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ABSTRACT

The paper discusses the problem of processing short-time
pulse sequences. Since the spectrum of such signals occu-
pies wide range, it is difficult to sample them at the Nyquist
rate. Instead, the approach used for processing signals with
finite rate of innovations is employed — sequence of pulses is
filtered with low-pass or band-pass filter before sampling. A
waveform reconstruction method is proposed, which is based
on spectrum extrapolation in an iterative way. Due to spec-
tral function of sequence of pulses is correlated, it is pos-
sible to recover sequences, which combine arbitrary-shaped
pulses. In simulations three shapes of Gaussian based pulses
are used as an example. Results demonstrate reconstruction
of sequences of pulses from its low-pass and band-pass ap-
proximations. An application of the results can be used in
ultra wideband impulse radio systems.

1. INTRODUCTION

Information in ultra wideband impulse radio (UWB-IR) sys-
tems is transmitted by generating extremely short pulses with
durations less than 1 ns and thus occupying large bandwidth
in frequency domain. Digital data to the analog pulses is
added by means of modulation. Two possible types are pulse
position and pulse shape modulations, where time instants
and waveforms of pulses carry the information [1].

Different types of pulses like Gaussian pulse and its
derivatives which form monocycle, doublet etc., Hermite
pulses and others can be used in UWB-IR systems. The ac-
tual shape of pulses is usually driven by system and antenna
designs. There can be different situations at the receiver - all
pulses are with the same shape or multiple pulse types are
used [2].

As UWB pulses are extremely short, it is difficult to pro-
vide the sampling rate determined by the bandwidth of trans-
mitted signal to decode the received signal. In [3, 4] it is
shown that it is possible to recover a non-bandlimited signal
that has a finite rate of innovation from uniform samples of
its low-pass approximation. The rate of innovation (number
of degrees of freedom per unit time) can be viewed as the
number of parameters per unit time required to model the
signal. The reconstruction is based on the use of an annihi-
lating filter, and the samples have to be taken at rate above
the rate of innovation.

An example of a signal with finite rate of innovation is a
stream of K weighted Diracs. The signal is fully specified by
amplitudes and locations of the Diracs and thus the number
of degrees of freedom is 2K. Also an UWB-IR signal con-
sisting of a stream of K pulses of fixed type can be considered
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as a signal with finite rate of innovation, because it can be as-
sumed as a stream of Diracs convolved with the pulse shape.
If all pulses have the same shape and duration, the number of
degrees of freedom is still 2K. In this case the sequence of
pulses can be recovered by annihilating filter method if spec-
trum of the pulses is known [4]. The spectrum of the signal
equals the product of the spectrum of stream of Diracs and
the spectrum of the pulse shape, wherewith the reconstruc-
tion task reduces to finding the positions and amplitudes of
Diracs. If the pulses have different shapes and durations, the
number of degrees of freedom increases because, along with
amplitudes and locations, the type to which each pulse be-
longs must also be specified. In this case the spectrum of the
pulse sequence equals the sum of different products and the
solution for reconstruction can not be obtained by annihilat-
ing filter method.

In this paper, an alternative method is proposed, ca-
pable of recovering the waveform of the UWB-IR signal
from its low-pass or band-pass approximation even if the se-
quence consists of arbitrary shaped pulses. The reconstruc-
tion is based on spectrum extrapolation using signal depen-
dent transformation kernel [5].

2. PROPERTIES OF DIFFERENT TYPES OF
PULSES

In ultra-wideband impulse radio systems, a sequence of
pulses is employed, where each pulse represents one infor-
mation symbol. Each transmitted pulse occupies defined
time interval called a "frame”. Often, a single type of nar-
row pulse is used in all frames. In multi-user environment
different types of pulses can be used in different frames by
different users. Three of the most often used types of shapes
are unilateral (bell-shaped), monocycle and doublet pulses.
In the paper the Gaussian function based pulses will be em-
ployed as an example, because it is widely used model for
UWB-IR transmitting circuits. However, the method pro-
posed in Section 3 can reconstruct sequences of any arbitrary
shape pulses.

Monocycle and doublet pulses are obtained as the first
and the second derivatives of a Gaussian pulse. In this section
temporal and spectral properties of these types of pulses are
discussed.

2.1 Time-domain properties

A Gaussian pulse, monocycle and doublet are written respec-
tively as

g1(t) =Aje W/, (1)
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where a is the time-scaling factor, and A, A, and A3 are
constants. A Gaussian monocycle has a single zero crossing,
while a doublet has two zero crossings. Further derivatives
yield additional zero crossings, one additional zero crossing
for each additional derivative. If the value of a is fixed, by
taking an additional derivative, the fractional bandwidth de-
creases, while the central frequency increases [1].

Fig. 1a shows the waveforms of all three pulses. The
time-scaling factor a = 0.1 ns is assumed, which complies
with practical considerations and facilitates comparisons.
The constants Aj, Ay, and Az are chosen to ensure the en-
ergy of pulses is equal.

The total duration of the Gaussian pulse can be estimated
as six times its standard deviation, as this interval includes
about 99.7 percent of the energy. In our case this parameter
is about 425 ps.

2.2 Frequency-domain properties

The spectral representation of g (¢) can be obtained by taking
the Fourier transforms of (1)

Gi(f) = Ayay/me (™)’ )

Since g»(¢) and g3(¢) are proportional to the first and sec-
ond derivatives of g;(z), the Fourier transforms of g»(r)
and g3(¢) are the Fourier transforms of g;(7) multiplied by

(A2/A})(j2rf) and (A3/A1)(j27f)?, respectively.
Go(f) = Asay/Tj2mfe~ ™af)? )

Ga(f) = Asay/m(j2m f)2e (W)’ ©

Fig. 1b shows the pulses in frequency domain. Total band-
width of pulses is around 8 GHz and increases with the order
of the derivative.

Often for the characterization of the spectrum of pulses
the effective bandwidth is used. It is defined as

W= fu—fi, )

where f; and fj, are the frequencies measured at points with
half of the maximum amplitude. For Gaussian pulse, mono-
cycle and doublet the values are W; = 2.65 GHz, W, = 3.61
GHz and W5 = 3.68 GHz respectively.

In addition the autocorrelation of the spectrum function
G(v) is investigated, defined as (8)

RN = [ GWIG (v-pav, ®)

where G*(V) is the complex conjugate of G(v). Applying (8)
to G1(f), G2(f) and G3(f), autocorrelations R;(f), Ra(f)
and R3(f) are found:

Ri(f) = Afa/m[2e"2 17" ©)
Ra(f) = 32 /221~ (maf P)e 70" (10)
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Figure 1: A Gaussian pulse (solid line), monocycle (dashed
line) and doublet (dash-dotted line) in time domain (a), in
frequency domain (b) and spectrum autocorrelation functions

(©).
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Fig. 1c shows appearance of the spectrum autocorrelation
even up to about 10 GHz. Thereby, it can be considered that
the spectrum of the pulses is quite well extrapolatable. In
the next section, the extrapolation method is proposed to re-

Je~3(maN?(11)
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Figure 2: Original sequence of 5 uniformly spaced pulses
with different shapes (a), lowpass approximation of it with
signal samples (bold dots) (b) and the reconstructed wave-
form (solid line) of the pulse sequence (dotted line) (c).

cover whole spectrum of the pulse sequence from its limited
region, which can be estimated using output of low-pass or
band-pass filter.

3. SPECTRUM EXTRAPOLATION APPROACH

The method used for processing band unlimited signals with
finite rate of innovations employs bandwidth restriction of
filtering before sampling. The bandwidth of the original sig-
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Figure 3: Original sequence of 5 non-uniformly spaced
pulses with different shapes (a), lowpass approximation of
it with signal samples (bold dots) (b) and the reconstructed
waveform (solid line) of the pulse sequence (dotted line) (c).

nal is thus decreased and the samples are taken at lower sam-
pling rate. To reconstruct the signal it is necessary to recover
the whole bandwidth in the frequency domain. It can be
achieved by spectrum extrapolation provided that the spec-
trum autocorrelation decays slowly. Following from previous
section it holds true for sequences of narrow pulses.

Let us have an UWB signal x(¢) consisting of stream of
different pulses. The length of the shortest pulse is 7,. Now,
if the signal is sampled at rate 5/7, providing N samples
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x = [x(0),x(1),...,x(N —1)], then each pulse is represented
by at least 5 samples. The discrete Fourier transform (DFT)
of x allows to obtain spectrum coefficients

X(1xN): X (k) =xW¢, (12)
k1T
where WK = e*ﬂ”%,e*ﬂ”%,...,e’ﬂ”(NNl)k , and k =
0,1,...,N —1. To find the original signal samples, the in-
verse DFT of X is taken.

After ideal filtering, on]y M < N spectrum coefficients
Xu = [X(r),X(r+1),....X(r+M—1)] of the signal re-
main, while the rest N — M coefficients become zero. In
lowpass filtering case r = 0. Recovering of the whole set
of the spectrum coefficients from Xy, is based on Capon or
minimum variance (MV) filter approach, which requires the
knowledge of spectrum autocorrelation matrix [6]. In gen-
eral, when signal consists of stream of different pulses, the
spectrum autocorrelation is not known in advance and thus it
is estimated in an iterative way [7, 8]. The algorithm is:

Ri(M xM): R(m,l) =P,_ W™, (13)
X . XuR; "W,/
%(1 xN): x,-(n)z%7 (14)
(Wi 'R W,/
P;(1xN): B(n) = |%:i(n)], (15)

where the elements of autocorrelation matrix R; are cal-
culated from the signal power P;_;, X; is the recovered
signal (output of the MV filter) after iteration i, W}, =

(r+|)n r+M-1)n T .
[e 2% g2 e } cand i=1,2,3,...

are iteration numbers. The estimator £;(n) is considered as
found and the iteration as completed when the power f’,(n)
does not alter from iteration to iteration or the changes are
small by comparison with a selected criterion. The initial
conditions in the absence of a priori information are deter-
mined from the inverse DFT signal estimator

_’67]271'

. 1 B
By(n) = |MXMWM”|2 (16)

Extrapolation X; of Xy is provided by taking DFT (12) of &;.

4. SIMULATION RESULTS

Consider a signal consisting of 2 Gaussian pulses, 2 Gaus-
sian monocycles and 1 Gaussian doublet. The time-scaling
factors for the second, third and fifth pulses are 0.1 ns, while
for the first and fourth pulses it is 0.2 ns. The amplitudes
are chosen to ensure the energy of all pulses is equal. In
Fig. 2a pulses are placed equidistantly, while in Fig. 3a —non-
equidistantly. The signal is ideally lowpass filtered removing
frequencies higher than 1 GHz. The filtered signal (Fig. 2b
and Fig. 3b) is sampled at rate 2 GHz to obtain processing
data. Given 41 sampling values, the spectrum X, of length
M =21 is found. By putting X, in algorithm (13), (14) and
(15) 151 spectrum coefficients up to frequency 7.5 GHz are
estimated providing N = 301 sampling values X; (sampling
rate 15 Ghz) of the recovered signal. The results after 15 it-
erations are shown in Fig. 2¢ and Fig. 3c. Time locations of
reconstructed pulses exactly correspond to the original sig-
nal, the amplitudes and lengths are reconstructed with some
distortions.
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Figure 4: The bandpass filtered signal with frequencies no
lower than 1 GHz and no higher than 2 GHz (a), the estima-
tion (solid line) of the original signal (dotted line) (b), and
PSD of the original signal (solid line), bandpass filtered sig-
nal (bold solid line) and after iterative extrapolation of spec-
trum coefficients (c).

The distortion in length becomes larger if pulses are
placed closer, while the amplitude of the recovered doublet is
decreased since only small part of the pulse energy remains
after filtering. Therefore, it is reasonable to use the bandpass
filter instead of lowpass filtering. The passband of the filter
provides the same amount of spectrum coefficients Xy, but
they are placed in the frequency band where the signal en-
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ergy is higher. The simulation results of this case are shown
in Fig. 4. The signal with non-uniformly spaced pulses is
ideally bandpass filtered removing frequencies lower than 1
GHz and higher than 2 GHz. The filtered signal (Fig. 4a) is
sampled at rate 4 GHz providing 81 samples that are used
to obtain M = 21 spectrum coefficients Xy, in the frequency
range from 1 to 2 GHz. To extrapolate spectrum, the coef-
ficients are put in (13), (14) and (15) and N = 301 values
of the recovered signal are calculated. Obtained results are
shown in Fig. 4b and c. The power spectral densities (PSD)
of the original and bandpass filtered signals are represented
by a solid and a bold-solid lines, respectively, while the ex-
trapolated PSD function is shown as a dotted line.
Reliability of spectrum extrapolation from given spec-
trum coefficients X, can be estimated using the reliability
function [9]. The simplified form of the function [5] is

qa(f) =s(f)"S™'s(f), (17)

where s(f) = s(f — fin), Smn =(fm— fu), myn=0,1,... .M,
and s(f) is the constructing function. In our case it is desired
that s(f) has to be like spectrum autocorrelation function
R(f). InFig. 5 ¢(f) is estimated if spectrum coefficients Xy
in the frequency range from 1 to 2 GHz are provided. The
grey solid line corresponds to case when s(f) is estimated
from spectrum coefficients of the bandpass filtered signal,
while the black solid line — after iterative update of autocor-
relation matrix. As it follows the update process improves
the reliability of spectrum extrapolation.

5. CONCLUSIONS

The method for recovering UWB-IR signals consisting of
arbitrary-shaped pulses is proposed. The reconstruction uses
uniform samples of low-pass or bandpass filtered signal to
obtain spectrum coefficients, which are further extrapolated
using iterative update of spectrum autocorrelation function.
If pulse sequence contains unilateral and bilateral pulses,
passband of filter has to be selected taking into account sev-
eral considerations. Output of the lowpass filter can be sam-
pled with lower sampling rate, however, pulses with spec-
trum maximum in higher frequency region are more sup-
pressed and thus they are harder to recover. Instead, band-
pass filtering can be used for better reconstruction, though
it requires higher sampling rate. It can be decreased by the
use of an analog or digital down-converting technique which
increases complexity or restricts flexibility of filter bounds.
An alternative can be based on non-uniform sampling with
decreased density. Frequency aliasing is suppressed due to
non-uniformity, and if samples come from a sufficiently fre-
quent uniform grid, the complexity of proposed algorithm
does not increase. This can be a topic for further research.
The reliability of reconstructed waveform depends on ca-
pability to extrapolate the spectrum. The paper discussed
this property for particular pulse types. If sequence contains
multiple types, the autocorrelation of spectrum decays faster
limiting the frequency up to which it is reasonable to extrap-
olate. For the cases used in simulations, this frequency has
been chosen 7.5 GHz. Such a limitation causes distortions
in reconstructed pulses, especially in lengths of the pulses,
because band of the original signal spectrum is unlimited.
As UWB is low-power communication it can be effi-
ciently used in wireless sensor networks where data is ob-
tained by event driven sampling techniques such as, for ex-
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Figure 5: Reliability of spectrum extrapolation.

ample, level-crossing sampling. In this case, instants of the
events occurrences can be coded by the pulse position on the
time axis, while type of the events (for example, upward or
downward crossing) can be coded by shape of the pulse.
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