
POLYNOMIAL-BASED DIGITAL FILTERS AS PROTOTYPE FILTERS IN DFT 
MODULATED FILTER BANKS 
1Djordje Babic,  and 2Heinz G. Göckler 

1School of Computing, University Union,  
Knez Mihailova 6/VI, 11000 Belgrade, Serbia 

phone: +381112627613, fax: +381112623287, email: djbabic@raf.edu.rs 
2Digital Signal Processing Group, Faculty of Electrical Engineering and Information Sciences,  

Ruhr-Universität, 44780 Bochum, Germany. 
phone: +49719163792, fax: +492343202869, email: goeckler@nt.rub.de 

 

ABSTRACT 
In this paper, we investigate the possibility to use polyno-
mial-based digital FIR filters as prototype filters in DFT and 
cosine modulated filter banks. In order to apply the FIR filter 
with piecewise polynomial response as prototype filter in the 
filter bank, it is beneficial to find expressions for polyphase 
components of the filter. In the paper it is shown that it is 
possible to construct the two following polyphase decomposi-
tions of polynomial-based digital filters for implementation; 
(i) polyphase decomposition based on the prolonged Farrow 
structure, and (ii) polyphase decomposition based on the 
transposed Farrow structure. The paper shows that both 
polyphase structures have the same multiplication rate, while 
the polyphase decomposition based on the prolonged Farrow 
structure has a considerable smaller number of multipliers. 
Both structures are equivalent in terms of filter performance 
in the frequency domain, and can be used as prototype filter 
in DFT and cosine modulated filter bank.  
 

1. INTRODUCTION 

Among various classes of uniform multi-channel filter 
banks, cosine modulated and complex modulated filter 
banks become very popular in many applications due to the 
following two main reasons [1], [2]. First, these banks can 
be generated using a single prototype finite-impulse re-
sponse (FIR) filter by exploiting a proper transformation, 
enabling one to simultaneously implement all the filters in 
the analysis and synthesis bank. This leads to efficient im-
plementation structures compared to the case where each 
filter in the analysis and synthesis part is separately realized. 
Second, the overall synthesis can concentrate on optimizing 
only the prototype filter, making the design easier and more 
straightforward. As has been pointed out in [2], the same 
prototype filter only differently scaled can be used for both 
aforementioned types of filter banks. Due to this fact, this 
paper concentrates only on designing complex modulated 
filter banks.  

The main drawback of FIR filters is a higher number of 
multipliers needed in a conventional implementation when a 
narrow transition band is required [3]. The dominant reason 

is the fact that the filter order of an FIR filter is roughly in-
versely proportional to transition bandwidth. An efficient 
approach to overcome the above-mentioned cost problem is 
to synthesize linear-phase FIR filters so that their impulse 
responses are piecewise approximated by polynomials, and 
their implementation applies efficient structures [4]–[10]. 
The arithmetic complexity of these filters is proportional to 
the number of impulse-response pieces N and the order M of 
the polynomials rather than to the actual filter order.  

This paper shows that it is possible to perform polyphase 
decompositions of polynomial-based digital filters. We have 
found the two following polyphase decompositions: poly-
phase decomposition based on the prolonged Farrow struc-
ture, and polyphase decomposition based on the transposed 
Farrow structure. This paper also shows that both polyphase 
structures have the same multiplication rate, while the poly-
phase decomposition based on the prolonged Farrow struc-
ture has considerable smaller number of embodies multipli-
ers. Further, we show that a polynomial-based digital filter 
can be used as a prototype filter in a polyphase modulated 
filter bank.  

2. FIR FILTER WITH PIECEWISE 
POLYNOMIAL IMPULSE RESPONSE 

In the direct form implementation of FIR filters, each multi-
plier coefficient determines the value of one impulse re-
sponse sample independently of the other samples. How-
ever, in practical frequency selective filters there is a rela-
tively strong correlation between neighbouring impulse re-
sponse values. By developing structures that exploit this 
correlation, the number of multipliers in the implementation 
can be significantly reduced [8]. 

An efficient approach to exploit the above-mentioned 
correlation is to synthesize a linear-phase FIR filter so that its 
impulse response is approximated by N polynomial segments 
of order M [8], [9]. It can be shown that any FIR filter trans-
fer function of order NFIR=NL-1 is expressible as 

  ∑
=

=
M

m
m

L
m zFzCzH

0
)()()( . (1) 

provided that Fm(z) is properly selected. Here the length N 
impulse responses Cm(zL) are sparse with only every Lth sam-
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ple being nonzero. The basis filter Fm(z) can be selected in 
such manner that the overall impulse response can be divided 
into N blocks of L samples, and in each block the impulse 
responses are polynomials of the relatively low order M.  

Let the transfer function of a symmetric FIR filter be 

  i
FIRN

i
zihzH −

=
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)()( , (2) 

where NFIR=NL-1. Based on the above discussion, the im-
pulse response can be expressed as [8], [9] 
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In general fm(i) is an mth order polynomial in i. Further, fm(i) 
is symmetric for m even and achieves the value of one both 
for i=0 and i=L-1. The basis FIR filters Fm(z) are depicted in 
Fig.1 for m=0, 1, 2 and 3. For m odd, fm(i) is anti-symmetric 
and achieves the value of minus one at i=0, and one at i=L-1. 
Alternatively and using (3) – (5), h(i) can be rewritten as 
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The corresponding transfer function can be expressed as 
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The generation of the impulse response of the overall filter 
H(z) is illustrated in Fig. 2, where there are four polynomial 
segments (N=4), a polynomial order of M=3, and L=16 taps 
per segment. The frequency response of the filter can be de-
termined as [8], [9]: 
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Since all the basis filters Fm(z) are symmetric for m even, and 
anti-symmetric for m odd with respect to (L-1)/2, the fre-
quency response of the basis filter Fm(z) can be expressed in 
terms of the constant delay and the zero-phase frequency 
response as we suppose that L is even. However, the above 
relations (6)-(9) for the impulse response can be represented 
in matrix form as [10]: 
     )/()/()( NiiNiih −⋅= FC , (12) 
Here C(n)= [c0(n) c1(n)… cM(n)] is a vector of polynomial 
coefficients of the polynomial n, and F(i) is a vector of the 
basis filter coefficients, i.e. F(i)=[f0(i) f1(i)… fM(i)]T. If h is a 
vector of FIR filter coefficients, then we can express it as: 
  FCh ˆ⋅= , (13) 
where vector C=[ C(0) C(1)… C(N)], and F is a matrix of 
the following form 
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with F= [ F(0) F(1)… F(L)]. If the FIR filter order is NFIR, 
and if the impulse response is divided into N segments of L 
taps, and polynomial order is M, then length of vector C is 
N(M+1), and matrix F has N(M+1) rows and NL= NFIR+1 
columns. Using transformation (13), it is possible to deal 

0 5 10 15 20 25 30 35 40 45
−1

0

1

0 5 10 15 20 25 30 35 40 45
−1

0

1

0 5 10 15 20 25 30 35 40 45
−1

0

1

0 5 10 15 20 25 30 35 40 45
−1

0

1

(a)

(b)

(c)

(d)

 
Figure 1 – Basis FIR filters Fm(z) for (a) m = 0, (b) m = 1, (c) m = 2, 

and (d) m = 3. The basis filter is symmetric for even m and anti-
symmetric for odd m. 
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Figure 2 – Construction of the overall impulse response h(n) for 
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with the piecewise polynomial filters as ordinary FIR filters 
with special properties. This fact and the transformation (13) 
will be exploited for the filter design. 

3. EFFICIENT IMPLEMENTATIONS OF FIR 
FILTERS WITH PIECEWISE IMPULSE 

RESPONSES AND THE FARROW STRUCTURE 

In this paragraph we consider efficient implementation 
structures for FIR filters with piecewise polynomial impulse 
responses both for non-decimating and decimation filters. 

If a narrowband FIR filter with a piecewise polynomial 
impulse response is used in applications where the input 
sampling frequency is not changed, it is beneficial to use 
efficient implementation structures [8], [9]. These structures 
exploit the (anti-)symmetry properties of the basis filters 
Fm(z) and their well defined impulse responses (see Fig. 1) 
and, thus, significantly reduce the overall number of multi-
plications compared to that of conventional FIR implementa-
tions. The structure consists of M+1 FIR branch filters 
Cm(zL). The impulse responses of these branch filters are 
sparse with every Lth sample being nonzero, and altogether 
there are N nonzero filter taps in each branch filter. The role 
of basis FIR filters Fm(z) is to fill in missing samples. The 
filters Fm(z) are implemented using recursive relations, re-
ducing number of multipliers [9].  

If such a narrowband FIR filter with piecewise polyno-
mial impulse response is used in applications where the input 
sampling frequency is decreased (the main conclusions are 
likewise valid for the dual interpolation case), the resulting 
implementation is based on the Farrow structure, the trans-
posed Farrow or the prolonged Farrow structure [6], [7]. The 
choice of implementation depends on the overall sampling 

rate conversion factor R=Fin/Fout. In case of a decimation 
factor of the form L/K, where L is the number of taps per 
polynomial segment and K an arbitrary positive integer 
(K<L), the transposed Farrow structure [7] represents the 
most suitable implementation. We will use this fact in order 
to define FIR filters with piecewise polynomial impulse re-
sponses as prototype filter for DFT modulated filter banks 
decimating by L.  

4. FIR FILTERS WITH PIECEWISE 
POLYNOMIAL IMPULSE RESPONSES AS 

PROTOTYPE FILTERS IN DFT MODULATED 
FILTER BANKS 

In order to apply the FIR filter with piecewise polynomial 
impulse response as a DFT filter bank prototype filter, it is 
beneficial to find expressions for polyphase components of 
the filter [1]. When decimating by factor of K, the first step 
is to express the overall transfer function as 
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The transfer function is a sum of K branch filters, with the 
transfer functions 
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If it is required that the number of polyphase components K 
is equal to the number of samples per polynomial segment 
L, i.e. K=L then we can write: 
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A single nth tap in the kth polyphase branch can be ex-
pressed as [10], [11]: 
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Equation (15) can be rewritten in the following form 
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and the polyphase branch accordingly 
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Based on the above equations, it is possible to construct the 
two following polyphase decompositions for implementa-
tion: (i) polyphase decomposition based on the prolonged 
Farrow structure, and (ii) polyphase decomposition based on 
the transposed Farrow structure. 

The polyphase decomposition based on the prolonged 
Farrow structure is shown in Fig. 4. As it can be seen, this 
structure has M+1 branch filters Cm(zL), as explained in 
Chapter 3 and in (18)-(20), operating at the high input sam-
pling rate Fin. The branch filters Cm(zL) are followed by the 
network of the M+1 basis filters Fm(z), which are decom-
posed into L polyphase branches and are operated at low 
output sampling rate Fout. In fact, each filter Fm(z) has only 
one tap in each polyphase branch. Furthermore, filter F0(z) 
has all taps equal to unity, while all others have very simple 
coefficients that can be realized with a small number of bits 
each. The total implementation cost of the structure can be 
expressed in terms of the multiplication rate, which depends 
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Figure 3 – Polyphase complex modulated filter bank; (a) analysis 
part, and (b) synthesis part. 
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on the overall number of multipliers and the respective mul-
tiplier clock. The overall number of coefficients of this struc-
ture is N(M+1)+LM. The multiplication rate of the polyphase 
decomposition based on the prolonged Farrow structure can 
be expressed as: 
  outinPF LMFFMNS ++= )1(   (21) 

The polyphase decomposition based on the transposed 
Farrow structure is obtained from previous structure by 
transposition, using noble identities and shifting all opera-
tions to the low output sampling rate. A single kth polyphase 
branch, Hk(z) in Fig 3, is shown in Fig. 5. One can observe 
that there is a transposed Farrow structure replicated in each 
polyphase branch. The transposed Farrow structure consists 
of M+1 branch filters Cm(z), with each branch filter multi-
plied by the corresponding tap of basis filter fm(i). The overall 
number of coefficients for this structure is L[N(M+1)+M]. 
The multiplication rate for the polyphase decomposition 
based on the transposed Farrow structure is given by: 
  ].)1([ LMMLNFS outTF ++=   (22) 
By comparing SPF of (21) and STF of (22), we can conclude 
that both polyphase structures have the same multiplication 
rates, since Fin=LFout, while the polyphase decomposition 
based on the prolonged Farrow structure has a considerably 
smaller number of multipliers. Both structures are equivalent 
in terms of filter performance in the frequency domain. 

5. DESIGN EXAMPLES 

Let us now consider the properties of a complex modulated 
16-channel filter bank, thus K=L=16. For the prototype fil-
ter, we will use a polynomial-based filter having N=8 poly-
nomial segments, with polynomial order M=5. The polyno-
mial-based filter is optimised in the least squares sense [4], 
and it is converted to an FIR filter using the transformation 
of (13). In each segment, there are L=K=16 taps, thus 
NFIR=NL=160 coefficients are used for the FIR prototype. 
Fig. 6 shows the frequency response H(ejΩ) of the prototype 
filter in the interval 0≤Ω≤π. It can be seen that the attenua-
tion in the stopband Ω ≥2π/16 exceeds 60 dB. Fig. 7 shows 
the actual frequency response of the designed 16-channel 
complex modulated filter bank.  

The reconstruction error (linear distortion, aliasing) of a 
subband coder filter bank pair can be taken as a measure for 
the quality of the filter bank [1]. Figure 8 gives a quantitative 
view of the two distortions of the filter bank as function of 
frequency. Figure 8(a) shows the linear distortion of the ob-
tained filter bank, while Fig. 8(b) shows the aliasing function. 
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Figure 4 – The polyphase decomposition of the polynomial-based 

filter based on the prolonged Farrow structure 
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This is always less than 60dB, and has the same order of the 
magnitude as the signals in the stopband of the prototype.  

6. CONCLUSIONS 

In this paper, the polyphase decomposition of polynomial-
based FIR filters has been derived. We have found two 
polyphase decompositions: (i) polyphase decomposition 
applied to the prolonged Farrow structure, and (ii) polyphase 
decomposition based on the transposed Farrow structure. We 
have also shown that polynomial-based FIR filters can be 
used as prototype filters in polyphase modulated filter 
banks. The remaining task is to find a suitable design 
method which will be used to determine the polynomial 
coefficients. The polynomial coefficients shall be deter-
mined in such way that the respective subband coder filter 
bank achieves nearly perfect reconstruction. 
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Figure 7 – Frequency response of a complex modulated filter bank, 
and frequency shifted channel filters.   
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