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ABSTRACT

In this paper a fast method for blind identification of peri-
odic sources is presented. In the well-known second order
blind identification method, the information is extracted from
instantaneous mixtures by simultaneously diagonalizing sev-
eral time-delayed covariance matrices, however, the delays
are chosen arbitrarily. This imposes computational cost which
is linearly related to the number of covariance matrices. Sta-
tistical characteristics of periodic sources are exploited here to
develop a method to effectively choose the appropriate delays
in which the diagonalization takes place. Detail theory to-
gether with the corresponding theorems have been presented.
Software simulations verify the superior performance of the
algorithm in the face of different noise and frequency varia-
tion levels over alternative methods.

1. INTRODUCTION

Blind source separation (BSS) has attracted many researchers
during recent years and has been effectively applied in differ-
ent fields including biomedical engineering, telecommunica-
tions, sound, and image processing. In general, it is impossi-
ble to solve a BSS problem unless some information is known
a priori.

There are many processes in nature that originate from
periodic phenomena and are studied or used in science and
engineering. The knowledge about the periodicity of the sig-
nals can be exploited to separate the sources. In [1] and
[2] a method based on generalized eigenvalue decomposition
(GEVD) is used to diagonalize the covariance matrices of the
observation vector at zero and a lag equal to the period of
the source of interest. The method called periodic component
analysis (7CA) maximizes a cost function which is a mea-
sure of periodicity of the estimated source. In the case of
varying periods, the observations have to be adjusted to have
perfect periods [2]. The performance of this method depends
on proper detection of the cycles of the periodic source sig-
nal(s).

Second order statistics are widely used in source separa-
tion context. In [3] an average eigen structure of the data
is obtained by simultaneous diagonalization of a set of co-
variance matrices each calculated at a different delay of the
pre-whitened data. It has been shown that the sources can be
estimated using the joint diagonalizer ([3] and [4]) of the co-
variance matrices. This method is called second order blind
identification (SOBI). Whitening a nonzero delay covariance
matrix is suggested in [5] to reduce white noise effects in the
non-stationary data. In order to reduce the effects of spatially
colored noise on the separation performance, the whitening is
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performed on a positive definite matrix in [6]. This matrix is a
linear combination of covariance matrices at different delays.
To minimize the effects of spatially colored noise on sepa-
ration performance, a bank of subband filters is proposed in
[7]. The method is based on reducing the covariance matrix of
noise subband from the covariance matrix of the observations.

Despite the good performance of the methods in [5, 6, 3,
7], there is no guideline regarding the selection of the appro-
priate delays in order to achieve the best performance and the
least computational cost in separation. Moreover, it is not
known how many delayed covariance matrices are required
such that the condition of essential uniqueness theorem [3]
is met. In the simulations, the first min(100,N/3) delayed
covariance matrices are used as default, where N is the total
number of samples. Although using this number of covari-
ance matrices provides acceptable average eigenvalue decom-
position, the computational cost is high (computational cost
of jointly diagonalizing ¢ matrices is proportional to ¢ [3]).

Under the periodicity assumption of the sources, a method
for selecting appropriate delays used in SOBI is presented in
this paper. It is shown that for n periodic signals using just n
delayed covariance matrices is enough to obtain a high quality
estimation. This method is also robust to noise and performs
well in those cases where the main frequency of the sources
varies with time.

The outline of the letter is as follows. Problem formula-
tion is detailed in the next section. The proposed algorithm
and the simulated experiments are presented in sections III
and IV, respectively. Section V contains concluding remarks.

2. PROBLEM FORMULATION

Assume a typical instantaneous BSS problem in which m mu-
tually statistically independent unknown sources are mixed
through an unknown medium and measured at n (n > m) sen-
sors. Also, let the mixing medium be modeled by matrix A.
Such a system therefore can be formulated in a vector form as

x(t) = As(t) +n(r) (1)

where s(t) = [s1(t)...sm(¢)]7 is the m x 1 source vector,
n(t) = [ny(t)...n,(t)]7 is an n x 1 stationary zero mean,
white noise vector independent of the source signals, x(¢) =
[x1(2)...x,(£)]" is the n x 1 measurement vector, A is an n X m
unknown full column rank mixing matrix and superscript T
represents the transpose operator.

Here, it is assumed that the source signals are periodic
with distinct fundamental frequencies. Furthermore, to sim-
plify the notation and with no loss of generality we assume
that m=n.



The covariance matrix of vector v(¢) at time ¢ and delay T
is defined as

i vV (t+1) (2)

=°N

R,(1,7) = (v(t)V (1 + 1)) = Jim

where (.) is the expected value of the enclosed term, N is the
total number of samples and superscript H denotes complex
conjugate transpose of matrix. We refer the ijth element of
R,(t,7) as n/(t,7).

In order to overcome the scaling problem, without loss of
generality, we assume that the source signals are unit norm,
which means

R,(t,0) = (s(t)s" (1)) =1 3)

where I is an n X n identity matrix . From this assumption we
can easily conclude the following relations for ijth element of
the covariance matrix (3):

(e, T)| < |rii(2,0)] Vi,7; Vil<i<n 4)

[Fi(t,T)|=0 Vr,7; Vi,jl<i#j<n ®)

To estimate the original sources, the observations are
firstly pre-whitened to obtain z(#) = Wx(¢) = Cs(r), where
C = WA. C is a unitary matrix because R (¢,0) =
(z(t)z" (1)) = WA(s(t)s" (1)) AWH = CCH = 1. The fun-
damental idea behind the method is to find a matrix B which
estimates the source signals by a rotation. In other words, the
sources can be identified by §(¢) = Bfz(r).

The covariance matrix of the whitened data at lag 7 is:

R.(1,7) = (2(t)z" (1+ 7)) = C{s(n)s" (1 + ))C" (6)

which clearly is a normal matrix. We want to find a matrix
B which is equal to C or essentially equal to C. In this case
A = W'B where A is the estimation of A and W' denotes
Moore-Penrose pseudo inverse of W.

It is known from linear algebra that all normal matrices
are diagonalizable by some unitary matrices (spectral theo-
rem in [8]) which may lead to separation. The unitary diago-
nalizer matrix of a whitened covariance matrix at some lag 7
is the separating matrix if the covariance matrix has distinct
eigenvalues. However, without a prior knowledge it is diffi-
cult to find the a time delay in which the covariance matrix
is full rank. In order to reduce the probability that an unfor-
tunate choice of time lag 7 results in unidentifiability of C
from R;(z,7) the joint diagonalization of several covariance
matrices is proposed in [3]. The consequent problem in joint
diagonalization is the uniqueness of the unitary diagonalizer
matrix. Here, the periodicity of the sources is used to obtain
the unique unitary diagonalizer, which is the separator matrix.

We know that the source signal s;(¢) is periodic for all
1 <i < n. This requires that for every source s;, we have:

ri(t,kT;) = ri(£,0) Vt,i 1<i<n 7

where T; is the period of source s;, and k is an arbitrary inte-
ger. r/(¢,0) is the maximum allowed value for the covariance
of the ith source. It means that the value of this function is
less than rii(¢,0) for all delays except those which are inte-
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ger multiples of 7;. Since the original sources are unit norm,
the covariance matrix of s in delay k7; obeys the following
structure:

R;(t,kT;) = diag(r1,...,ric1, 1, Fig1, .o Tn) g
<140 KL AT, 1<iji<n keN O

Assume a unitary matrix B diagonalizes the covari-
ance matrix R,(¢,7) at lag T such that BYR (¢,7)B =
B CR,(t,7)CB = A. Both B and C are unitary matrices,
so D = B C is also a unitary matrix and the diagonal matrix
A = diag(A1,2,...,A,) is the eigenvalue matrix of R(7,7)
which is equal to Ry(¢,7). Therefore, for each delay T;, the
covariance matrix R.(#,7;) is diagonalizable and only one of
its eigenvalues is equal to 1. This means for each 7; we have:

ri=l#r Vj1<j<n, j#i €))

This fact is used in the following theorem to guarantee
uniqueness of the the unitary diagonalizer.

Theorem 1. Assume that z(t) is a white mixture of peri-
odic sources with distinct periods and the covariance matri-
ces of the source vector s(t) satisfy (8). If a unitary matrix
B simultaneously diagonalizes the set of covariance matrices
Z={R.(t,T;) Vil <i<n}, (ie. forall iR,(t,T;) = BD;B",
where D; = diag(d, (i),da (i), ...,dy(i))) then any joint diago-
nalizer of elements of % is essentially equal to B.

Proof. To prove the sufficiency of the theorem, we assume
that a linear combination of the columns of B (i.e. e =
Y, o;b;) is a common eigenvector of the members of Z.
Therefore, forall 1 < j<n

Rz(t,Tj)e:lje: Z),ja,-b,- (10)
i=1

where b; is the ith column of B, 7Lj is an eigenvalue of
R.(1,Tj) and o;’s are complex coefficients. We arbitrarily
assume that o, # 0. Then, j can be found in a way that

dy(j) = b[I;IRz(t,Tj)bp =1, 1< p < n. We also know that
R (1, Tj)e=Y aR.(,T))b; =Y aidi(j)b;  (11)
i=1 i=1

From (10) and (11) one can conclude that for all i, 05 (A; —
d;i(j)) = 0. As the sources are periodic, we know that d;(j) =
1 # d;(j). Therefore, A; = d,(j) and o; = O for all i # p.

For the necessity condition assume that for two arbitrary
indices (p.q) d,(j) = d4(j) for all j. It’s clear that any linear
combination of the columns of B is a common eigenvalue of
the members of Z.

O

Although the above analysis is based on the assumption
that the periods of the signals are exactly known, the analy-
sis is still true for some delays close to the exact periods. In
other words, when there is uncertainty about the fundamental
periods of the sources or fundamental periods vary with time
the method can still successfully be used. In (7) and (8) we
showed that for each periodic signal there is a set of delays in



which the source covariance has a maximum value. A rough
estimation of the source frequencies may be obtained by dif-
ferent time and frequency domain methods. It is very likely
that the maximum covariance value can be found in a delay
close to the estimated period. Hence, to best cover the esti-
mation indeterminacy or the frequency variations a window
W centered at the delay corresponding to the estimated fre-
quency is used. A suitable window length L (which depends
on the nature of the sources) meets the condition of Theorem
1 and so can lead to separation of the source signals. It is
also noteworthy that choosing the appropriate window length
is not our major concern here.
Remarks:

e Periodic component analysis [1] is a special case of the
presented method in which the diagonalization is done in
only two lags (i.e. zero and the one corresponding to the
frequency of periodic signal). However, the accuracy of
this method is subject to the frequency variations. The
presented method in [2] for adjusting the period is useful
as long as the cycles of the periodic signals can be accu-
rately recognized by some means.

e The proposed method can be considered as a special case
of the well-known SOBI method. SOBI is a widely used
method and has an approved performance, however, a
large number of matrices is usually used in this method.
As it is shown in section IV selecting a small number of
covariance matrices does not provide a correct separation
by SOBI and a large number of matrices require higher
computational cost.

3. SEPARATION ALGORITHM

Based on Theorem 1 our objective is to find a unitary matrix
B which jointly diagonalizes the set of selected delayed co-
variance matrices. In other words, the desired B is the one
which minimizes the squared off-diagonal elements of the set
of all BYR_(¢,T;)B for all periods T;. The implementation of
the proposed method is presented in Algorithm 1.

Algorithm 1

1) Estimate periods of the sources

2) Pre-whiten the data by W as z(r) = Wx(r). W = AV2ET where A

is the eigenvalue matrix of x(#) and E is the corresponding eigenvector

matrix.

3) Calculate # = UL, % where

1, R (1T [L/2))) 7

4) Find B, the joint diagonalizer of the set of covariance matrices R.

5) The estimated sources are formed by B and W as §(¢) = B/ Wx(r).
where |.| is the floor operator, i.e. the largest integer not greater than the
operand.

* The set of covariance matrices %; can be formed for any delay k7; instead
of T; as long as kT; # T, j # i and k € N.

# = {R(LT).RT; %

4. EXPERIMENTS

To evaluate the performance of the proposed method, differ-
ent experiments were designed for both synthetic and real
world data. The first data set used here includes four peri-
odic sources, each composed of sine waves with normalized
frequencies of 0.023, 0.01, 0.037, and 0.017 Hz and few har-
monics. To evaluate the performance of the method in such
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Fig. 1: Four periodic sources used in the experiments. For some
experiments the frequencies of the sources are changed by time. The
black dashed lines show the distorted sources when change of up to
10% in frequencies is permitted in each cycle.
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. . . . . . . . . ,
10 20 30 40 50 60 70 80 90 100
No. of covariance matrices

Fig. 2: Mean rejection level vs. the number of covariance matrices.

cases that the main frequency of the signals vary in time, a
random coefficient is also applied to the frequencies in each
cycle. Fig. 1 illustrates 500 samples of pure periodic sources
along with their distorted versions. The main frequency of the
distorted sources have a random variation of up to 10%. The
second data set is a mixture of voice and music signals. Ex-
periments 1-4 are performed on the synthetic data, and in the
last experiment the proposed method is applied to real world
data.

In the ideal case of the separation, A should be equal to A,
or in other words AuA = I. Therefore, the sum of the squared

off-diagonal elements of AﬁA which is called mean rejection
level (MRL) is used here as a quantitative measure to evaluate
the algorithm [3]. The lower the value of MRL is, the better
performance from the algorithm is expected.

In the following experiments, 2000 samples of the peri-



Table 1: Simulation time vs. number of covariance matrices for
the proposed method. The average time for SOBI with ¢ = 100 is
94.1ms. (All times are in milliseconds.)

No. of covariance matrices (c)
64
57.0

11 18
19.1  23.0

39
38.1

53
50.0

79
70.5

94
87.3

100
94.3

time

Mean rejection level (dB)

— — — Proposed Method
— — SOBI (L=1, ¢ = 4)
SOBI (c=100)
15 . . . )
-10 -5 0 5 10 15 20

SNR (dB)

Fig. 3: Mean rejection level vs. SNR. The proposed method and
SOBI (¢=100) perform similarly.

odic sources are mixed through linear mixtures while Gaus-
sian noise is added to the mixtures. MRL (when used) is av-
eraged over 100 independent trials for each value of the hor-
izontal axis. L covariance matrices are calculated for each
estimated period and after omitting the overlapping delays a
set of ¢ matrices are jointly diagonalized.

Experiment 1: In order to compare the execution time
of the proposed method to that of SOBI, both methods were
applied to the first data set (while the sources are pure peri-
odic sources, Fig. 1). The experiments were conducted on
a PC with 3.2 GHz Pentium IV CPU and 1.5GB of RAM.
The average execution time of 100 independent trials of the
original SOBI and the proposed method for different number
of covariance matrices have been reported in Table 1. Lower
number of covariance matrices, yields lower execution time.
At the same time that the algorithm converges fast, by analyz-
ing the mean rejection levels of the experiments it is verified
that the separation quality is very close to that of SOBI (see
Fig.2).

Experiment 2: MRL against the total number of delayed
covariance matrices (c¢) is shown in Fig. 2. The horizon-
tal axis represents the total number of covariance matrices.
The results of the proposed algorithm along with the results
of SOBI, when the same number of covariance matrices are
used are presented in this figure. Result of SOBI with 100
covariance matrices is also presented as a reference. In this
experiment the signal-to-noise ratio (SNR) defined as SNR =
—10log;q o2 is set to -1dB, where 62 is the noise variance.
For almost all values of ¢ the proposed method performs very
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Fig. 4: Mean rejection level vs. variations in frequency.

close to SOBI with 100 covariance matrices.

Experiment 3: In this experiment the effects of SNR on
the performance of the methods were investigated and the re-
sults have been depicted in Fig. 3. Different levels of noise
were added to the linear mixtures of the same sources used
in previous experiments. The results of the proposed method
are shown by red dashed line. Although only 4 covariance
matrices are diagonalized by the proposed method, the per-
formance is very close to SOBI with 100 covariance matrices
(blue solid line). This performance is the result of choosing
appropriate time delayed covariance matrices.

Experiment 4: Fig. 4 demonstrates the performance of
the proposed algorithm for a set of periodic signals with
time varying frequencies. Again, the main frequencies of
the signals are equal to those of the signals used in experi-
ment 1, but for each cycle of the ith source, f; + B f; is used
as the main frequency, where f; is the main frequency and
—0.15 < B < 0.15 is a random coefficient. As expected, the
proposed method with ¢=12 and SOBI with ¢=100 provide
better performance compared to periodic component analysis
and SOBI with c=12.

Experiment 5: The second data set includes linear mix-
ture of voice and music signals. Both the original sources
and the mixtures were obtained form the ICA demo page at
Helsinki University of Technology ICA research group web-
site!. The sources 2, 4, 5, and 7 were selected and the pro-
posed method was applied to their linear mixtures. Figures 5.a
and b show the original sources and the mixtures respectively.
The proposed method is applied to the mixtures while only 12
covariance (L = 3, ¢ = 12) matrices are carefully chosen to be
diagonalized simultaneously. The result of application of the
method is presented in Fig. 5.c. Although there are scaling
and permutation ambiguities, the estimated sources are very
similar to the original ones.

IThe demo page is accessible from: http://www.cis.hut.fi/
projects/ica/cocktail/cocktail_en.cgi
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Fig. 5: A set of voice and music signals; (a) original sources, (b)
linear mixtures, and (c) output of the proposed method.

The period of the original sources have to be known a
priori. Here, the appropriate time delays are chosen using
the power spectral density (PSD) of the sources. In Fig. 6 a
portion of the PSD of the sources are presented. The period-
icity of the sources can be detected from the high peaks of the
PSDs, as for this case 34.9, 97.5, 134.6, and 164.4 hertz are
selected empirically.
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Fig. 6: Part of power spectral densities of the original sources in Fig.
5.a. Arrows point to some of the frequencies corresponding to the
appropriate time delays to be used in the proposed algorithm.

5. CONCLUSION

In this paper an efficient method for selecting the optimal de-
lays for second order blind identification of periodic signals
has been presented. The cost of computations for simultane-
ous diagonalization of covariance matrices in the second or-
der blind identification method is a linear function of the num-
ber of covariance matrices, however in the proposed method
using considerably small set of covariance matrices results in
a fast and still precise separation. Different experiments show
that the results of the proposed method are the asymptotic re-
sults of SOBI with a significantly lower computational cost.
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