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ABSTRACT
Finding the optimal tradeoff in terms of area, delay and en-
ergy consumption which satises a given DSP functionality
is the main objective of hardware and embedded software de-
signers. Signal bit-widths importantly impact these metrics.
Signals with less bits also require operators with smaller area,
shorter critical path and lower energy consumption. In some
applications, these minimal signal bit-widths can vary sig-
nicantly depending on the quantization mode. As a result,
a rounding-based implementation may require smaller min-
imal bit-widths than a truncation-based one and potentially
lead to cheaper system implementations. The optimal quan-
tization mode combination (QMC) can reduce signicantly
the implementation cost compared to a traditional implemen-
tation based on the truncation mode. This has been demon-
strated on different representative kernels. For example, in
the case of a LMS lter, the optimal QMC can reduce up to
46% of the area of an implementation based on truncation.

1. INTRODUCTION
Finding the optimal trade-off in terms of area, delay and en-
ergy consumption which satises a given DSP functionality
is the main objective of hardware and embedded software
designers. Signal�’s bit-widths importantly impact these met-
rics. Signals with less bits also require operators with smaller
area, shorter critical path and inferior energy consumption.
Software implementations can also benet from reduced bit-
widths as long as processors include some hardware support,
such as sub-word parallel data-paths. In that particular case,
the smaller the sub-word the more parallel operations can be
perform simultaneously.

Fixed-point arithmetic typically requires less bits and
simpler operators than oating point arithmetic, resulting in
cheaper implementations. Unfortunately, xed-point arith-
metic introduces an unavoidable quantization error which de-
grades oating-point performances and needs to be carefully
controlled.

Importantly, this quantization error depends on the quan-
tization mode. The latter determines how an w bits signal is
accommodated into w− k bits by removing its k Less Signif-
icant Bits (LSB). Traditional methods are either truncation
or rounding. Truncation simply discards the k LSB. Alterna-
tively, rounding considers the highest of the k LSB to decide
on the increment-by-1 of the resulting w− k signal. At the
operator level, rounding implies more hardware than trunca-
tion. For example, an w×w-bit multiplier with w-bit output
requires an extra w-bit adder in case that rounding is imple-
mented. This comes with an increase in area, delay and en-
ergy consumption. However, rounding introduces a smaller
quantization error than truncation.

An efcient xed-point implementation contains the
minimal signal bit-widths that satisfy a user-dened quan-
tization error constraint. In some applications, these min-
imal signal bit-widths can vary signicantly depending on
the quantization mode. As a result, a rounding-based im-
plementation may require smaller minimal bit-widths than
a truncation-based one. Thus, despite the fact that round-
ing operators are more expensive, they may enable a cheaper
implementation at the system level: they may need smaller
minimum bit-widths to provide the same precision than the
one offered by operators based on truncation. To the best
knowledge of the authors, this trade-off has not been explic-
itly studied in previous works.

In this paper, the opportunities offered by quantization
modes to optimize the design of xed-point systems are an-
alyzed. Representative kernels of relevant applications are
implemented onto an FPGA considering different combina-
tions for the quantization modes. The optimal combination
of the quantization modes can reduce signicantly the im-
plementation cost compared to a traditional implementation
based on the truncation mode. In our experiments, the opti-
mal combination saves up to 46% of the area required by tra-
ditional implementation. The rest of the paper is organized
as follows. In Section 2, the xed-point conversion process
is explained. The computing accuracy according to different
quantization modes is analyzed in Section 3. In Section 4, the
cost function is presented for the three quantization modes.
The experiment results are presented in Section 5. Finally,
Section 6 draws conclusions.

2. FIXED-POINT CONVERSION
The oating-point to xed-point conversion process is made
up of two main steps corresponding to the determination of
the integer part word-length and the optimization of the frac-
tional part word-length.

The rst step of the xed-point conversion process corre-
sponds to the data dynamic range evaluation. These results
are used to determine the integer part word-length which
avoids overows. For linear systems, an analytical approach
such as the L1 or Chebycheff norms can be used. For non-
linear and non-recursive systems, the interval arithmetic can
be considered [4]. For the other systems, an estimation based
on simulation [5] of representative inputs is required.

The second step of the oating-point to xed-point con-
version process determines the fractional part word-length of
each data format. The number of bits for the fractional part
modies the computing accuracy. So, this step must be car-
ried out with an accuracy constraint. It corresponds to an
optimization process under constraints. The optimization is
an iterative process which minimizes an implementation cost

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 542



C(w) under an accuracy constraint SQNRmin where w is the
vector containing the data word-lengths of all variables.

min(C(w)) with SQNR(w)≥ SQNRmin (1)

The optimization process returns the xed point cong-
uration of minimal cost Cmin(w). For software implemen-
tation, the cost can be dened by the execution time and/or
energy consumption of the application whereas for a hard-
ware implementation, architecture area can also be included.
The optimization process requires to evaluate the architecture
cost C(w) and the computation accuracy SQNR(w) dened
through the Signal to Quantization Noise Ratio (SQNR) met-
ric at the output of the system. This metric corresponds to
the ratio between the signal power and the quantization noise
power due to nite precision. In this work, the computation
accuracy is evaluated analytically [8]. At each iteration of
the optimization process, the computation accuracy and the
architecture cost is determined by the analytical method in-
troduced in the next sections. A heuristic algorithm based on
Min + b bits procedure [1] is used to signicantly reduced the
number of iterations required by the optimization process.

3. ACCURACY & QUANTIZATION MODES

The computing accuracy according to different quantization
modes is analyzed in this section. The rst and second or-
der moments of the quantization noise are detailed, and the
analytical model to evaluate the computing accuracy is pre-
sented.

3.1 Quantization noise statistics
Let x, be a xed-point variable with a word-length of w bits.
The word-length of the fractional part is equal to n+ k bits
as presented in gure 1. The quantization process Q() leads
to the variable xQ with a word-length of w− k bits. Let XQ
be the set containing all the values which can be represented
in the format after quantization. Let q, be the quantization
step associated with the data xQ. This term corresponds to
the difference between two consecutive values of XQ and is
equal to the weight of the least signicant bit b−n. The term
= 2−(n+k) is the quantization step associated with the data

x before quantization. For continuous amplitude data, goes
to zero.
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Figure 1: Fixed-point data specication

Let eq, be the quantization error dened as difference be-
tween the data x and xQ. The quantization process can be
modeled as the sum of the data x and the quantization error e q
which is considered to be a uniformly distributed white noise
[10]. This quantization noise is uncorrelated with the signal
and other noise sources. A discrete noise model is used [3].
According to the type of quantization, the noise distribution
will differ. In this work, three different quantization modes
are considered: truncation, conventional rounding and con-
vergent rounding.

3.1.1 Truncation
In the case of truncation, the data x is always rounded towards
the lower value available in the set XQ :

xQ = $x ·q−1% ·q= kq ∀x ∈ [k ·q;(k+ 1)q[ (2)

with $·%, the oor function dened as $x% =
max(n ∈ Z|n ≤ x). The value xQ after quantization is
always lower or equal to the value x before quantization.
Thus, the truncation adds a bias on the quantized signal and
the output quantization error will have a non zero mean.

The Probability Density Function (PDF) of the quantiza-
tion noise eq is given by expression 8 with being the Kro-
necker symbol.

peq(x) =
1
2k

2k−1

j=0
(x− j · ) (3)

3.1.2 Conventional rounding
To improve the precision after the quantization, the rounding
quantization mode can be used. The latter signicantly de-
creases the bias associated with the truncation. This quanti-
zation mode rounds the value x to the nearest value available
in the set XQ as dened below :

xQ =

⌊(
x+

1
2
q
)
·q−1

⌋
·q (4)

The quantization value xQ can also be expressed with the
following equation:

xQ =

{
kq ∀x ∈ [k ·q;(k+ 1

2)q[
(k+ 1)q ∀x ∈ [(k+ 1

2)q;(k+ 1)q] (5)

The midpoint q1/2 = (k+ 1
2)q between kq and (k+ 1)q

is always rounded up to the higher value (k+ 1)q. Thus, the
distribution of the quantization error is not exactly symmet-
rical and a small bias is still present. For this quantization
mode, the PDF is given by the following relation

peq(x) =
1
2k

2k−1−1

j=−2k−1
(x− j. ) (6)

3.1.3 Convergent rounding
To reduce the small bias associated with the conventional
rounding, the convergent rounding can be used. To obtain a
symmetrical quantization error, the specic value q1/2 must
be rounded-up to (k+ 1)q and rounded-down to kq with the
same probability.

The probabilities that a particular bit is 0 or 1 are assumed
to be identical and thus the rounding direction can depend on
the bit b−n value.

xQ =






kq ∀ x ∈ [k.q;(k+ 1
2)q[

(k+ 1)q ∀ x ∈](k+ 1
2 )q;(k+ 1)q]

kq ∀ x= q1/2 and b−n = 0
(k+ 1)q ∀ x= q1/2 and b−n = 1

(7)

For the convergent rounding, the PDF is equal to
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peq(x) = 1
2k

2k−1−1

j=−2k−1+1
(x− j. )

+ 1
2k+1

(
(x− 2k−1 )+ (x+ 2k−1 )

)
(8)

Quantization Truncation Conventional Convergent
mode rounding rounding

Mean q
2 (1−2−k) − q

2 (2
−k) 0

Variance q2
12 (1−2−2k) q2

12 (1−2−2k) q2
12 (1+2−2k+1)

Table 1: Noise statistical parameters

3.2 Noise power
The mean µeq and the variance 2

eq of the quantization error
eq are computed from the PDF. For the three quantization
modes, the results are presented in Table 1. The quantization
noises eq(n) at time n propagate through the different opera-
tors in the system and modify the computing accuracy gen-
erating an output noise ey(n). Each contribution e ′qi(n) of a
quantization noise eqi(n) comes from its propagation through
the system which is characterized by its impulse response
hi(k) which is time-varying in case of non-linear systems.
As explained in [8] the output noise ey(n) is the sum of all
the Ne noise source contributions. Given that the signal and
noise terms are assumed to be uncorrelated, the output noise
power Pb is obtained with expressions 9 and 10 [8].

Pb =
Ne

i=1

Ne

j=1
µeqi µeq j Gi j+

Ne

i=1

2
eqi
G′
i (9)

Gi j =
n→

k=0

n→

m=0
E[hi(k)h j(m)] G′

i =
n→

k=0
E[h2

i (k)] (10)

4. COST FUNCTION
Despite the proposed quantization mode exploration can be
applied to different sorts of implementations, in this work
hardware implementation is considered and the results are
given only for area obtained with spatial implementations. In
this case an operator is instantiated for each operation. For
other implementations or other optimization goals only cost
functions need to be modied. As an example, [2] proposes
time execution and energy consumption cost functions for
software implementations. In the next subsections, the cost
function is presented for the three quantization modes.

4.1 Truncation cost function
Truncation rounding is widely used because of its cheapest
implementation. The k LSB of x are discarded and no sup-
plementary operation is required. Let i be the term den-
ing the kind of operation of oi. The cost c of each opera-
tion oi depends on the kind of operation i and the operand
word-lengths w(i). This cost is obtained from a library of
synthesized operators. The implementation cost is estimated
from the cost of each operation oi. For the truncation, the

global implementation cost CT is expressed with expression
11 where i is the index on the arithmetic operations.

CT (w) =C0(w) =
i
c i(w(i)) (11)

4.2 Conventional rounding cost function
The conventional rounding can be directly implemented from
equation (4) or by using the technique presented in [6]. In
this case, the conventional rounding is obtained by the addi-
tion of x and the value b−n−1.2−n and then the result is trun-
cated on w− k bits. This implementation requires an adder
of w− k bits.

Let w′ be the vector of the data word-length before each
quantization operation. Let k be the vector of the number
of bits eliminated for each quantization operation. These
two vectors are computed from the vector w. The conven-
tional rounding requires a supplementary addition operation
for each quantization operation. For the conventional round-
ing, the global implementation cost CR is expressed with ex-
pression 12 where j is the index on the quantization opera-
tions.

CR(w) =C0(w)+
j
cADD(w

′( j)−k( j)) (12)

4.3 Convergent rounding cost function
The specic value q1/2 has to be detected to modify the com-
putation in this case. For this specic value, the addition of
the data x with the value 2−n−1 has to be done only if the bit
b−n is equal to one.

The alternative to this conditional addition is to add the
value b−n−1.2−n in every case. Then, for the specic value
q1/2, the least signicant bit of the data xQ (b−n) is forced to 0
to obtain an even value. This last operation does not modify
the result when b−n is equal to 1 and discard the previous
addition operation if b−n is equal to 0.

Our implementation of this quantization is based on this
last approach. The convergent rounding requires a supple-
mentary addition operation and an operation (DTC) to detect
the value 2−n−1 and then to force bit b−n to zero. For the con-
vergent rounding (CR), the global implementation cost CCR
is expressed with the following expression

CCR(w) =C0(w)+
j
cADD(w

′( j)−k( j))+ cDTC (k( j))

(13)

5. EXPERIMENTS
Different experiments on representative signal processing
kernels have been conducted to compare the results obtained
with the different quantization mode combinations (QMC).
First, the example of the IIR lter is presented and then the
results obtained for different signal processing kernels are
given. For each quantization operation, the three quantiza-
tion modes are tested. For a given QMC and accuracy con-
straint (SQNRmin), the xed-point conversion is achieved and
the implementation cost is optimized. The implementation
cost Ccx obtained for QMC cx is compared with the cost CT
of a traditional implementation based only on truncation. To
analyze the improvement of this QMC cx, the relative QMC
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gain T
cx of the cost cx compared to the cost CT is computed

with expression 14. Let T
coptim be the relative QMC gain ob-

tained with the combination coptim which leads to the mini-
mal implementation cost.

T
cx =

CT −Ccx
CT

(14)

Let H be a rst order innite impulse response (IIR) l-
ter having x as input and y as output. The expression of the
output y(n) is equal to y(n) = x(n)−a.y(n−1) with |a|< 1.
One noise source eg(n) due to the quantization of the addi-
tion output is considered. Let be a term equal to 0 for the
convergent rounding mode and 1 for the truncation. The ex-
pression of the power Pey of the output quantization noise
ey(n) is as follows

Pey =
q2

4

[
1
3

(
1

1− a2

)
+ .

(
1

1− a

)2
]

(15)
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Figure 2: Output quantization noise level for different values
of the parameters a

The noise level (Pey) is presented in gure 2 for different
values of the parameter a in the case of rounding and trunca-
tion quantization mode. The results show that the difference
of the noise level between the two quantization modes de-
pends of the parameters a value. For a in the range ]− 1;0[,
the impulse response h(n) oscillates between positive and
negative values. The sum of the impulse response terms leads
to a small value in the range [ 1

2 ;1]. Thus, the difference be-
tween the two quantization modes is small. For a in the range
]0;1[, the impulse response is always positive and the sum of
the impulse response terms can lead to a huge value and tends
to innity when a tends to 1. The difference between the two
quantization increases when a tends to 1. To obtain the same
noise power, 1 supplementary bit is required for the trunca-
tion for a in the range [−0.78;0.4], 2 supplementary bits for
a in the range ]0.4;0.82] and 3 bits for a greater than 0.82.

A second order IIR lter has been analyzed. As for the
rst order lter, the noise characteristics depends of the lo-
cation of the lter poles. The case of two complex conjugate
poles ( and ∗) have been considered. The gain between the
noise source and the output depends of the impulse response
of the transfer function between the source and the output.
The impulse response depends of the pole modulus and the
pole argument ( ) as follows

hby(n) = | |n sin((n+ 1) )

sin( )
(16)

The relative QMC gain is presented in gure 3 for the
different pole location inside the unity circle. When is low,
the oscillation frequency of the impulse response envelope is
low. Consequently, the sum of the impulse response terms
can become huge when tends to 1 and | | tends to 1. The
gain associated with the mean depends on the distance be-
tween the poles and the point (1,0). On the results, the fron-
tier between the regions are based on circles having this point
as center. The maximal relative QMC gain is around 35%.

The relative QMC gain T
coptim have been measured for

different DSP kernels and for different accuracy constraints
between 30 dB and 90 dB. For each kernel, the mean value
and the maximal value are reported in Table 2. For the dif-
ferent kernels, the maximal value of T

coptim is between 0.1%
and 46.3% and the mean value for the different accuracy con-
straints is between 0% and 35.6%. The results show the op-
portunities offered by quantization modes to optimize the de-
sign of xed-point systems. The optimal combination of the
quantization modes can reduce signicantly the implementa-
tion cost compared to a traditional implementation based on
the truncation mode. The results show that the gain is kernel
dependent and even for a given kernel varies depending on
parameters such as the coeffcient values for lter, the num-
ber of taps for the LMS or the number of points for the FFT.

Application max
(

T
coptim

)
− (%) mean

(
T
coptim

)
− (%)

FIR 16 8.9 5.5
IIR 2 ( = 0.99 = 0.003) 36.6 25.2
IIR 2 ( = 0.5 = 3) 0.1 0.01
FFT 128 30.8 23.9
FFT 1024 25.1 21.5
Voltera lter 7.7 4.7
LMS 32 46.3 35.6
LMS 128 44.2 29.9
APA 45 35.2
Sphere decoder 25.5 18.3

Table 2: Maximal and mean value of the optimal relative
QMC gain T

coptim for different kernels

In the particular case of the IIR lter, the optimal QMC
depends on the location of the lter poles. The case of a sec-
ond order IIR lter (IIR 2) with two complex conjugate poles
( and ∗) has been considered. The gain Gi j associated to
the mean between the noise source and the output depends on
the impulse response hi obtained from the pole modulus and
argument ( ). When is low, the oscillation frequency of the
impulse response envelope is low. Consequently, the sum of
the impulse response terms can become huge when tends to
0 and | | tends to 1. The mean relative QMC gain is around
25.2% for the case of = 0.99 and = 0.003 and is null for
the case of = 0.5 and = 3. In this last case, the truncation
solution leads to a cheaper implementation. In conclusion,
for low-pass lter, the rounding modes will provide better
results and for high-pass lter, the truncation mode will be
better.

Figure 4 shows the relative QMC gain T
cx for a 128 sized

LMS algorithm obtained for six different QMC cx and differ-
ent accuracy constraints SQNRmin. Each QMC cx is dened
by a triplet (Q1,Q2,Q3) dening the quantization modeQ for
the input data, for the coefcients and for the lter output.
The terms T , R and CR stand for Truncation, conventional
Rounding and Convergent Rounding, respectively. The rela-
tive QMC gain depends on the accuracy constraint. For the
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Figure 3: Relative QMC gain for different values of the poles

optimal QMC, the gain varies from 44% to 22% for an ac-
curacy constraint varying from 30 dB to 90 dB. The op-
timal QMC is obtained with the classical rounding for the
input, the convergent rounding for the coefcients and the
truncation for the lter output in all the SQNR. As shown
in the output noise power expression, presented in [7], the
noise due to coefcient quantization is the dominant source
of noise. Moreover, the amplication gain Gi j associated
with the mean of the coefcient quantization noise is very
high due to the recursion inside this application. Thus, only
the convergent rounding remove the effect of the mean of the
coefcient quantization noise. Thus, specic LMS instruc-
tions, like in the C5000 DSP, incorporate automatically the
rounding mode for coefcient update computation [9]. For
the lter part, the effect of the mean of the output quantiza-
tion noise is limited. Thus, the truncation leads to the best
result because it reduces the implementation cost.
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Figure 4: Relative QMC gain T
cx for different combinations

cx for a 128 sized LMS

6. CONCLUSION
A method to evaluate the impact of different quantization
modes on the area of parallel DSP implementations was pre-
sented. The contribution of the different quantization modes
on the output noise power depends on the DSP functionality.
Quantization modes which imply a more expensive opera-
tor can lead to cheaper system implementations. This has
been demonstrated on different representative kernels with
different results. An optimal combination of the quantiza-

tion modes can reduce signicantly the implementation cost
compared to a classical approach with truncation mode. Our
experiments show that the implementation cost can be re-
duced up to 46%. The results underline the opportunities
offered by an optimal combination of the quantization mode.
They motivate the need for techniques, as the one described
here, that explore the different quantization alternatives to
select the optimal xed-point implementation. The optimal
combination of the quantization mode depends on the accu-
racy constraint and the kernel parameters (size, coefcients
values, . . . ) and a general rule can not be established. Thus
for each application with its specic parameters, the different
quantization mode combinations have to be tested.
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