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ABSTRACT
We propose a new method to adapt a beamformer under rever-
berant and background noise environments. Several adapta-
tion approaches have two stages consisting of time-frequency
masking and an update of the beamformer. However, in these
approaches, the adaptation error is large under such environ-
ments because the sparseness assumption does not hold. We
focus on the premise that the adaptation error can be reduced
by avoiding the degradation caused by the overlap between
sources in time-frequency bins. Therefore, we derive a for-
mula to update the beamformer in cases when overlap exists
by using soft masking. The proposed method controls adap-
tation with soft masking to avoid the degradation caused by
the overlap and reduces the adaptation error. Experimental re-
sults under a reverberant and background noise environment
indicate that the proposed method improves the performance.

1. INTRODUCTION

Noise reduction techniques based on a microphone array have
been intensively studied in recent years due to their many ap-
plications, for example, in hands-free speech recognition and
in teleconference systems. These techniques are categorized
into two classes: time-frequency domain masking approaches
and beamforming approaches. The former class can be used
in both underdetermined cases and determined cases. The lat-
ter class can be used in the determined cases.

Time-frequency domain masking approaches such as bi-
nary masking [1] separate the desired signal by Direction of
Arrival (DOA) estimation for each time-frequency bin. These
approaches make use of the sparseness assumption, which in-
volves the characteristics of speech where only one source or
zero sources are active in each time-frequency bin. Therefore,
the performance degrades significantly under practical rever-
berant or background noise environments because the reflec-
tion and noise components result in overlap between sources
in each bin, and thus, the sparseness assumption is not true.
Under such environments, binary masking leads to musical
noise as well as to degraded performance. We can allevi-
ate this problem by using several soft masking approaches
[2, 3] by modeling the overlap. These approaches do not solve
the problem completely, but they improve the performance in
practical environments.

Beamforming approaches such as Linearly-Constrained
Minimum Variance (LCMV) [4], can potentially reduce in-
terference while keeping the desired signal undistorted if we

know the transfer characteristics such as the steering vector
and correlation matrix of sound sources. Therefore, we need
to adapt the beamformer to these transfer characteristics. To
adapt the beamformer, we need to know which components
are those of the desired source or the interference in the in-
put signals. Several methods employ binary masking and
beamforming in the time-frequency domain [5, 6, 7] to solve
this problem. These binary masking and beamforming ap-
proaches (BM-BF) use binary masking in the adaptation pro-
cess and beamforming in the final separation. In the adap-
tation process, we separate each source roughly using binary
masking and calculate the beamformer from the roughly sep-
arated signals. In the final separation, we separate the desired
signal by beamforming. BM-BF overcomes the difficulty of
adaptation of beamforming. Moreover, BM-BF does not suf-
fer from musical noise. However, the performance of BM-BF
is degraded by reverberation and background noise because it
employs the sparseness assumption of binary masking.

In this paper, we propose a method to adapt the beam-
former in order to improve the performance in reverberant
and background noise environments. The development of
this method was motivated by the robustness of soft mask-
ing against reverberation and background noise. We focus
on the premise that the adaptation error is reduced by avoid-
ing the degradation caused by the overlap of sources in time-
frequency bins. We model the overlap and formulate an up-
dating formula of the beamformer for cases when overlap ex-
ists by using soft masking. This soft masking and beamform-
ing approach (SM-BF) improves the performance in reverber-
ant and background noise environments because it controls
the averaging weight based on the probability that the desired
component is active, which can be calculated from the mod-
eled overlap. In section 5, our experimental results under a
reverberant and background noise environment show that the
proposed method improves the performance.

2. PROBLEM STATEMENTS AND NOTATION

We observe N sources with M microphones in a reverberant
and background noise environment. This situation is modeled
by the convolutive mixing model

xm(t) =
N−1

∑
i=0

∞

∑
l=0

am,i(l)si(t − l)+dm(t), (1)

where xm(t) is the signal observed by the m-th microphone, t
is the time index, si(t) is the signal of the i-th source, am,i(t)
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represents the impulse response from the i-th source to the
m-th microphone, and dm(t) is the background noise of the
m-th microphone. Now, we define the 0-th source as the de-
sired source and the i-th source (i ̸= 0) as the interference.
The desired source exists in a given area of source directions
Λdes, and the interference sources do not exist in Λdes. This
paper employs a time-frequency domain approach. Using a
short-time Fourier transform (STFT), the time-frequency rep-
resentation is given by

X( f ,τ) =
N−1

∑
i=0

Ai( f )Si( f ,τ)+D( f ,τ), (2)

where f is the frequency bin index, τ is the time-frame in-
dex of the STFT, X( f ,τ) = [X0, · · · ,XM−1]

T , Xm( f ,τ) is the
STFT of xm(t), Ai( f ) = [A0,i, · · · ,AM−1,i]

T , Am,i( f ) is the
STFT of am,i(t), Si( f ,τ) is the STFT of si(t), D( f ,τ) =
[D0, · · · ,DM−1]

T , and Dm( f ) is the STFT of dm(t). Our goal
is to obtain the estimate of S0( f ,τ), i.e., Y ( f ,τ) by calculation
from X( f ,τ). This paper employs beamforming

Y ( f ,τ) =WH( f )X( f ,τ), (3)

and we present an adaptation method of the beamformer W=

[W0, · · · ,WM−1]
T .

We explain the sparseness of sources in the time-
frequency domain. The sparseness assumption means that
for the i-th source, the power of which is the maximum in
( f ,τ) (source i is active in ( f ,τ)), the power of Ni( f ,τ) ,
∑N−1

k=0,k ̸=iAk( f )Sk( f ,τ)+D( f ,τ) is sufficiently small, i.e.,

X( f ,τ)≈Ai( f )Si( f ,τ). (4)

This assumption is widely employed for solving the under-
determined problem. However, the assumption cannot hold
under reverberant and background noise environments.

3. BINARY MASKING-BASED ADAPTATION
CONTROL

We show a conventional adaptation control method of BM-
BF [5]. First, we estimate the direction index of each time-
frequency j( f ,τ) by using a DOA estimation method in
each time-frequency, for example, SPIRE [8] or MDSBF [5].
Next, we separate the desired component and the interference
roughly by using binary masking.

X̂des( f ,τ) =
{

X( f ,τ) if j( f ,τ) ∈ Λdes,
0 otherwise. (5)

X̂int( f ,τ) =
{

0 if j( f ,τ) ∈ Λdes,
X( f ,τ) otherwise. (6)

Then we estimate the steering vector of the desired source and
the correlation matrix of the interference R on the sparseness
assumption.

Â0( f ) =

⟨
X̂des( f ,τ)

∣∣X̂des0( f ,τ)
∣∣

|Xdes( f ,τ)| X̂des0( f ,τ)

⟩
(7)

R( f ) =
⟨
Xint( f ,τ)XH

int( f ,τ)
⟩

(8)

where Â0 is the estimated steering vector of the desired
source, R is the estimated correlation matrix of the interfer-
ence, X̂des0 is the signal of the 0-th microphone of X̂des, and
⟨·⟩ is the time average operator. Finally, we calculate the Frost
beamformer [4],

W( f ) =
R−1( f )Â0( f )

Â0( f )HR−1( f )Â0( f )
. (9)

Under reverberant and background noise environments, the
performance of binary masking is degraded because of the
overlap in the pre-adaptation process, and then the beam-
former W( f ) also degrades.

4. SOFT MASKING-BASED ADAPTATION
CONTROL

We model the overlap that leads to the degradation in
the adaptation process. We do not discard the sparseness
assumption completely, and assume a Gaussian distribu-
tion for Ni( f ,τ) such that the i-th source is active, i.e.,
N (0,σ2( f )Σ( f )) where σ2( f ) is a variance parameter and
Σ( f ) is a correlation matrix divided by σ2( f ) in the reverber-
ant sound field model [9],

Σ( f ) =


1 γ0,1 · · · γ0,M−1

γ1,0 1 · · · γ1,M−1
...

...
. . .

...
γM−1,0 γM−1,1 · · · 1

 (10)

where γm,n = sinc(2π f dm,n/c) where dm,n is the distance be-
tween the m-th microphone and the n-th microphone, and c is
the sound velocity. Therefore, the pdf of X( f ,τ) given that i
is active is given by:

p(X( f ,τ)|σ2( f ),Ai( f ),Si( f ,τ))

=
1

(2πσ 2)M/2 |Σ|1/2

exp
{
− 1

2σ2 (X−AiSi)
H Σ−1 (X−AiSi)

}
(11)

We need to estimate Ai( f ) from the input signals X( f ,τ) to
adapt the beamformer by (9). This is equivalent to the GMM
parameter estimation with missing data because we do not
know which source i is active. We can employ the EM algo-
rithm for maximum likelihood estimation with missing data
like this. The Q function Q(Θ;Θ(t)) of the EM algorithm is
given by:

Q(Θ;Θ(t)) = ∑
f ,τ,i

µ(t)
i ( f ,τ) logri p(X|i,Θ) (12)

µ(t)
i ( f ,τ) =

r(t)i p
(
X|i,Θ(t)

)
∑N−1

k=0 r(t)k p
(
X|k,Θ(t)

) (13)

N−1

∑
i=0

r(t)i = 1 (14)
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where (t) represents the number of iterations,

Θ= (σ2,(S0, · · · ,SN),(A0, · · · ,AN),ri), (15)

and ri is an a priori probability that the i-th source is active.
We can estimate Ai by using the Lagrange multiplier method,
namely ∂J

∂AH
i
= 0, where J = Q+ λ (∑N

i=0 ri − 1). The esti-
mated Ai with normalized norm and phase is given by:

Âi ∼ ∑
τ

µi( f ,τ)A∗
0,iS

∗
i X( f ,τ)

≈ ∑
τ

µi( f ,τ)
X( f ,τ) |X0( f ,τ)|
|X( f ,τ)|X0( f ,τ)

, (16)

where X0( f ,τ) is the signal of the 0-th microphone of
X( f ,τ). Therefore, Â0( f ) and R( f ) are updated for each
block of T frames as follows:

Â0( f ) =
⟨

µ0( f ,τ)
X( f ,τ) |X0( f ,τ)|
|X( f ,τ)|X0( f ,τ)

⟩
(17)

R( f ) =
⟨
(1−µ0( f ,τ))2X( f ,τ)XH( f ,τ)

⟩
(18)

According to (17) and (18), we can use µi( f ,τ) as the averag-
ing weight in the adaptation process of Â0( f ) and R( f ), and
can compute W from these estimated Â0 and R according to
(9).

To calculate (17) and (18), we need µ0( f ,τ). We iterate
EM steps, i.e., we estimate µi( f ,τ) with (13) and update the
other parameters of Θ as follows:

Ŝi =
ÂH

i Σ−1X( f ,τ)
ÂH

i Σ−1Âi
(19)

r(t+1)
i =

∑ f ,τ µ(t)
i ( f ,τ)

∑ f ,τ,i µ(t)
i ( f ,τ)

(20)

(σ2)(t+1)( f ) =
1

MT ∑
τ,i

µ(t)
i ( f ,τ)

(
X− ÂiŜi

)H

×Σ−1 (X− ÂiŜi
)

(21)

As a result, in each block for T frames, the proposed method
is applied to calculate (19), iterate (13), (20), and (21) until
convergence, and finally to update (17), (18), and (9).

The iteration process of the proposed method is es-
sentially equivalent to an extension to M > 2 of 2ch EM
algorithm-based soft masking [3]. Therefore, we can call the
proposed method the soft masking-based adaptation control
method or the soft masking and beamforming approach (SM-
BF). If the sparseness assumption is true, µi( f ,τ) is near 0
or 1; i.e., the proposed method is equivalent to BM-BF ex-
plained in section 3. Otherwise, we use µi( f ,τ) as the aver-
aging weight in the adaptation of Â0( f ) and R( f ), and avoid
the estimation error of Â0( f ) and R( f ) in time-frequency bins
where the power of Ni is large, and also avoid the degradation
of the beamformer.

r

θ

Desired source

Interference
30°

Simulated 

background noise

…

…

Microphones

θ=60°

θ=180°

θ=-90°

(a) Location of the loudspeakers
15mm20mm45mm 15mm

20mm

32mm

10mm

(b) Microphone array

Fig. 1. Experimental setup. Here, r stands for the distance
between the loudspeakers and the microphone array, and θ is
the direction of interference.

5. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method under
reverberant and background noise environments. The signals
for evaluation were simulated by convolution of source sig-
nals with the impulse responses which were recorded for each
location of the loudspeaker in a reverberant room. The rever-
beration time was about 400 ms. The impulse responses and
source signals were recorded at a sampling rate of 48 kHz and
then downsampled to 16 kHz. The desired source signal was
human speech. The length of the signals was 18 s. The simu-
lation was done with the setup illustrated in Fig. 1(a), using a
microphone array consisting of eight microphones, as shown
in Fig. 1(b). The desired source was configured in front, and
the interference was configured at rm distance from the mi-
crophone array and the azimuth θ , where r ∈ {1m,3m} and
θ ∈ {180◦,−90◦,60◦}. Λdes was set to be [−30◦,30◦] We
made the background noise by mixing all the signals for each
direction. The desired source for the interference power ra-
tio was set to be about 0 dB, and the desired source for the
background noise power ratio was set to be about 10 dB. The
number of sources N that the proposed method used was set
at five.

First, in Fig. 2, we show an example of phase error of
ϕ0,1( f ) for the adaptation approach based on binary mask-
ing and the proposed one based on soft masking. ϕm,n( f ) is
the m-th row, n-th column component of the estimated cor-
relation matrix R( f ). “BM-BF” is the adaptation approach
based on binary masking that is explained in section 3, and
“SM-BF” is the proposed adaptation approach based on soft
masking. The error is the difference between the phase of
ϕ0,1( f ) estimated by adaptation of “BM-BF” or “SM-BF”
and the ideal phase of ϕ0,1( f ) estimated by adaptation of
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Fig. 2. Examples of phase error of ϕ0,1( f ) for BM-BF and
SM-BF, where ϕ0,1( f ) is the 0-th row, 1-th column compo-
nent of the estimated correlation matrix R( f ).

R( f ) =
⟨
X( f ,τ)XH( f ,τ)

⟩
under the condition where only

the interference and the background noise exist during the
whole time. This result shows that the estimation error of the
correlation matrix of “SM-BF” is lower than that of “BM-BF”
under reverberant and background noise environments.

Next, we compared the separation performance of the pro-
posed method with two other methods: the binary masking
and beamforming approach and the soft masking approach
[3]. The measurements were Noise Reduction Rate (NRR)
and Perceptual Evaluation of Speech Quality (PESQ) [10].

NRR = 10log10
⟨(x0(t)−xdes0(t))

2⟩
⟨(y(t)−xdes0(t))

2⟩ , where y is the output signal

of the final separation by the beamformer, and xdes0 is the de-
sired component in the input signal of the 0th microphone.
Fig. 3 shows example waveforms and spectrograms of the
output signals. Tab. 1 gives the NRR and PESQ of each
method. “BM-BF” is the binary masking and beamforming
approach. “SM” is the extension to M > 2 of soft masking [3].
“SM-BF” is the soft masking and beamforming approach.

In Fig. 3, the residual noise of “SM-BF” was less than
that of “BM-BF.” NRR of “SM-BF” was higher than that
of “BM-BF” under most conditions, “SM-BF” outperformed
“BM-BF” under all the conditions in PESQ. The performance
of “BM-BF” was low under the noisy and reverberant envi-
ronment of these experiments. In particular, “BM-BF” suf-
fered from reverberation when the distance was large. Based
on these results, we can infer that the proposed method re-
duced the estimation error of the correlation matrix and the
steering vector, and the separation performance of the pro-
posed method was also superior to that of “BM-BF” under
reverberant and background noise environments. In Fig. 3,
the residual noise of “SM” was less than that of “BM-BF”
and “SM-BF.” However, as the spectrogram of “SM” shows,
the output signals of “SM” contained some musical noise and
were more distorted than “BM-BF” and “SM-BF.” NRR of
“SM-BF” was higher than or equaled to that of “SM” under
all the conditions, and “SM-BF” outperformed “SM” under
all the conditions both in PESQ. The musical noise and the
distortion are essential problems of time-frequency domain
masking approaches under background noise and reverberant
environments. We could not find any musical noise in the out-
put signals of “BM-BF” or “SM-BF” because the final sepa-

ration process of these methods is beamforming.

6. CONCLUSION

We proposed a method to adapt a beamformer under rever-
berant and background noise environments. We focused on
the premise that the adaptation error can be reduced by avoid-
ing the degradation caused by the overlap between sources in
time-frequency bins under reverberant and background noise
environments, and we derived a formula to update the beam-
former in cases when overlap exists by using soft masking.
The proposed method controls adaptation with soft masking
to avoid the degradation caused by the overlap and reduces the
adaptation error of the correlation matrix and the steering vec-
tor. Our experimental results under a reverberant and back-
ground noise environment showed that the proposed method
outperforms other conventional methods.
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Fig. 3. Example waveforms and spectrograms.

Table 1. Evaluation results.
(a) NRR (dB)

Interference Method
r θ BM-BF SM SM-BF

W
hi

te
no

is
e 1m

180◦ 5.5 6.3 8.7
−90◦ 5.5 6.1 9.2

60◦ 6.6 5.2 6.0

3m
180◦ 3.3 5.0 6.0
−90◦ 3.4 3.5 4.6

60◦ 3.9 3.5 5.2

B
ab

bl
e

no
is

e

1m
180◦ 4.1 5.8 6.9
−90◦ 2.1 4.6 5.6

60◦ 3.3 5.2 6.7

3m
180◦ 2.7 4.3 4.3
−90◦ 1.4 3.6 3.6

60◦ 1.4 3.3 4.0

(b) PESQ
Interference Method

r θ Input BM-BF SM SM-BF

W
hi

te
no

is
e 1m

180◦ 1.78 2.29 2.38 2.60
−90◦ 1.77 2.40 2.43 2.68

60◦ 1.83 2.47 2.42 2.60

3m
180◦ 1.86 2.09 2.12 2.22
−90◦ 1.81 2.08 2.00 2.29

60◦ 1.86 2.15 2.12 2.29

B
ab

bl
e

no
is

e

1m
180◦ 1.65 2.33 2.41 2.55
−90◦ 1.64 2.33 2.25 2.56

60◦ 1.63 2.35 2.29 2.57

3m
180◦ 1.71 2.11 2.21 2.25
−90◦ 1.70 2.11 2.14 2.26

60◦ 1.71 2.10 2.08 2.32
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