation of 

elements of the demixing matrix V̂ ) for the weighted AJD 
process is (assuming small errors in the estimated target-
matrices) the inverse of the covariance matrix of all off-
diagonal elements in the target-matrices (properly stacked in 
a single vector). When the signals are nearly separated, this 
covariance matrix possesses the appealing property of being 
block diagonal, with

 
( )1 / 2d d−  blocks across the diagonal, 

each of size M M× , defined as: 
 

 
( )1 ˆ , 1M M

k kCov k d− ×= ∈ ≤ < ≤W rℓ ℓ ℝ ℓ , (3) 

 
where ̂ kr ℓ  has been defined in the description of the WEDGE 

algorithm above, on step 5. This was rigorously shown to be 
the case for the SOBI target-matrices (in [5]) and for the 
JADE target-matrices (in [6]).  
An explicit, exact analytical expression for the empirical 
Hessians' covariance matrices is difficult to obtain, but an 
empirical estimate of this covariance from the data can be 
obtained by dividing the observation interval into blocks and 
estimating the covariance (over blocks) of the empirical Hes-
sians obtained in each block. The weight matrices klW  are 

then set to the inverses of these matrices. 
 
3.1 Error-covariance Estimation: 

1. Inputs: the observed data [ ]ˆ , 1t t T≤ ≤x  and M arbi-

trarily-selected "processing-points" 1,..., Mτ τ .  

2. Partition the observation interval 1 t T≤ ≤  into P  
blocks of equal lengths. 

3. For each block 1 p P≤ ≤ , repeat steps 4, 5: 

4.  Estimate ( ) [ ]ˆ ,1p m m M≤ ≤xΨ  using equation (1). 

5.  Vectorize:  

  ( ) ( ) [ ] ( ) [ ]
, ,

ˆ ˆˆ 1
T

p p p
k

k k
M         x xr Ψ Ψ

ℓ
ℓ ℓ

≜ ⋯    

  

1 l k d≤ < ≤  

7. For each 1 l k d≤ < ≤ , obtain the covariance esti-
mate: 

( )( ) ( )( )
1

1ˆ ˆ ˆ ˆ ˆ
1

P Tp p
k k k k k

pP =

= − −
− ∑C r r r rℓ ℓ ℓ ℓ ℓ

,

 

where ( )

1

1
ˆ ˆ

P
p

k k
pP =
∑r rℓ ℓ≜    

8. Outputs: The weight matrices  

 
1 , 1k k l k d−= ≤ < ≤W Cℓ ℓ  . 

 
3.2 The iterative reweighting algorithm 
The efficiency benefit of WEDGE is achieved when the 
signals are nearly separated. However, usually the given 
mixture is far from this state, and a preliminary separation 
step should be applied first. Therefore the following iterative 
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algorithm is proposed. In our simulation examples (shown in 
Section 4), convergence was attained within 2-3 iterations.  
 
Weighted CHESS: 

1. Input: the observed data [ ], 1t t T≤ ≤x  and M arbitrar-

ily-selected "processing-points" 1,..., Mτ τ . 

2. 0
ˆ ←V  an initial guess for the separation matrix, pro-

vided by some consistent BSS algorithm – e.g., un-
weighted CHESS, set [ ] [ ]0ˆ ,1t t t T= ≤ ≤x x . 

3. 1j ←    

4. Repeat steps 5-9 until convergence: 

5.  [ ] [ ]1 1
ˆˆ ˆ , 1j j jt t t T− −← ≤ ≤x V x   

6.  (Re-)generate the target-matrices: 

  [ ] ( )ˆ ˆ ˆ ,j mm ←x xΨ Ψ x τ
 
 using (1) for 1 m M≤ ≤ ; 

7.  (Re-)estimate the weight matrices: 

  
{ } 1

Weight-Estimation
d

k k> =
←W

ℓ ℓ  
with

 
[ ]ˆ j tx ; 

8.  ˆ WEDGEj ←V  with [ ]{ }
1

ˆ M

m
m

=xΨ ,
{ } 1

d

k k> =
W

ℓ ℓ
; 

9.  1j j← +  

10.  Upon convergence (j J= ): 

 Output: 1 0
ˆ ˆ ˆ ˆ

J J−= ⋅⋅⋅V V V V , the estimated separated 

signals are   [ ] [ ]ˆ ˆ , 1Jt t t T= ≤ ≤s x  

4. SIMULATION 

As mentioned earlier, the relative computational efficiency 
of our proposed reweighted CHESS algorithm is based on 
the assumed block-diagonality of the covariance matrix of 
the concatenated vector of the sample Hessians of the log-
GCF of the observation in a "near-separation" condition. 
Evidently, such (near) block-diagonality implies that 

' 'ˆ ˆ,k kr rℓ ℓ  are (nearly) uncorrelated for all ( ) ( ), ', 'k k≠ℓ ℓ . A 

rigorous proof of that property is too long to be included in 
this contribution, but we illustrate this block-diagonality in 
Figure 1 for a particular case with 3, 5d M= = . The figure 
shows the intensity of absolute values of the empirical co-
variance matrix of the concatenated vector 

12 13 23ˆ ˆ ˆ
TT T T =  r r r r . The expected block-diagonal structure 

of ( )1 / 2 3d d− = block of dimension 5 5M M× = ×  is 

clearly observed. 
 
To capture the essence and effectiveness of the proposed 
weighted approach, we consider a simple scenario of 2d =  
sources, each with a zero-mean unit-variance distribution. 
We present the results of five experiments: 

1. Unweighted CHESS with 8M =  processing-points 
(the selected processing-points are shown and 
marked with 'o' in Figure 2); 

2. Unweighted CHESS with 8 7M = +  processing-
points, which are the same processing-points used in 
the first experiment, with additional 7 processing 

points used in the second experiment (shown and 
marked by '*' in Figure 2); 

3. The proposed weighted version of CHESS with the 
same processing-points as in Experiment 1; 

4. The proposed weighted version of CHESS with the 
same processing-points as in Experiment 2; 

5. For reference we also provide the performance of 
JADE. 

 
Figure 1: Visualization of the covariance matrix of the off-diagonal 

elements of the sample-Hessian of the observations' log-GCF 
 

 
Figure 2 – The processing-points constellations used in  

Experiments 1-4 
 
The results are shown in Figure 3 vs. the observation length 
T , in terms of the attained mean Interference to Source Ra-
tio (ISR) of the two channels, averaged along 400 independ-
ent trials. In all the experiments, the various algorithms were 
applied to the same data in each trial. 
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As evident in Figure 3, while the initial choice of the process-
ing-points for ordinary (unweighted) CHESS in Experiment 
1 slightly outperforms JADE, the performance is degraded 
when the additional processing-points are added in Experi-
ment 2. Initially, this may possibly appear as somewhat 
counter-intuitive: although more target-matrices are added to 
the joint diagonalization process, the performance degrades. 
This is exactly where the optimal weighting comes into play: 
obviously, the addition of data (target-matrices) is guaranteed 
not to degrade (or even to improve) the performance, only if 
such additional data is properly weighted into the estimation 
process. If the additional data is "worse" than the original 
data, then attributing uniform weight to all the data would 
evidently result in loss of performance. 
Indeed, from the results of Experiment 4 we observe that the 
proper weighting of Hessians from all of the processing-
points attains a significant performance improvement, not 
only with respect to the performance attained by the un-
weighted use of Hessians from the original processing-
points in Experiment 1, but also with respect to the opti-
mally-weighted use of these Hessians alone in Experiment 
3. In other words, while in an unweighted framework the 
additional processing-points degrade the performance, in a 
properly-weighted framework the same additional data can 
improve the performance. 

 

Figure 3: The Result of the five experiments: ISR [dB] vs. the ob-
servation length T .  

 

5. CONCLUSIONS 

We considered optimal weighting of the sample Hessians of 
the observations' log-GCF in the AJD process in CHESS. 
Generally, such optimal weighting involves the estimation of 
the covariance matrix of all the elements of the sample Hes-
sians, followed by inversion of this covariance matrix in 
order to obtain the estimated optimal weight matrix. How-
ever, when the sources are nearly-separated, this covariance 
matrix becomes block-diagonal, such that its estimation is 

conveniently reduced to estimation of the particular blocks; 
Likewise, the optimal weight matrix is reduced to a block-
diagonal matrix, whose blocks are obtained as the inverses 
of the respective blocks in the covariance matrix. Moreover, 
such block-diagonal weighting is conveniently applied to the 
AJD process using the recently proposed WEDGE algo-
rithm. 
Thus, our proposed approach first applies an initial separa-
tion stage, and then further refines the separation by itera-
tively applying the aforementioned weighting scheme to the 
nearly-separated observations. 
Using simulation results we demonstrated the ability of the 
proper weighting to better exploit any given choice of proc-
essing-points: When optimal weighting is used, the addition 
of processing-points cannot degrade the mean performance, 
since, in the "worst case", a "bad" processing-point would be 
naturally out-weighted by the algorithm, and will not cause 
any damage. Of course, with any finite data-length, the esti-
mated weights might not be the true optimal weights, and 
therefore in practice such monotonic improvement (with an 
increase in the number of processing points) is generally not 
guaranteed. With a restricted number of processing-points, 
the CHESS results are still quite sensitive to the selection of 
the processing points. A future direction of this research is to 
find optimal choice and number of processing points, de-
pending solely on the observed data (and with a reasonable 
computational complexity). 
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