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ABSTRACT

In this paper a new tensor factorization based method is addressed
to separate the speech signals from their convolutive mixtures.
PARAFAC and majorization concepts have been used to estimate
the model parameters which best fit the convolutive model. Having
semi-diagonal covariance matrices for different source segments
and also quasi static mixing channels are the requirements for our
method. We evaluated the method using synthetically mixed real
signals. The results show high ability of our method for separating
the speech signals.

Index Terms— Blind Source Separation, Convoutive Mixture,
Tensor Factorization, PARAFAC2, Majorization, Procrustes.

1. INTRODUCTION

Blind source separation (BSS) is a technique to estimate unknown
source signals from their mixtures without any prior knowledge
about the sources or the medium. In some applications, signals are
mixed through a convolutive model. This makes BSS a difficult
problem. BSS research started from the work of Hrault and Jutten
[1] and continued by many researchers. There are three major ap-
proaches for solving the convolutive BSS problem; (i) time domain
BSS has good results once the algorithm converges, but often they
are computationally expensive and involve causality problem, (ii)
frequency domain BSS, where the convolutive problem is transferred
to frequency domain whereby, the convolution operation changes
to multiplication. Then, instantaneous BSS is applied to each fre-
quency bin. This method however is subject to permutation and
scaling ambiguities and therefore, can be more complicated than the
time domain BSS, (iii) third approach uses time-frequency domain.
These methods estimate filter coefficients in the frequency domain
and then apply the nonlinear functions to exploit time independency
of the sources. This approach is free of permutation problem, but the
switching between time and frequency domains is computationally
expensive [2]. In this paper we deal with the first method and we
develop our time domain BSS based on two well known concepts
namely tensor factorization and majorization. To take advantage
of tensor factorization we build up a tensor data from multichannel
mixture matrix simply by temporal segmentation. Then, we define a
model for tensor data based on the well known parallel factor anal-
ysis (PARAFAC) [3], more specifically PARAFAC2 [4] concept.
Then, we use majorization and PARAFAC fitting optimization algo-
rithms to estimate the parameters of the model. After convergence
the estimated sources and the mixing systems at different lags will
be at hand. The remainder of the paper is structured as follows. In

Section 2 the tensor factorization methods (PARAFAC-PARAFAC2)
will be discussed. In Section 3 our time domain convolutive BSS
method and also the majorization concept are introduced. In Section
4 the results of applying the method to simulated data are provided.
Finally, Section 5 concludes the paper.

2. OPTIMIZATION METHODS

In this section we introduce the tensor factorization and majorization
concepts which are used in our time domain convolutive separation
method. First, we introduce PARAFAC based tensor factorization
metods.

2.1. PARAFAC and PARAFAC2

For mixture signals in tensor form X, the PARAFAC [5] model,
which is used to decompose trilinear data sets with a unique solu-
tion, is given below:

Xijk =

R
∑

r=1

AirFjrCkr + Eijk (1)

where Xijk represents the i, j, k-th element in the three-way data
set, R is the number of components in common in the three modes,
Air, Fjr and Ckr are respectively the elements in A, F and C used
to obtain the Xijk elements, and Eijk is the residual term. Using
matrix notations the above equation can be presented as:

Xk = FDkA
T + Ek (2)

for k = 1, ..., K, where (.)T refers to transpose operation and Xk

represents the transposed kth frontal slice of the three-way array X ,
A and F are the component matrices in the first and second modes,
respectively. Dk is a diagonal matrix, whose diagonal elements cor-
respond to the kth row of the third component matrix C. Finally,
Ek contains the error terms corresponding to the entries in the kth
frontal slice. PARAFAC direct fitting algorithm includes an alternat-
ing least squares (ALS) optimization method for obtaining A, F , and
Dk for all k = 1, ...,K, and consequently finding the three matrices
A, F and C of equation (1) respectively [5]. Trilinear ALS fitting
method to estimate the factors for PARAFAC can be summarized as
follows:

A = X(1)((C � F )†)T

F = X(2)((C �A)†)T

C = X(3)((F �A)†)T
(3)
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Where (.)† stands for Moore-Penrose pseudo inverse operation,� is
Khatri−Rao product and X(n) is the unfolded version of tensor X
on mode n.

PARAFAC2 as an extension of PARAFAC is designed to deal
with non-trilinear data sets, while keeping uniqueness in the solu-
tions, as the PARAFAC model does. To do so, PARAFAC2 allows
a certain degree of freedom on one of the modes [4] . A similar
equation in matrix notation for PARAFAC2 is given as:

Xk = FkDkA
T + Ek (4)

subject to F T
k Fk = Φ, k = 1, ...K, where Fk is the component

matrix in the second mode corresponding to the kth frontal slice,
Φ is required to be invariant for all slices k = 1, ...,K. To keep
the uniqueness in the solutions all cross-product matrices FkF

T
k are

forced to be constant over k, i.e. F1F
T
1 = F2F

T
2 = ... = FkF

T
k .

In equation (4) we observe that unlike in a PARAFAC model, in
PARAFAC2 model the component matrix in the second mode can
vary across slices. Having constant covariance matrices for all
FT
k Fk we can assume that Fk = PkH for a columnwise orthonor-

mal K ×R matrix Pk and an R×R matrix H , for k = 1, ..., K.

Considering these new variables the PARAFAC2 model can be
written as:

Xk = PkHDkA
T + Ek (5)

The direct method for fitting PARAFAC2 model has been proposed
by Kiers [6]. If we compare (5) with Xk = SkA

T + Ek which
is standard formulation of linear mixture signal Xk at kth seg-
ment, Sk is the source matrix and A is the mixing matrix. It seems
PARAFAC2 model tries to decompose each Sk by one orthonormal
matrix Pk, one diagonal matrix Dk and an arbitrary matrix H as:

Sk = PkHDk (6)

Recently, PARAFAC2 has been used as a BSS tool in biomedical
and communication applications [7][8].

3. TIME DOMAIN SEPARATION OF CONVOLUTIVE
MIXTURES

A number of papers and reviews on convolutive BSS (CBSS) as ad-
dressed in [9], have been published recently. In many practical situa-
tions the signals and their reflections reach the sensors with different
time delays. The corresponding delay between source j and sensor i,
in terms of numbers of samples, is directly proportional to the sam-
pling frequency and conversely to the speed of sound in the medium,
i.e. δij ∝ dij × fs/c, where dij , fs, and c are respectively, the dis-
tance between source j and sensor i, the sampling frequency, and
the speed of sound. A general matrix formulation of the CBSS for
mixing the source signals can be given as:

xi(t) =

Ns
∑

j=1

M−1
∑

τ=0

sj(t− τ)aij(τ) + vi(t) (7)

for i = 1, · · · , Nx where Ns and Nx are the number of sources
and sensors respectively, aij(τ) are the elements of mixing matrix A
at different time lags τ . In time domain the above convolutive mixing
operator can be formulated using matrix notations as follows:

X =

M−1
∑

τ=0

Θτ (S)A
T
τ + V, Θτ (S) = ΞτS (8)

where Θτ (.) is a shift operator which can be implemented by pre-
multiplication of shift matrix Ξτ [10]. As we mentioned before, to
build up a tensor from our measurements we use temporal segmenta-
tion. The segment size must be much greater than maximum number
of lags (M ). In matrix notation we have:

Xk =

M−1
∑

τ=0

ΞτSkA
T
τ + Vk (9)

for all k = 1, . . . ,K where K is the number of segments. Then,
we define our source model similar to that using PARAFAC2 rep-
resented in (6) by replacing Sk = PkHDk in (9) using the same
constraints. Therefore,

Xk =

M−1
∑

τ=0

ΞτPkHDkA
T
τ + Vk, s.t. P

T
k Pk = IR (10)

where IR is R × R identity matrix and the other parameters like
H,Dk, and Aτ are similar to (5). Obviously, the above model is
a generalization of PARAFAC2 and PARAFAC2 model is a special
case of this model for τ = 0. We apply alternating least squares
optimization to estimate the parameters of the model alternatingly.
Our optimization method includes three separate processes to esti-
mate (Pk for k = 1, . . . ,K), (Aτfor τ = 0, . . . ,M − 1) and
(H, Dk for k = 1, . . . ,K). For the first part we need to estimate
the orthonormal Pk matrix with respect to all other fixed parameters
to find best fit of each Xk, however because of having summation for
different lags this problem cannot be considered as a quadratic prob-
lem and normal least square solutions are not helpful to estimate Pk.
Kiers has proposed a general method to convert this type of prob-
lems to a quadratic problem and the solution of the new quadratic
problem is a solution of the original problem too [11]. So, in order
to estimate Pk we apply majorization method. In the next subsection
general solution based on majorization is explained. For the second
part we convert the model into linear model by matrix manipulation
of the lags. Finally, for the third part of our ALS optimization, we
use the PARAFAC optimization method given in (3). Before starting
the optimization process we randomly initialize all the above param-
eters.

3.1. Majorization

The problem of minimizing the trace of a matrix is tackled by means
of its majorization. This is done by using another function which has
a simple quadratic shape whose minimum can be easily found, and
minimization on the majorizing function also minimizes the origi-
nal function. By applying this method a monotonically converging
algorithm for minimizing the matrix trace function iteratively is ob-
tained. Kiers introduced a method to minimize a general function of
a (n× p) matrix Π as follows [11]:

J(Π) = β + trWΠ+

M−1
∑

τ=0

tr
(

ΦτΠΨτΠ
T
)

(11)

where W is a fixed p × n matrix, Φτ a fixed n × n matrix, Ψτ

a fixed p × p matrix, for τ = 0, . . . ,M − 1, Π an unknown n × p
matrix, and β a constant that does not depend on Π. The update of
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Π for minimizing J(Π) is given as [12]:

Π← Π−
(

2

M−1
∑

τ=0

ατ

)−1(

WT +

M−1
∑

τ=0

ΦτΠ
TΨτ +

M−1
∑

τ=0

ΦT
τ ΠΨT

τ

)

(12)

where ατ is a scalar equal or greater than the product of the
largest singular values of Φτ and Ψτ [11].

When there is an orthonormality constraint on Π the solution is
somehow simpler and it can be shown by estimating F using:

F =

(

W +

M−1
∑

τ=0

ΦT
τ ΠΨT

τ +

M−1
∑

τ=0

ΦτΠ
TΨτ − 2ατΠ

T

)

(13)

and then finding nearest orthonormal matrix to F as the estimation
of Π. If by singular value decomposition (SVD) of F , we have F =
PDQT then, the estimation of Π in (12) will change to [12]:

Π← QPT (14)

In the next subsection we use the above majorization concept to
estimate the second part of our ALS optimization procedure.

3.2. Estimation of Pk using majorization

Let’s estimate Pk for k = 1, . . . ,K by keeping all other parameters
of the model fixed. We define the optimization problem for each Pk

separately as:

J(Pk) = ||Xk −

M−1
∑

τ=0

ΞτPkHDkA
T
τ ||

2 (15)

By defining a new variable Gτ

Gτ = HDkA
T
τ (16)

The optimization problem based on majorization is performed as:

J(Pk) = ||Xk −

M−1
∑

τ=0

ΞτPkGτ ||
2

J(Pk) = tr
(

XT
k Xk

)

−

(

2

M−1
∑

τ=0

tr
(

GτX
T
k Ξτ

)

)

Pk+

M−1
∑

τ=0

M−1
∑

γ=0

tr
(

GτG
T
γ PkΞ

T
γ ΞτP

T
k

)

= tr
(

XT
k Xk

)

+ tr

(

−2

M−1
∑

τ=0

(

GτX
T
k Ξτ

)

)

Pk+

M−1
∑

τ=0

M−1
∑

γ=0

tr
(

GτG
T
γ PkΞ

T
γ ΞτP

T
k

)

(17)

Having orthonormality constraint on Pks and comparing this mini-
mization problem with (11), we can easily update each Pk using (13)
and (14).

3.3. Estimating Aτ

Assume Pk, Dk for k = 1, . . . ,K, and H are known. Then to esti-
mate Aτ we can convert

∑M−1
τ=0 to matrix multiplication as follows:

Xk =

[Ξ0PkHDk,Ξ1PkHDk, · · · ,ΞM−1PkHDk]











AT
0

AT
1

...
AT

M−1











(18)
Now, let’s define new variables Zk and A as:

Zk = [Ξ0PkHDk,Ξ1PkHDk, · · · ,ΞT−1PkHDk]

A =











AT
0

AT
1

...
AT

M−1











(19)

For different k values we have Xk = ZkA.
By stacking X1, . . . , XK and Z1, . . . , ZK in two new matrices

we have a set of linear equations. The mixing matrix for different
lags, A, can be estimated using pseudo inverse operation as follows:











X1

X2

...
XK











=











Z1

Z2

...
ZK











A (20)

A =











Z1

Z2

...
ZK











†









X1

X2

...
XK











(21)

Then after rearranging A we have all Aτ of the model.

3.4. Estimation of H and Dk using PARAFAC

For this case we need to estimate PkHDk as part of the main model
which is independent of τ , for each k separately and then we are able
to apply PARAFAC method for estimating H and Dk. Similar to the
solution given in [13] for arbitrary Kτ , L, and Qτ :

vec
(

KτLQ
T
τ

)

= (Kτ ⊗Qτ ) vec (L) (22)

where vec denotes matrix to vector converter operator and⊗ is Kro-
necker product operator. We define new variables Lk,Kτ , and Qτ

as:
Lk = PkHDk,Kτ = Ξτ , Qτ = Aτ (23)

and rewrite our model as:

Xk =
∑M−1

τ=0 ΞτPkHDkA
T
τ

=
∑M−1

τ=0 KτLkQ
T
τ

(24)

Then, the vector formulation for each slab Xk is obtained as follows:

vec (Xk) =

M−1
∑

τ=0

(Kτ ⊗Qτ ) vec (Lk) (25)

Then, Lk can be easily estimated by:
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Correlation Original male Original female
Separated male 0.703 0.041
Separated female 0.0508 0.796

Table 1. Correlation between original and separated sounds
using proposed method.

vec (Lk) =
(

∑M−1
τ=0 (Ξτ ⊗Aτ )

)†

vec (Xk) (26)

After estimation of all Lk, k = 1, ...,K to estimate H and Dk we
can rewrite Lk = PkHDk as Lk = PkHDkA

T s.t. A = IR
and obviously we can fit a PARAFAC2 model to all Lk. However,
from majorization outputs we have Pk at hand and because of this
we must fit a PARAFAC method with identical mixing matrix to all
Wk = PT

k Lk = HDkIR. Using (3) we are able to fit the parameters
by:

H = W(2)((C � IR)
†)T

C = W(3)((H � IR)
†)T

(27)

In this optimization we take the advantage of tensor factorization
concept to estimate Dks using the information about all the segments
for k = 1, ...,K.

4. SIMULATED RESULTS

In this section we evaluated our proposed separation method to sep-
arate two sources from their convolutive mixtures and compare the
results with those of Parra’s method [14]. One male and one female
speech signals sampled at 8000 Hz are chosen for our simulation.
Maximum number of lags to build up their convolutive mixtures is
selected as 8 (M = 8) and the mixing matrices for different lags are
random. To build up the tensor data from the mixtures we used tem-
poral segmentation with segment size of 108 with 8 samples over-
lap. All parameters of the model are randomly initialized and the
algorithm converged after 148 iterations and convergence curve is
shown at Figure 1. The sources can be estimated by stacking non-
overlapped part of Ŝk = PkHDk matrices.
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Fig. 1. Convergence curve for 148 iterations.

The separated sources are subject to delays less than 8 samples.
Table 1 shows the correlation measured between the separated and
original sources.

Correlation Original male Original female
Separated male 0.570 0.337
Separated female 0.091 0.4826

Table 2. Correlation between original and separated sounds
using Parra’s method.

Also, we applied the well known Parra’s frequency domain con-
volutive BSS method [14] to the same convolutive mixture signals
to compare the results. Table 2 shows the correlation measured be-
tween the separated and original sources using Parra’s method.

Unlike in the frequency domain methods there is no permutation
within a block of data. Figure 2 shows the normalized original sig-
nals, the normalized separated signals using the Parra method and
our proposed method, and the mixture signals. The delay between
male and female sounds with respect to their original sources mea-
sured by correlation between the normalized signals at different lags.
The measured delay for male sound was 3 samples and for female 1
sample.
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Fig. 2. Original female and male sounds on top, convolutive
mixtures in the middle, and separated sources for both meth-
ods at the bottom plots.

5. CONCLUSIONS

In this paper a new PARAFAC2 based method is proposed to sep-
arate sources from their convolutive mixtures in time domain. We
defined a generalized PARAFAC2 structure to model convolutive
mixture signals within a tensor model and then we tried to opti-
mize all the model parameters using ALS method. The majoriza-
tion technique of [12] has been followed for solving minimization of
the resulting trace function incorporating Procrustes concepts. The
separated signals by this method are subject to delay and scaling for
each source. To evaluate the performance of the system we used ran-
dom value mixing channels for different lags. The results show the
high performance of the method compared to Parra’s CBSS method
to achieve correlation values of greater than 70 percent between sep-
arated and original signals.
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