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ABSTRACT 

Global motion estimation (GME) algorithms have an im-
perative role in object-based applications. Gradient-based 
GME is a well known method among these algorithms. Such 
algorithms require an initial value for their initialization 
step. Well estimation of this value plays a significant role in 
the accuracy of GME. This work introduces a simple but 
efficient technique for initial value prediction of GME. This 
technique employs a long-term predictor as well as global 
motions of previous frames. Simulations results demonstrate 
faster convergence and less computational complexity of the 
proposed method versus common presented techniques in 
the literature with almost same efficiency. 

1. INTRODUCTION 

Motion estimation and motion compensation are two of the 
most important and widely used techniques in video coding 
systems. The motions are divided into local motion (LM) 
and global motion (GM) categories [11]. LMs are caused by 
moving, rotation, and deformation of objects while GMs are 
caused by panning, rotation, and zooming of camera. The 
local motion estimation (LME) and global motion estima-
tion (GME) are techniques for estimation of LM and GM 
respectively. The LME and local motion compensation 
(LMC) techniques are used in discrete cosine transform 
(DCT) based video compression standards such as H.264 [1] 
and MPEG-2 [2] for reducing existent redundancy between 
macroblocks of two frames. In MPEG-4 verification model, 
the LMC technique as well as global motion compensation 
(GMC) technique is employed for reducing existent redun-
dancy between motions. In this standard, by considering the 
sum of absolute difference (SAD) criterion, each macrob-
lock can employ one of the LMC or GMC techniques [3]. 
Most common GME methods can be categorized in match-
ing-based, feature-based, gradient-based and their hybrids 
[5], [15]. In the matching-based methods, the GM is esti-
mated by using generalized block matching algorithm [4]. 
The features of two frames and techniques such as 
RANSAC [6] are used in GM estimation using the feature-

based methods [7]. In the gradient-based methods, GM is 
estimated by utilizing gradient search techniques. These 
techniques can estimate GM with a reasonable accuracy rate 
but high computational complexity [8-14]. 
The gradient-based methods are divided into hierarchical 
and non-hierarchical approaches. In these methods, tech-
niques such as Levenberg-Marquardt algorithm (LMA) or 
Gauss-Newton algorithm (GNA) are employed for minimiz-
ing sum of squared differences (SSD). These iterative algo-
rithms require an initial value in global minimum “basin”. 
The less difference between initial value and global mini-
mum, results in faster convergence of algorithms [16]. 
In hierarchical methods, the GME is mostly performed on 
three levels which are coarse, intermediate, and bottom lev-
els [8-12]. In these methods, each frame is filtered and 
downsampled respectively. This process results in a pyramid 
with three levels. First, GME is applied between two frames 
in coarse level. The resulted GM is projected on intermedi-
ate level and is considered as the initial value for this level. 
After GM estimation in this level, the estimated GM is pro-
jected again on bottom level and is considered as the initial 
value for this level. Such hierarchical techniques reduce 
complexity and computational load of the system [8]. These 
methods need an initial value for coarse level. In [8] and [9] 
a modified three-step search is done between two frames 
[18], and the result is considered as initial value of this level. 
The three-step search algorithm provides a reasonable initial 
value. This algorithm is consisted of 25 SAD calculation 
steps and only can predict GM translation parts. Therefore, 
it is not applicable in rotation or zoom modes of camera. On 
the other side, [5] have suggested feature matching methods 
instead of the three-step search algorithm. Chan et al. in [12] 
have introduced a motion vector prediction for finding an 
initial value. They have suggested six predictors which are 
zero motion vector (MV), past MV, acceleration MV, his-
torical average, historical maximum MV, and historical 
minimum MV.  After projecting GMs of previous frames on 
coarse level, six vectors are constructed by translation parts 
of six predictors. These six vectors are constructed by as-
suming absence of rotation and zoom. Then, SADs of re-
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sulted vectors are calculated and later, translation parame-
ters of vector with the least produced SAD are selected. By 
considering resulted translation parts and also other ele-
ments of six predictors, six new vectors are constructed. By 
calculating SAD of these six GM vectors, vector with the 
least SAD is considered as the initial value. Further read-
ings are available at [12]. Qi et al. in [10] and [11] suggest 
using the three-step search algorithm just for the first six 
frames and only employing four predictors for the remain-
ing frames. By following up this idea, SAD calculations 
decrease up to eight times as well as having a less complex 
and more efficient method than [8] and [12]. In [13] and 
[14], some non-hierarchical methods are presented. The 
authors in [13] have employed three-step search algorithm 
between filtered and downsampled frames for estimating a 
coarse initial value. In [14] three-step search is used be-
tween sub-sampled frames for finding initial value.  
In this paper, we suggest reducing initial value calculation 
by using a long-term predictor and employing a non-
hierarchical GME. This method will reduce average number 
of iterations for algorithm convergence in a sequence and 
therefore, reduces computational complexity. 
In section 2 of the paper, motion model, GNA and hierarchi-
cal GME are reviewed. The proposed combinatory algo-
rithm is discussed in details in section 3 and simulation re-
sults on several sequences are presented and compared in 
section 4. Finally, the paper is concluded in section 5. 

2. GLOBAL MOTION ESTIMATION 

2.1 Motion Model 
By considering the MPEG-4 verification model [3], the per-
spective model is employed for GM throughout this paper. 
This is due to the simplicity of models such as affine and 
translational where they are special cases of this model. The 
perspective motion model is defined as 
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where m  is the GM vector, 3m and 6m are translation pa-

rameters and 1m , 2m , 4m , 5m are rotation and zoom parame-

ters. Also, 7m  and 8m are perspective geometric distortion 

parameters. 
2.2 Gauss-Newton Algorithm Based Global Motion 

Estimation 
This algorithm is a common technique for minimizing sum 
of squared function. For the GME in this work, the error of 
pixel i  is defined by 
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where ix  and iy  are coordinates of pixel i  in frame k  and 

ix  and iy are correspondent pixel location in frame 1k  . 

The GM between two frames kF and 1kF  is a vector which 

minimizes  
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where N  is number of pixels and ( )ie  is truncated quad-

ratic error function defined as 
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The   is a threshold limit which reduces undesirable outliers 

effects of incorrect GM estimation. This threshold limit is set 
in the first iteration in a manner that omits 10% of pixels 
located above ie  histogram throughout the algorithm as in 

Figure 1. 
The iterative Gauss-Newton algorithm [8][16] is employed 
for minimizing (4) in this paper. In this algorithm, vector 
m  is updated in each iteration t  by 

( 1) ( ) ( )t t t   m m m .                          (7) 
The updating term ( )tm  is found by solving the following 
equation 
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and ( )( )tJ m is Jacobian matrix of error vector ( )( )te m  and 
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In GNA, vector m  is updated in each iteration using (8), (9) 
and (10), until a termination criterion is satisfied [8].  
Totally, the GNA is employed in the GME algorithm as  
follows: 
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Figure 1 – Histogram of 
ie  with the threshold  that 

omits top 10% of the histogram. 
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1) The vector m  is valued to a precomputed initial 
value. 

2) The ( )J m  matrix and ( )e m  vector are calculated 
using m . If 1t  , the threshold limit   is calcu-

lated by using the ie  histogram. Otherwise, pixels 

with ie   in ( )J m  and ( )e m  calculation are 

omitted. 

3) Equation (8) is solved to achieve m . 

4) The vector m  is updated by (7). If 

max  Number of iterations N or 
for all elements
 m ε  the 

algorithm ends, otherwise, it will be returned to the 
step 2. 

2.3 Hierarchical Global Motion Estimation 
The hierarchical GME structure is illustrated in Figure 2. In 
this structure, a Gaussian pyramid with three levels for two 
frames kF  and 1kF   is constructed. The calculations start 

from the highest level of the algorithm, which is called the 
coarse level, to the lowest level of the algorithm. In the first 
phase, a three-step search is done between the two frames in 
coarse level to achieve an estimation for translation elements 

3m  and 6m . Then, the vector m̂  with 1 5 1m m  , 

2 4 7 8 0m m m m     and estimated 3m  and 6m  are con-

sidered as initial values for the GNA. Afterwards, the vector 
m  is projected on the middle stage to be considered as the 
initial value for this stage. This projection is done by setting 

3 3 6 62 , 2m m m m                         (11) 

and 

7 8
7 8,

2 2

m m
m m  .                         (12) 

The calculations are continued in this stage and the resulted 
vector is projected on the lowest level to produce m . 

The computational load of GNA has a direct relation with 
number of pixels [13]. Therefore, if computational load of 
the lowest level with N  number of pixels be 1, this load will 
be 0.25 and 0.125 in the middle and highest levels of algo-
rithm, respectively. 

3. PROPOSED METHOD 

In video sequences each frame has a GM which demon-
strates motions of camera. By considering the short time 
between successive frames (1 /Sec Frame Rate ), it is possi-

ble to assume that the camera motion is continuous within 
successive frames. Therefore, the GM is predictable using 
previous GMs of frames. In this case, it is possible to predict 
GM of a frame by using GMs of previous frames.   
In [11] and [12], the resulted vectors from GME between 
previous frames are used for GM prediction of current 
frame. In fact, the achieved GM from the GME between two 
frames 1k  and 2k  , demonstrates camera motion in 
frame 1k   with respect to the frame 2k  .  This vector is 
called short-term GM. The perspective motion model has a 

concatenation property [17]. In a way that if vector , 1k k m  

be the GM  vector between two frames k  and 1k   and 

vector 1, 2k k m  be the GM vector between two frames 

1k   and 2k  , the GM vector , 2k k m  between two 

frames k  and 2k   is achieved by concatenating , 1k k m  

to 1, 2k k m . This property assists in calculating GM of 

each frame in respect to the first frame. Each ,1km vector is 

named a long-term vector.  These vectors provide better 
viewpoint of camera motions in respect to real environment 
along a sequence.  
In our proposed method, we suggest employing long-term 
vectors in order to predict GM vector of frames. After the 

long-term calculation process, vector , 1k k m  is achieved 

by concatenating ,1km  to inverse of vector 1,1k m . In this 

work, we use acceleration predictor as 

,1 1,1 2,1
ˆ 2k k k  m m m                        (13) 

and the concatenating part as 

 1

1,1 ,1 , 1
ˆ ˆ,

k k k k
Concatenating 

 
m m m .        (14) 

Different steps of the proposed algorithm are as follow: 
1) The first frame 1k   is encoded in intra-mode. 

For this frame 
1,1m  is defined as 

            1,1 1,0,0,0,1,0,0,0
Tm .              (15) 

2) The algorithm jumps to the next frame 
1new oldk k  . 

3) GM between two frames k and 1k   are calcu-
lated using hierarchical GME and three-step 
search algorithm. 

Initializing 

GNA 

Projection 

Projection 

4 

LPF 

4 

LPF 

GNA 

GNA 

Input frames 
GM

Figure 2 - Block diagram of the hierarchical GME.
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4) Vector ,1km is calculated by concatenation 

vector 1,1k m  to vector , 1k k m .  

5) The algorithm jumps to the next frame 
1new oldk k  . 

6) Initial value of GM vector , 1ˆ k k m  for frame k  

is predicted by (13) and (14).  

7) By operation GNA with the predicted initial 
value in the stage 6, GM vector between two 
frames k and 1k   is estimated. If SSD of the 
estimated GM vector is more than the threshold 

maxE , the algorithm is returned to the stage 3 to 
perform GME for the current frame again. Oth-
erwise, the algorithm is returned to the stage 2. 

The proposed algorithm not only decreases computational 
load and complexities, but also requires fewer number of 
iterations for convergence to a reasonable result. This is due 
to precise initial value prediction of our proposed method. 

4. SIMULATION RESULTS 

In this section, efficiency of the proposed method is com-
pared with the presented methods in [8] and [11] for seven 
common sequences. These sequences are Carphone, Coast-
guard, Foreman, Mobile, Stefan, Table and Tempete. Frame 
dimension of the Carphone and Stefan sequences are 
176 144 and 352 240 respectively and frame dimension of 
the other sequences is 352 288 . For all the sequences ex-
cept the Table, simulations are performed on the first 200 
frames. Since in the Table sequence, scene changes from 
frame 132, simulations are performed on its first 131 frames. 
A computer with 4GB Ram, 2.66 GHz Core2Quad CPU, and 
MS Windows Vista operating system is employed for the 
simulations in the MATLAB environment. 
In the simulations, the luminance of sequences is coded in 
the interframe mode (IPPP…) with fixed quantization size 

10Q  . The termination criteria maxN  is set to 32 and 

ε [0.001, 0.001, 0.1, 0.001, 0.001, 0.1, 0.001, 0.001]T, [8]. 
The simulations are performed against the presented hierar-
chical methods by Dufaux et al. and Qi et al. in [8] and [11] 
respectively. The hierarchical method in [8] is named H-TSS 
and has three levels where initial value is achieved by using 
a three-step search algorithm. The hierarchical method in 
[11] is named H-TPR and also has three levels. In this 
method, for the first six frames, initial value is reached by 
using a three-step search algorithm and for the rest of the 
frames, short-term GMs of previous frames are used as well 
as the four mentioned predictors in section 1.  
In our proposed method, GME is performed on the frames 
without employing the hierarchical method and the initial 
value is achieved by using the described predictor in (13) 
and (14). In this method, for the frames that their achieved 
SSD from GME is more than the threshold limit maxE , GM 

is performed again by the H-TSS method. 

In the next subsection, number of necessary iterations for 
convergence of the mentioned methods is discussed and cor-
respondent computational times are compared. Then, accu-
racy and peak signal-to-noise ratio (PSNR) and coding effi-
ciency of predicted frames using the proposed method versus 
methods in [8] and [11] are evaluated in subsection 4.2. 
 
4.1.  Convergence time and number of iterations analy-

sis 
In the hierarchical methods, the GME is mostly performed on 
three levels which are coarse, intermediate, and bottom. 
Computational load of each iteration is correspondent to 
number of pixels [13]. Since number of pixels in the coarse 
and intermediate levels are 0.125 and 0.250 times that of the 
bottom level respectively, computational load of these levels 
are also 0.125 and 0.250 times that of the bottom level re-
spectively. Based on this argument, in the simulations of the 
hierarchical methods H-TSS and H-TPR, each iteration in the 
coarse and intermediated levels are considered as 0.125 and 
0.250 times that of an iteration in the bottom level respec-
tively. For example, if in the hierarchical method we have 8, 
4, and 3 iterations in the coarse, intermediate and bottom 
levels, number of iterations for the frame is considered as 
8 4

3 4.5
16 4

   . The average number of necessary iterations 

for each sequences frame convergence is presented in Table 
1. Based on the results, the proposed method can reduce av-
erage number of necessary iterations for convergence to a 
percentage between 18% and 40%. In addition, the proposed 
method does not require constructing pyramid and calculat-
ing SAD for initial value estimation. As a result, this method 
is faster than proposed methods in [8] and [11]. Table 2 dem-
onstrates GME computational time of the proposed method 
and the H-TSS and H-TPR methods for different sequences. 
4.2.  Peak signal-to-noise ratio & coding efficiency 

analysis 
In order to evaluate accuracy and performance of the pro-
posed method versus method in [8] and [11], the PSNRs of 
decoded frames luminance and also average size of encoded 
frames must be analyzed and compared. To do so, GME and 
LME are performed between two successive frames. After-
wards, for each macroblock from each frame, two macrob-
lock predictions, one by using GM and the other by using 
LM, are made. The prediction with the less SAD is selected 
for the current frame reconstruction. PSNRs of the decoded 
frames are presented in Table 3. In most of the sequences, 
PSNRs are almost the same. The coding efficiency of these 
methods is also almost the same for different sequences, as 
shown in Table 4. 

5. CONCLUSION 

This paper introduces an efficient method for global motion 
(GM) initial value prediction. This technique has less com-
putational complexity than common methods and also con-
verges in fewer number of iterations.  In addition, due to the 
reasonable estimation of initial value by the predictor, hier-
archical pyramid is omitted in this technique, so that the 
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global motion estimation (GME) is performed once between 
frames.  
As the simulations results demonstrate, the proposed method 
in this work is 1.24 to 1.85 times faster than the proposed 
methods in [8] and [11], with almost similar accuracy and 
coding efficiency. 
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TABLE 1 - Average number of necessary iterations per frame for 
first 131 and 200 frames of Table and other sequences respectively. 

Sequence H-TSS H-TPR Proposed 
Carphone 3.24 3.25 2.65 
Coastguard 4.53 4.55 3.65 
Foreman 3.60 3.59 2.68 
Mobile 2.92 2.94 1.76 
Stefan 3.70 3.68 3.06 
Table 4.26 4.31 2.56 
Tempete 2.65 2.64 1.76 
Avg.  3.56 3.57 2.59 

 
TABLE 3 - PSNR-Y average of each constructed sequence using 
the proposed method and the H-TSS and H-TPR methods. 

Sequence Without  GMC H-TSS H-TPR Proposed 
Carphone 31.58 32.94 32.93 32.94 
Coastguard 29.66 30.91 30.91 30.92 
Foreman 31.05 32.32 32.32 32.32 
Mobile 28.17 28.99 28.99 29.00 
Stefan 29.34 30.45 30.44 30.46 
Table 30.68 31.97 31.95 31.96 
Tempete 29.13 30.32 30.32 30.32 

 
TABLE 2 - Necessary time (Sec.) for GME of first 131 and 200 
frames of Table and other sequences respectively. 

Sequence H-TSS H-TPR Proposed 
Carphone 17.1 17.4 11.9 
Coastguard 100.0 102.9 81.0 
Foreman 81.3 83.6 63.8 
Mobile 53.7 54.7 29.0 
Stefan 58.0 58.3 44.7 
Table 60.6 61.0 35.7 
Tempete 56.1 57.4 33.6 
Avg. Speedup 1.0 1.0 1.4 

 
TABLE 4 - Bitrate/Frame of compressed video frames (KByte). 
 

Sequence Without GMC H-TSS H-TPR Proposed 
Carphone 2.3284 2.3096 2.3077 2.3078 
Coastguard 9.7573 9.2802 9.2785 9.2703 
Foreman 9.5116 9.3556 9.3563 9.3615 
Mobile 15.1698 13.1161 13.1186 13.1734 
Stefan 11.5554 9.4996 9.5032 9.4872 
Table 10.4538 9.8570 9.8584 9.8543 
Tempete 10.8096 9.6818 9.6836 9.6876 
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