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ABSTRACT

In this paper, a novel Kalman filter based noise suppression
algorithm for hearing aids, using spatial information for es-
timating the required noise and speech models, is proposed.
The main assumption of the scheme is that the target (usu-
ally the speech signal) is directly in front of the hearing aid
user while the interference (usually the noise signal) comes
from the back hemisphere. While in an earlier paper [1], a
related approach based on instantaneous Wiener filters using
a Weighted Overlap Add (WOLA) decomposition has been
presented, this paper focuses on a time domain approach
employing a time varying Kalman filter. Clearly, with the
proper noise and speech models, one would expect a bet-
ter performance of a time varying Kalman filter than of a
WOLA Wiener filter. Hearing tests as well as objective per-
formance measures show the excellent performance of the
Kalman filter based noise suppression algorithm.

1. INTRODUCTION

The proposed algorithm is based on the LOCO (LOw COm-
plexity) idea, which was originally published in [1]. Based on
an adaptive Elko-beamformer, LOCO describes a new way to
estimate the statistical properties of the signal and noise in
the beamformed signal. While in traditional approaches, the
single beamformed signal is used to drive the statistical esti-
mators which attempt to estimate the power spectral density
(PSD) of the noise and the PSD of the speech, LOCO makes
use of the spatial information. Based on our main assump-
tion that the target is directly in front of the hearing aid user
while the noise comes from the back hemisphere, LOCO uses
the front- and back-cardioids of the Elko-beamformer for the
estimation of the speech and the noise properties respectively
(Fig. 3).

This idea can be implemented in different ways. In [1],
it was used to estimate the PSDs as the squared magnitude
of a frame based Fast Fourier Transform (FFT). Based on
these PSDs, a corresponding instantaneous Wiener filter was
calculated and applied to the beamformed signal, which re-
sulted in excellent acoustic properties. Implemented in a
WOLA framework (WOLA-LOCO), this scheme results in
a data expansion. To avoid this, alternative schemes based
on wavelets (Wavelet LOCO) have been proposed [1]. These
Wavelet LOCO algorithms showed similar acoustic proper-
ties to the WOLA-LOCO, but as they don’t result in a data
expansion, they are computationally more efficient.

While applying a Wiener filter, the WOLA-LOCO as
well as the Wavelet LOCO algorithm treat the beamformed
signal as if it were stationary. Since this assumption is in-
correct for a natural speech signal, the applied Wiener filter
has to be changed from frame to frame. Since a Kalman fil-
ter is the nonstationary equivalent of a causal Wiener filter,
the step away from the instantaneous Wiener filter towards
a time varying Kalman filter should result in a smaller mean
squared error and hence in improved performance. Clearly,
while for the Wiener filter the estimation of the speech and
noise PSDs is the critical part, for a Kalman filter, the esti-
mation of the speech and noise model parameters is of fun-

damental importance.
Note that this paper presents the most important results

of a larger thesis (in German), which can be found in [7].
Furthermore, the source code required to generate the results
presented in this paper can also be found in [7].

The paper is organized as follows. In section 2, the no-
tation and the performance measures used throughout this
paper are introduced. In section 3, the main ideas behind the
proposed scheme and the underlying speech/noise models are
discussed and one selected implementation based on LPC
analysis is presented in detail. Finally, the experimental re-
sults are shown in section 5, where the results of the proposed
scheme are compared to the well-known Elko-beamformer [8]
and the WOLA-LOCO [1] scheme.

2. NOTATION AND PERFORMANCE
MEASURES
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Figure 1: Notation

To measure the final speech signal quality, different qual-
ity measures were used. For good comparability with [1]
the same two representative objective speech quality mea-
sures will be used here: the segmental Signal to Noise Ratio
(sSNR) and the Itakura Distortion Measure (ID). And fi-
nally, since the Kalman filter is built to optimize the Mean
Squared Error (MSE), we will use this measure as well.

2.1 Mean Squared Error

It is well known that the MSE is not an adequate measure for
speech quality. It is nevertheless important for this paper,
since the Kalman filter minimizes the MSE:

MSE =
1

N

N∑
n=1

(s(n)− ŝ(n))2 (1)

where N is the length of the speech signal in samples.

2.2 Segmental SNR

The segmental SNR is a simple and effective speech quality
measure which allows for good comparability:

sSNRdB = 10 · 1

M
·
M−1∑
m=0

log


N·m+N−1∑
n=N·m

s2[n]

N·m+N−1∑
n=N·m

n2[n]

 (2)
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where N denotes the segment width in samples. During
the project, various segment sizes suggested in the literature
were evaluated and 20ms = 410 Samples (at a sampling rate
of 20480 Samples/s) resulted in the best performance. To
calculate the instantaneous signal and noise output powers,
the algorithm is fed with the x = s and x = n signals sep-
arately. However, all internal parameters are adapted as in
the x = s+n case. In other words, this allows the calculation
of the output sSNR because the response of the system to
the noise only as well as to the signal only can be measured.

2.3 Itakura Distance Measure

The well known Itakura Distance Measure, which is also
called the Log Likelihood Ratio, is selected as the second rep-
resentative objective speech quality measure. The Itakura
Distance Measure is defined as follows:

dID
(
Sm(k), Ŝm(k)

)
= ln

(
bT RSS b

aT RSS a

)
(3)

where k = n ∈ [N ·m, N ·m+N −1], RSS is the correlation
matrix of the clean signal and a and b are the LPC coefficient
vectors of the approximated (output) signal and the clean
signal, respectively. Again, segments of 20ms and LPC order
of 14 showed good results. In the end, all segmental values
are arithmetically averaged. Even though objective quality
measures are important, the final judgment of the speech
quality is reserved for human listeners. For this purpose, the
original and processed sound files can be found in [7].

2.4 Scenarios

During this project, carefully recorded sound files using a
KEMAR were used to test the algorithm. The KEMAR
manikin was equipped with two behind the ear (BTE) hear-
ing aids. Each hearing aid contained two microphones in
end-fire configuration that were connected to a digital audio
recording system. For the results reported in this paper, the
recording was done in an anechoic chamber.

Furthermore, several acoustic scenarios were used, the
four most common ones being shown here as examples. The
desired speech signal always comes from the front (0◦), but
the direction of the interfering signal differs. This different
direction of the interfering signal exhibits itself in a time
delay between the front microphone signal and the back mi-
crophone signal.

Interfering signal Desired signal

Figure 2: Acoustic scenarios

In the above figures, the interference is a female speech
signal, while the desired signal (the signal at 0◦) is a male
speech signal and the listener stands in the middle of the
circle. The three leftmost scenarios show the interference at
90◦, 135◦ and 180◦, while the rightmost scenario shows the
so called cocktail-party situation, where there are multiple
interferences (male and female) from all around the listener
at 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦.

2.5 LOCO

The proposed algorithm, which has been named LOCO, is
based on an Elko-beamformer (see Fig. 3). Since we expect

the desired speech signal to come from the front and de-
fine everything from the back as noise, we can use the front
and back cardioid signals (which are already available from
the Elko-beamformer) as estimators of the speech and noise
signals (Fig. 3).
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Figure 3: LOCO Algorithm

The front and back cardioid signals as well as the beam-
formed signal show highpass characteristics (1− z−2 for sig-
nals from the front with α = 1). The beamformed signal can
be equalized very efficiently with an IIR filter which has the
inverse transfer function

H(z) =
1

1− β · (1− α)− α · z−2
(4)

where β is the adaptive parameter which determines the
directivity of the Elko-beamformer. The cardioid signals
used for the speech/noise model parameter estimates can
be equalized with the following filter:

H(z) =
1

1− α z−2
(5)

Choosing α < 1 ensures the stability of these equalizers.

3. SPEECH MODEL AND KALMAN FILTER
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Figure 4: The speech / interference model

Using a Kalman filter for speech enhancement asks for
a state space model. An appropriate one that is often used
(e.g. in [3]), assumes that the speech signal s(n) as well as
the interference signal i(n) can be adequately modeled by
Autoregressive (AR) processes of order p and q respectively:

s(n) = −
p∑
k=1

ak(n) s(n− k) + ζ(n) (6)

i(n) = −
q∑
k=1

bk(n) i(n− k) + η(n) (7)

The excitation signals ζ(n) and η(n) are assumed to be
independent zero mean white Gaussian noise with variance
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σ2
ζ(n) and σ2

η(n) respectively.
A corresponding state space model with the state vector

x(n) = [s(n− p+ 1) · · · s(n) i(n− q + 1) · · · i(n)]
T

can be given as

x(n) = A(n− 1)x(n− 1) + Bu(n) (8)

y(n) = C x(n) + ν(n) (9)

where ν(n) is the white, Gaussian measurement error with

variance σ2
ν and the input u(n) = [ζ(n) η(n)]

T
. The transi-

tion matrix A(n), the input matrix B and the output matrix
C are defined as follows:

A(n) =



p︷ ︸︸ ︷
0 1

. . .

1

−ap · · · · · · −a1

0p,q

0q,p

0 1

. . .

1

−bq · · · · · · −b1︸ ︷︷ ︸
q


(10)

B =


p︷ ︸︸ ︷

0 · · · 0 1

0 · · · 0 0

q︷ ︸︸ ︷
0 · · · 0 0

0 · · · 0 1


T

(11)

C =

[
p︷ ︸︸ ︷

0 · · · 0 1

q︷ ︸︸ ︷
0 · · · 0 1

]
(12)

Note that for simplicity A(n) in (10) is shown as time
invariant, while in fact, the parameters ak and bk may change
at every time step n (as shown in (6) and (7)). This ability
of the Kalman filter to deal with a time variant signal and
speech model is essential for the use of the Kalman filter
instead of a Wiener filter.

Since in real world applications the input u(n) is un-
known, one will consider it to be zero. Based on this sim-
plification one will have an uncertainty in the state vector
x(n). The covariance matrix Qw(n) of the corresponding
state error can be calculated as follows:

Qw(n) = BE
{
u(n)uT (n)

}
BT = B

[
σ2
ζ(n) 0
0 σ2

η(n)

]
BT

(13)
Based on this state space model, a Kalman filter can be

used to estimate the state vector x(n) based on the noisy
measurements y(k) (k up to n). This estimate x̂(n) is given
as follows [2].

x̂(n|n− 1) = A(n− 1)x̂(n− 1|n− 1)

P̂ (n|n− 1) = A(n− 1)P̂ (n− 1|n− 1)AT (n− 1) + Qw(n)

K(n) =
P̂ (n|n− 1)CT

CP̂ (n|n− 1)CT + Qv(n)
(14)

x̂(n|n) = x̂(n|n− 1) + K(n)[y(n)−C(n)x̂(n|n− 1)]

P̂ (n|n) = [I −K(n)C(n)] P̂ (n|n− 1)

Where P̂ (n|n − 1) and P̂ (n|n) are the a priori and the a
posteriori error covariance matrices respectively. K(n) is

the Kalman gain vector and I the identity matrix of order
p+ q. The estimated speech signal ŝ(n) can be found at the
pth position of the estimated state vector x̂(n|n).

Note that because of the special structure of the
vector x(n), one will estimate not only s(n) but also
s(n− 1) · · · s(n− p+ 1). Since these estimates are all based
on measurements y(k) with k up to n, they correspond to
fixed-lag estimates ŝ(n−1|n) · · · ŝ(n−p+1|n) [6]. As shown
in [4], fixed-lag smoothers can give better results because
they lead to better suppression in spectral valleys.

While working with artificial speech signals, with a grow-
ing fixed-lag, the improvement was evident [7]. However,
with real-world speech signals fixed-lag smoothing did not
result in the expected better performance.

4. DIFFERENT SCHEMES

The way the proposed speech and noise models and the cor-
responding Kalman filter are employed for the purpose of
noise suppression is not unique. One can think of several
different approaches, to estimate the parameters and to run
the Kalman filter. Most meaningful combinations have been
implemented in [7]. In our tests, the three schemes shown in
Fig. 5 resulted in the best performances.

Kalman LOCO

Framebased 
parameter estimation 

(LPC)

Streambased 
parameter estimation 

(RLS)

Framebased  
Kalman-filter

Streambased 
Kalman-filter

Streambased 
Kalman-filter

Kalman LOCOSSKalman LOCOFSKalman LOCOFF

Figure 5: Different Kalman LOCO Schemes

Because of the brevity of this paper, we will focus on
the Kalman LOCOFS scheme. From all the tested schemes,
this has shown to be the most successful one. For more
information on the other schemes, refer to [7]. Figure 6 gives
an overview of the proposed Kalman LOCOFS scheme.

4.1 Parameter estimation

The estimation of the target (speech) and interference (noise)
parameters ak, bk, σ2

ζ and σ2
η proved to be one of the key

points in the proposed scheme. Based on the LOCO idea,
several algorithms have been implemented and tested on
real-world speech signals. Estimating the parameters by Lin-
ear Predictive Coding (LPC) analysis showed the best overall
performance. The frames of length 128 samples used for the
LPC analysis are windowed (with a Hann window) and over-
lapped by 75%.
To ensure stability of the estimated systems, we use the
autocorrelation method for the LPC analysis [5]. With

the autocorrelation vector rx = [rx(1) · · · rx(p)]
T

of
the windowed frame, the corresponding LPC parameters

a = [a1 · · · ak]
T

can be calculated with the following formula:

Rxa = −rx (15)

where Rx is the p× p Toeplitz autocorrelation matrix. The
power σ2 of the corresponding excitation signal can be cal-
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Figure 6: Kalman LOCOFS

culated as follows:

σ2 =

rx(0) +
p∑
k=1

ak rx(k)

N
(16)

where N = 128 is the number of samples per frame.
To suppress possible artifacts, the estimated parameters

need to be smoothed. To avoid the risk of producing unstable
systems, the parameters are not smoothed directly. Instead,
the autocorrelation vector rx used in the LPC analysis is
smoothed with a simple first order IIR lowpass filter with a
time constant of τ = (−32/20480)/ ln(0.95) ≈ 30ms.

For the estimation of the variance σ2
ν of the measure-

ment error, we assume that it is a property of the measure-
ment equipment and stays constant over time. Based on this
assumption, it is straight forward to measure this variance
offline during a speech pause. It is then implemented as a
constant in the algorithm.

4.2 Usage of the estimated parameters

Since the Kalman filter works sample-by-sample (stream)
based, the estimated parameters a and σ2, which are es-
timated per frame f , need to be structured into a stream as
well (the Kalman filter expects one parameter set for every
time instant n). We assume that the estimated parameters
are the most accurate in the middle of a frame. This as-
sumption leads to using the parameters for the middle 32
samples of the corresponding frame (Fig. 7).

<= LPC analysis

<= LPC analysis

<= LPC analysis

<= LPC analysis

parameter stream parameter stream

Figure 7: Usage of the estimated parameters

4.3 Model order

Two obvious parameters which have to be optimized are the
model orders p and q. As we expect the target as well as the
interference to be a speech signal, these orders have always
been considered equal. Generally speaking, one can say that

with higher orders, the speech and interference signal can
be modeled more precisely and therefore the results become
better. This behavior can be seen in Figs. 8 to 10.
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Figure 8: The MSE vs. the model order
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Figure 9: The sSNR vs. the model order
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Figure 10: The ID vs. the model order

However, with higher order models, the matrices used
for LPC analysis as well as for the Kalman filter become
bigger. From a computational point of view, this is clearly
undesirable. Considering these two effects of higher model
orders, a reasonable tradeoff are model orders p = q = 10.

5. EXPERIMENTAL RESULTS

Tables 1-4 compare the proposed Kalman LOCOFS with
the WOLA-LOCO and the simple Elko-Beamformer. The
Kalman LOCOFS is implemented with model orders p = q =
10. The different tables show the results for the four acous-
tic scenarios shown in Fig. 2. Note that for the scenarios
where the interference comes from the side, only the results
from the left channel are shown, since the right channel is in
the acoustic shadow of the head and hence the interference
is not really a problem on that side.

As expected, the Kalman LOCOFS achieves in every sce-
nario a considerably better MSE than the WOLA-LOCO.
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Also, the sSNR achieved by the Kalman LOCOFS is always
better than the one achieved by WOLA-LOCO. While the
better MSE shows that the Kalman filter can handle the
nonstationary speech signals better than the Wiener filter,
the improved sSNR shows that the Kalman filter can also
improve the perceptual quality of the speech signal. How-
ever, the WOLA-LOCO shows the better Ithakura Distance
(ID).

On average, the objective results of our algorithm are
better than the ones of WOLA-LOCO. But even more impor-
tant than these objective measures are listening tests, since
for noise suppression human listeners must be the ultimate
judges of the quality. Therefore, the original and processed
sound files as well as the MATLAB code can be found in [7].
These files show that our new algorithm performs acousti-
cally comparable to WOLA-LOCO. The suppression of the
interference is very similar and it is hard to tell which algo-
rithm sounds better, since both of them produce slight, but
different, acoustic artifacts.

Method MSE sSNR ID

Only Elko-beamformer 1.936 -0.190 0.597
WOLA-LOCO 1.095 -0.229 0.563
Kalman LOCOFS 0.714 0.277 0.654

Table 1: Interference at 90◦, left channel only

Method MSE sSNR ID

Only Elko-beamformer 0.651 2.39 0.494
WOLA-LOCO 0.269 2.88 0.409
Kalman LOCOFS 0.212 3.63 0.472

Table 2: Interference at 135◦, left channel only

Method MSE sSNR ID

Only Elko-beamformer 0.735 1.04 0.438
WOLA-LOCO 0.250 0.98 0.367
Kalman LOCOFS 0.212 1.94 0.495

Table 3: Interference at 180◦, average of the left and the
right channels

6. SUMMARY AND CONCLUSION

The proposed Kalman filter based noise suppression algo-
rithm shows that the advantage of a Kalman filter over a
Wiener filter can successfully be exploited. While consider-
ing the MSE, the proposed scheme outperforms the WOLA-
LOCO algorithm significantly, as it is able to track the
nonstationery speech signals better than the WOLA-LOCO.
Tests with artificial speech signals (generated with time vary-
ing all-pole models) showed that using a Kalman smoother
instead of a Kalman filter can further improve the perfor-
mance of the proposed scheme significantly. The fact that
with real world speech signals a Kalman smoother does not
lead to better performance, suggests that an improvement
of the speech/noise models and/or the estimation of the
speech/noise model parameters could lead to even better re-
sults.

The segmental SNR and the Ithakura Distance as well
as subjective listening tests show, that the Kalman-LOCO
performs similarly to the WOLA-LOCO if one considers
the human perception. In contrasts to WOLA-LOCO, the
Kalman-LOCO has the advantage that one has a model of

Method MSE sSNR ID

Only Elko-beamformer 1.157 2.16 0.495
WOLA-LOCO 0.405 2.15 0.473
Kalman LOCOFS 0.361 2.81 0.632

Table 4: Cocktail-party noise at 45◦, 90◦, 135◦, 180◦, 225◦,
270◦ and 315◦, average of the left and the right channels

the speech/noise processes. As shown in [4], such models
could be used for deemphasizing and emphasizing filters.
With such filters, the perceptional quality can be improved
at the price of a higher MSE. The optimal use of these mod-
els for such pre- and post processing is currently one of our
research efforts.

As the matrices involved in the LPC analysis and the
Kalman filter are quite large, the computational effort of
the proposed scheme is higher than the one of the WOLA-
LOCO. There are many possibilities to reduce this computa-
tional effort (e.g. subsampling of the Kalman filter or making
use the sparse A matrix ). However, as the computational
effort was not the main topic of this work, it has not been
further investigated for this paper. Now that the potential of
this approach has been shown, we are currently investigating
efficient computational approaches.

In summary, the novel scheme presented in this paper,
Kalman-LOCO, shows that a Kalman filter based approach
to noise suppression is quite competitive with the existing
schemes such as WOLA-LOCO. From a perceptual point
of view, Kalman-LOCO and WOLA-LOCO sound similar,
both with their distinct artifacts. From an objective measure
point of view, Kalman-LOCO outperforms WOLA-LOCO.
On the other hand, currently Kalman-LOCO consumes more
computational resources than WOLA-LOCO. One great ad-
vantage of Kalman-LOCO which has not yet been exploited
is the ability to use the noise and the speech model necessary
for the Kalman filter for a pre- and/or post- filter. These fil-
ters are known to further improve the perceptional quality at
the expense of the MSE and are currently subject to further
research.
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