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ABSTRACT 
 
The S transform is useful in time-frequency analysis. In this 
paper, we propose a hybrid algorithm to implement it adap-
tively. Since the window size of the S transform varies with 
|f|, it is reasonable to use different algorithm for different 
frequency to implement it. In this paper, we use the sub 
IDFT algorithm in the low frequency region and the sec-
tioned convolution algorithm in the high frequency region 
to implement the S transform. From simulation, our algo-
rithm reduces 54% of the computation time and much im-
proves the efficiency of the S transform.   
 

1.     INTRODUCTION  
 
The S transform [1][2] is defined as: 

     
2 2

2( )( , ) ( ) exp[ ]
22

i ftf f tS f x t e dtπττ
π

∞ −

−∞

−
= −∫ . (1) 

It is useful for time frequency analysis. It is a modification 
of the short time Fourier transform (STFT, also named as 
the Gabor transform) [3]:            
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Compared with the STFT, the Gaussian mask of the S trans-
form varies with |f|. This makes the S transform have adap-
tive resolution (high resolution in the low frequency region 
and low resolution in the high frequency region). The S 
transform is useful in signal decomposition [4], power qual-
ity analysis [5], seismology [6], biomedical engineering 
[7][8], atmospheric science [9], and other applications re-
lated to time-frequency analysis. 

In [1], an algorithm for implementing the S transform in 
the Fourier domain was introduced. Since the S transform 
in (1) can be viewed as the following convolution operation   
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the S transform can be implemented as follows [1]: 
 

Step 1: Perform the discrete Fourier transform (DFT) for 
the samples of x(t):  
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   [ ] ( )1 (( ))N tx n x n= Δ ,     (( ))N is the modulus operation,       
and N is some integer that should be larger than the number 
of sample points of x(t). Note that if the time duration of x(t) 
is [T1, T2] and T1 < 0, then it is possible that n < 0 and we 
should use ((n))N to re-arrange the index before applying the 
DFT.         
 
Step 2:  For each m, compute the N-point inverse discrete 
Fourier transform (IDFT) as follows. Then, the result will 
be the S transform of x(t) at τ = nΔt and f = mΔf. 
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Suppose that m has M possible values. Then the above 

algorithm requires one DFT, M IDFTs, and M times of mul-
tiplications of exp(−2π2k2/m2). Thus, the complexity is:             
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and the average complexity for each m is: 
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In this paper, we find that the efficiency of the S transform 
can be further improved.  

First, notice that when |f| is large, the time duration of 
gf(t) = exp[−f2(τ − t)2/2] is very small. It means that (3) is a 
convolution of x(t)exp(−j2πft) with a very short function. 
The convolution of a long function and a short function can 
be implemented by the sectioned convolution.   

By contrast, when |f| is small, since FT[gf(t)] = 
exp[−2π2u2/f2] decays very fast, the bandwidth of gf(t) is 
very small. In this condition, the input of the IDFT in (6) is 
very short and we can use several shorter length IDFTs in-
stead of the N-point IDFT in (6) to implement the S trans-
form.       

Therefore, one can implement the S transform adap-
tively according to the value of |f|.  
(i) When |f| is large, the sectioned convolution algorithm 

can be applied. See Section 2.  
(ii) When |f| is small, the algorithm of sub IDFT can be 

applied. See Section 3.  
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(iii) Even in the middle frequency region, using both the 
sectioned convolution and the sub IDFT algorithms are 
more efficient than using the original algorithm. See 
Figs. 1 and 2.     

We also perform several simulations in Section 4 to 
show that the proposed hybrid algorithm can much improve 
the efficiency of the S transform.    

 
2.    SECTIONED CONVOLUTION IN HIGH FREQUENCY 

REGION 
 
Suppose that the number of sampling points for x(t) is N1:        
                     ( ) ( )sampling

tx t x n⎯⎯⎯⎯→ Δ , 
                  where n = n0, n0+1, .., n0+N1−1. (9) 
In theory, the function gf(t) in (3) has infinite duration. 
However, one can give a threshold:  
                     ( )0.001max ( )fthreshold g t=    (10) 

and ignore the case where |gf(t)| < threshold. It makes gf(t) 
become a time-limited function with the time duration of: 
                           f fB t B− < < ,   

       where 32 log(10 ) / | | 3.7169 / | |fB f f= =  (11) 
and the number of sampling points in the duration is      
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where ⎣ ⎦ means the rounding down operation. Therefore, (3) 
becomes the linear convolution of an N1-length sequence 
x(nΔt) and an L-length sequence g(nΔt).  
 

However, when |f| is large, the time-duration of gf(t) is 
very short and the value of L in (12) is also very small. In 
this case, instead of (3), one can divide x(nΔt) into several 
shorter sequences and use the sectioned convolution to 
implement the convolution of x(nΔt) and g(nΔt). That is,      

 
Step 1:  Divide x(nΔt) into B subsections. The length of 
each subsection is N2, where N2 = ⎡N1/B⎤ and ⎡ ⎤ means the 
rounding up operation. That is,       
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         where n = 0, 1, …, N2−1,    p = 0, 1, …., B−1,   
and exp(−j2π(n0+pN2+n)m/N) comes from substituting t = 
(n0+pN2+n)Δt and f = mΔf into exp(−j2πft) in (3). Moreover, 
as in (5), N = 1/ΔtΔf should be satisfied.         
 
Step 2:  Then, we use the N3-point DFT / IDFT pair to im-
plement the convolution in (3) instead of the N-point DFT / 
IDFT pair used in (5) and (6), where N3 should satisfy  
                       N3 > N2 + L −1 ≈ (N1/B) + L −1.         (14) 
This step can be accomplished by the following sub steps:  
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                        for p = 0, 1, …., B−1.  (16) 
Step 2-3:  [ ] [ ], ,p m p mQ n T n=         

                        for n = 0, 1, …, N2+L1−1, L1 = (L−1)/2,    
                 [ ] [ ], , 3p m p mQ n T n N= +   

                         for n = −L1, −L1 +1, ..., −1. (17) 
and Qp,m[n] = 0 otherwise. Then Qp,m[n] is near to  
                    [ ] [ ] ( ), ,p m p m t f tQ n x n g n≅ ∗ Δ Δ ,          (18) 
where * means the linear convolution and gf(t) is defined in 
(3).  

Steps 2-2 and 2-3 can be proved as follows 
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Thus, Tp,m[n] is the circular convolution of  xp,m[n] and 
Δtgf(nΔt) and Qp,m[n] in (17) is their linear convolution.  
 
Step 3:  Sum the linear convolution results of each subsec-
tion. Then we obtain the result of the S transform (denoted 
by S(nΔt, mΔf)):                       
 (a) ( ) [ ]0 2 ,( ) ,t f p mS n pN n m Q n+ + Δ Δ ≅    

        when (i)  L1 ≤ n < N2−L1,  p = 0, 1, …., B−1,    
                 (ii)  0 ≤ n < L1, p = 0,  or  
                 (iii) N2−L1 ≤ n < N2, p = B−1, where L1 = (L−1)/2,   
 (b) ( ) [ ] [ ]0 2 , 1, 2( ) ,t f p m p mS n pN n m Q n Q n N−+ + Δ Δ ≅ + + , 

         when 0 ≤ n < L1,  p = 1, 2, …., B−1 
 (c) ( ) [ ] [ ]0 2 , 1, 2( ) ,t f p m p mS n pN n m Q n Q n N++ + Δ Δ ≅ + − ,  

         when N2−L1 ≤ n < N2, p = 0, 1, , …., B−2.   (21)     
Step 3 can be proven from the fact that  
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Table 1  Complexities of the original algorithm and the  
proposed algorithm in Section 2 for implementing the S transform. 

Here, Δt = Δf = 0.02 and 0 ≤ t ≤ 30.  
[B(N1/B+L−1)/2]⋅log2(N1/B+L−1) + 

N1+BL−B  (reflect the complexity of the 
proposed algorithm) frequency 

(N/2)log2N + 
N (reflect the 
complexity of 
the original 
algorithm) B = 2 B = 4 B = 6 B = 9

|f| = 2 16610 11091 12446 14018 16502
|f| = 6 16610 9453 9372 9563 10027

|f| = 10 16610 9139 8787 8723 8818 
|f| = 15 16610 8982 8497 8306 8221 
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Then we analyze the complexity of the proposed algorithm. 
Suppose that there are M1 possible values of m. Then, the 
multiplication of exp(−2π2k2N2/(m2N3

2)) and the N3-point 
IDFT in (16) should be computed M1B times. Since 
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thus, in (13) and (15), we only have to calculate xp,m[n] and 
Xp,m[k] for m = 0, 1, …, N/N3 −1. Therefore there are 
N1N/N3 multiplications in (13), where N1 is the number of 
input sampling points (see (9)), and the N3-point DFT in (15) 
should be performed BN/N3 times. The product of 
exp(−j2π(n0+pN2)/N3) in (24) can be merged with the prod-
uct of exp(−2π2k2N2/(m2N3

2)) in (16). Therefore, the total 
complexity of the proposed algorithm is 
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and the average complexity for each m of the proposed 
algorithm is near to  
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where N1 is the number of input sampling points, B is the 
number of sections, and L is defined in (12) when M1 is 
sufficient large. In comparison, for the original algorithm in 
[1], the average complexity is as in (8). In the case where L 
<< N, if we choose B ≥ 2 and the constraint that N1 < N is 
satisfied, then N1/B + L − 1 << N and (26) will be much less 
than (8).   

For example, if Δt and Δf are fixed to 0.02, from (5), N 
= 2500 and the value of (N/2)log2N + N in (8) is near to 
16610. If the duration of the input signal is 0 ≤ t ≤ 30, then 

the value of N1 is 1501. In Table 1, we show the value of 
(26)) for different B and |f| (Note that |f| affects the value of 
L (see (12)) and hence the value of (26)). It shows that the 
proposed algorithm indeed has less complexity than the 
original algorithm. Especially, when |f| is large, using larger 
B (i.e., dividing the input into more sections) will be even 
more efficient.      

 
 

3.   SUB IDFT ALGORITHM IN LOW FREQUENCY REGION 
 
In previous section, we described that when |f| is large the 
sectioned convolution algorithm is helpful for improving 
the efficiency of the S transform. In this section, we show 
that, when |f| is small, the sub DFT algorithm will be more 
helpful for improving the efficiency. Note that, when |f| is 
small, since f = mΔf, the value of |m| in (6) is also small. It 
means that the exponential term exp(−2π2k2/m2) decays very 
fast. If we ignore the case where exp(−2π2k2/m2) < 10−3, 
then (6) can be rewritten as:   
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(27) is the N-point IDFT whose input has 2N4 + 1 points. If 
|f| is very small, 2N4 + 1 is much less than N. For example, 
when Δt = Δf = 0.02 and |f| = 1, the value of N = (1/ΔtΔf) is 
2500 but the value of N4 in (24) is only 30. Since 2N4 + 1 = 
61 << N, in this case, using the N-point IDFT to implement 
(27) directly would be very inefficient. Instead, we can use 
the sub IDFT algorithm described as follows to implement 
(27) and improve the efficiency.            

First, find an integer L1 such that  
   (a) L1 ≥ 2N4 + 1  and   (b)  1 1/B N L=  is an integer. (29) 
Then, (27) can be re-expressed as:  
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         where c = ((n))B1, a = (n−c)/B1, and n = aB1 + c. (31) 
 
Then, from the fact that the complexity of B1 times of the 
(N/B1)-point IDFTs is less than that of one N-point IDFT, 
we can use the following way to implement the N-point 
IDFT instead of using (6) directly to improve the efficiency. 
(Step 1 in (5) is unchanged.) 
 
(Modification for Step 2): First, calculate  
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                                      for c = 0, 1, …, B1−1.  (32) 
Then, perform the L1-point IDFT for each of Xc,m(k) (c = 0, 
1, …, B1−1):  
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Fig. 1  The complexities of using three different algorithms for 

implementing the S transform. Line 1: the original algo-
rithm, Lines 2 and 3: using the sectioned convolution al-
gorithm in Section 2 (B = 2 for line 2 and B = 4 for Line 
3), Line 4: using the sub IDFT algorithm in Section 3.       
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Note that if there are M1 possible values for m, then in (33) 
the L1-point IDFT should be performed B1M1 times. There-
fore, the complexity of the modified algorithm is: 

  
2

1
1 1 4 1 1 2 1

log (from Step 1)
2

(2 1) (from (32)) log (from (33))
2

N N

L
M B N M B L

+

+ +
 

  2 1 1 2 1log log
2 2
N NN M N M L≅ + + .      (34) 

Here, we use the fact that B1(2N4+1)  ≈ B1L1 = N (from 
(29)). Thus, the average complexity for each m of the pro-
posed sub IDFT algorithm is:        
          2 2 1 2 1

1
log log log

2 2 2
N N NN L N L N
M
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if M1 is sufficient large. Compared with (8), since L1 = N/B1 
<< N, it is obvious that (N/2)log2L1 is much less than 
(N/2)log2N. Therefore, using the proposed sub IDFT algo-
rithm can indeed improve the efficiency of the S transform, 
especially in the condition where |f| is small (Note that, 
since L1 = 2N4+1 and N4 is proportional to |f| (see (28)), if |f| 
is small, the value of L1 in (35) is also small).   
 

In Fig. 1, we compare the efficiencies of the three algo-
rithms for implementing the S transform. (i.e., original al-
gorithm, the sectioned convolution algorithm in Section 2, 
and the sub IDFT algorithm in Section 3) Here, 
          Δt = Δf = 0.02 (i.e., N = (1/ ΔtΔf) = 2500)  (36) 
and 0 ≤ t ≤ 30. Line 1 is (N/2)log2N + N, which is the com-
plexity of the original algorithm. It is invariant with f. Lines 
2 and 3 are [B(N1/B+L−1)/2]⋅log2(N1/B+L−1) + N1+BL−B 
when B = 2 and 4, respectively. They are the complexities 
when using the sectioned convolution algorithm in Section 
2. Line 4 is (N/2)log2L1 +N, which is the complexity of the 
sub IDFT algorithm described in this section.  

 

 
Fig. 2  Using different algorithms in different regions to imple-

ment the S transform, where B means the number of sec-
tions when using the sectioned convolution algorithm.  

 
From Fig. 1, it is obvious that when |f| is small, using 

the sub IDFT algorithm proposed in this Section will be 
more efficient for implementing the S transform. When |f| is 
in the middle region, it is proper to use the sectioned convo-
lution algorithm in Section 2 with smaller B to implement 
the S transform. In the high frequency region, it is proper to 
use the sectioned convolution algorithm with larger B, as in 
Fig. 2. Therefore, we can use the hybrid algorithm to im-
plement the S transform. For different |f|, the algorithm 
for implementing the S transform is also different.  
 
 

4.  SIMULATIONS 
 

We perform several simulations to compare the efficiencies 
of the proposed hybrid algorithm and the original algorithm 
to implement the S transform. There are two input signals:   
 
   Fig. 3(a):   x(t) = cos(2πt) for 0 ≤ t ≤ 10,     
                    x(t) = cos(6πt) for 10 ≤ t ≤ 20, 
                    x(t) = cos(4πt) for 20 ≤ t ≤ 30,                   (37) 
   Fig. 4(a):   x(t) = cos(20πt) for 0 ≤ t ≤ 10,     
                   x(t) = cos(3πt) for 10 ≤ t ≤ 20,     
             x(t) = cos(10πt) for 20 ≤ t ≤ 30.     (38) 
 
Their S transforms (computed by the original algorithm in 
(6) and (7)) are shown in Figs. 3(b) and 4(b).  

Then, we use the proposed hybrid algorithm to com-
pute the S transforms. In Fig. 3(b), we use the sub IDFT 
algorithm for |f| < 2 and use the sectioned convolution with 
for |f| ≥ 2. We plot the results in Figs. 3(c) and 4(c). The 
results are all the same as those of using the original algo-
rithm. It proofs that the proposed hybrid algorithm is valid.  

Then, we show the computation time in Table 2. The 
results show that the proposed hybrid algorithm saves over 
54% of the computation time and is much more efficient 
than the original algorithm. 

 
 
 

t-axis

Low frequency region:        Using the sub IDFT algorithm   

Middle frequency region:   (Using the sectioned convolution  
              with smaller B) 

f-axis 

High frequency region:       (Using the sectioned convolution  
             with larger B) Line 1 

Line 4 Line 3 Line 2 co
m

pl
ex

ity
 

|f| |f| 

1750



                       
0 5 10 15 20 25 30

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

              

 time (sec)

fre
qu

en
cy

S transform

0 5 10 15 20 25

-5

-4

-3

-2

-1

0

1

2

3

4

5

time (sec)

fre
qu

en
cy

Fast algorithm of the S transform

0 5 10 15 20 25

-5

-4

-3

-2

-1

0

1

2

3

4

5

 
Fig. 3  (a) The input signal x(t) (defined in (37)), (b) the S trans-

form of x(t) computed by the original algorithm, and (c) the S 
transform of x(t) computed by the proposed hybrid algorithm.  
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Fig. 4  (a) The input signal x(t) (defined in (38)), (b) the S trans-

form of x(t) computed by the original algorithm, and (c) the S 
transform of x(t) computed by the proposed hybrid algorithm. 

 
5.  CONCLUSIONS 

 
In this paper, we propose a hybrid algorithm to improve the 
implementation efficiency of the S transform. We find that, 
when |f| is small, it is proper to use the sub IDFT algorithm 
instead of the original method to implement the S transform. 
When |f| is large, it is proper to use the sectioned convolu-
tion algorithm and the number of sections is increased when 
|f| grows larger. The proposed algorithm much reduces the 
computation time of the S transform and is very helpful for 
time-frequency analysis.   

 
 
 
 
 
 

Table 2  Comparing the computation times of the original and the 
proposed hybrid algorithms for implementing the S transform  

Computation 
time 

Original 
algorithm

Hybrid  
algorithm Improvement

Signal in  
Fig. 3 3.20 sec 1.47 sec 54.1% 

Signal in  
Fig. 4 8.21 sec 3.71 sec 54.8% 
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