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ABSTRACT

This paper presents a simple and robust methothfvdave
detection and quantification of nociceptive withded re-
flexes in surface electromyography, based on poegssing
the signals with the Teager-Kaiser energy operatiith-
drawal responses were recorded from tibialis amtednd
soleus muscles in three hundred subjects, and aesudf
fifty recordings of each muscle were classifiedahyexpert
as either exhibiting a reflex or not. Performandefive de-
tection algorithms was compared against the expef#issi-
fication using a receiver operating characteristinalysis.
Results showed improvement in the performancd afgud-
rithms when the pre-processing algorithm was ajgplie

1 INTRODUCTION

The nociceptive withdrawal reflex (NWR) is a tydicaac-
tion observed in almost all living species, witle fhurpose
of withdrawing the extremities from potential tissu
damaging agents. It was first described at thermdgy of
the 2
tive (i.e., painful) electrical stimulation of the limbs imia
mals caused a flexion of the stimulated limb tohdraw it
from the stimulus, associated with an extensiothefother
limb to preserve balance [1]. This pattern was dfte
named ‘flexion reflex’, although later researchwhd that
an extension reflex could also be elicited [2],staxpand-
ing the concept to the more general term ‘withdiarea
flex’. The NWR has been suggested as an electraphys
logical measure correlated to pain in humans [3§, i& has
been proven useful as an assessment tool for cheand
pharmacological modulation of pain processing awod n
ciceptive neurotransmission at spinal level, ad agin the
research of chronic pain and other painful disadésr a
review, see [4]).

A NWR can be elicited by natural and artificial nstili.
Examples of natural stimuli are heat and pressutech
activate specific pain receptors in the skin [5h tBe other
hand, electrical stimulation is the most widely disetifi-
cial method for eliciting the NWR [6]. This kind afimu-
lus bypasses the skin receptor and generates @m gqat-
tential directly in the sensory nerve. In both sasdectro-
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myography (EMG) is commonly used to record theepefl
response from the muscles [1,2,7].

There are two different recording strategies for&Nhva-
sive, in which a direct measurement of muscle faartvity

is obtained by intra-muscular needle electroded, mon-
invasive, where integrated potentials are acquirgdsur-
face electrodes placed on the skin. For the NWRase
EMG (seEMG) recording is generally preferred. Thesimo
important advantage of SEMG is that it is not neaggto
insert needles into the muscle, which could chahgesen-
sory inflow to the spinal cord and therefore afféna spinal
control. However, SEMG has the disadvantage ofipless
contamination by noise.g, ambient and transducer noise,
artefacts and unwanted signals from other musaledoise
proximity to the muscle fibres of interest, nameiyoelec-
tric cross-talk [8].

Several methods for detection and quantificationthod
NWR in sEMG recordings have been introduced, inte-
grated and mean sEMG [9], area under the curve, [10]

century by Sherrington, who observed that nocicepmaximal peak to peak values [11], and root mearargqu

[7], among others. Nevertheless, there is no causeon
which one is the best method to define a thresfaidhe
NWR and determine its most significant charactiesst
Furthermore, the performance of all these techmigise
negatively affected when the SEMG signal is conteated
with noise. Most of the methods developed to oveo
this difficulty are complex and computationallyense, and
often a priori knowledge of the properties of the sEMG
signals is required [12]. That is not the casehaf &lgo-
rithm proposed in this paper, which simply consistsa
nonlinear operator that tracks the energy of thetesy that
produces a signal instead of the signal’s enersgffitlt was
developed by Teager while working on nonlinear spee
modelling, but later applied also in other fieldsich as
image processing and pattern recognition [13].

In the present study, a fast and simple methodnfrave
the characterization of the NWR is proposed. Itsisis on
pre-processing the sEMG signals with the Teagesédfai
energy operator (TKEQ) prior to the detection andrifi-
cation stage. This paper presents the methodologyhe
recording and analysis of the NWR, the basic théatyind
the TKEO and its application on real SEMG data.UuRes



will be presented, demonstrating improvement ovadit
tional detection and quantification techniques.

2. MATERIALSAND METHODS

2.1 Teager-Kaiser energy operator

The TKEO is a simple algorithm that allows estimgtthe
energy required to generate, in a sense, a gigaalsiThis
should not be mistaken with the traditional defonit of
energy from the signal processing fielé,., the average of
the sum of the squares of the magnitude of theafgn
samples. It is more related to the ‘physical’ cquricaf the
energy of a simple oscillation, which is proporabmo the
square of the amplitude and to the square of thguéncy
of the oscillation.

The discrete TKEGQY¥ is defined in time domain as:

WX = X = %0 %, (2)
For a given oscillatory signal,
X, = Acos@, + ) )
the output of the TKEO is given by (et al, 2007)
W[x | = A’sin®(w,) 3)

This expression is exact whem, < 77/2, that is, when the
maximum frequencyf  of the signal is one-fourth of the
sampling frequencyf_. Also, for small values ofaw,,
sin,)=w,. If w,<m/4,ie, f /f <18, the error of

the approximation is below 10%. Thus, we can ren®)
as follows:

W[x | = A’sin’(w,) = Aw,’ (4)
The above expression gives a good approximatiothef
energy of an oscillatory signal, based on its imstacous
amplitude and frequency values. The algorithm iy &&m-
ple and robust (since it involves only two multgaitions
and a sum, and there are not divisions); it hasrg short
response time to changes in amplitude and frequgibcy
depends on three consecutive sampling instants),tia
resulting estimation of the energy is independeinthe
initial phase,g, of the oscillation.

Surface EMG consists of the sum of the electricailviy
of the active motor units in a muscle as detectgelbc-
trodes placed on the skin. When the muscle costraoe
motor units fire action potentials, which are uguaccom-
panied by an instantaneous increase in both ardplitund
frequency contents of the sEMG signal. Therefole
TKEO becomes a useful tool in order to detect $hisulta-
neous variation and differentiate it from artefastscross-
talk, which have a different pattern for amplitudegquency
variations.
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2.2 Recording and analysis of the NWR
2.2.1 Subjects

Three hundred healthy volunteers (168 men and 108

women, ages ranging from 18 to 80 years) partiegban
the study. Informed consent was obtained from ujexcts,
and the Helsinki declaration was respected.

2.2.2 Electrical stimulation

Ten electrodes (copper, diameter 0.8 cm) were non-

uniformly mounted on the sole of the foot and a c@n
anode (10 x 14 cm) was placed on the dorsum dfoibie A
computer-controlled stimulator delivered a stimulasone
electrode at a time in a randomized order, wittagdom
inter-stimulus interval ranging from 10 to 15 sckastimu-
lus consisted of a constant-current pulse traib iodividual
1 ms pulses delivered at 200 Hz. For each elecpodiion,
the lowest stimulus intensity that evoked paia.(the pain
threshold) was assessed, and a stimulation inyeasif..5
times higher than the pain threshold was sele&adh elec-
trode site was stimulated 4 times.

2.2.3 EMG recordings

The EMG was recorded with surface electrodes fiibialis
anterior (TA) and soleus (SOL) muscles. Beforechitay
the electrodes, the skin was slightly abraded dadned
with isopropyl alcohol. SEMG signals were amplifiggh to
50000 times), filtered (5-500 Hz“@rder), sampled (2000
Hz), displayed on the computer screen and storeal loard
drive. SEMG signals were recorded from 200 ms Ilegefor
stimulation to 800 ms after stimulation onset.

2.2.4 Data analysis

Fifty SEMG recordings from each muscle were rangoml
chosen to be classified by an expert as eitherbékig or
not exhibiting a reflex response, in order to havéold
standard’ against which to compare the performaridhe
algorithms. All the measurements were calculatedthen
60-180 ms post-stimulation interval (where refletiaty
may appear), and the 0-120 ms pre-stimulationvatevas
used as a measurement of background activity. Stdnd
methods for detection and quantification of the NW&re
employed, as described in [1&ignal-to-Noise Rati(SNR,
power ratio between the NWR interval and the bamlgd
activity), Interval Mean Valug¢IMV, mean value of the recti-
fied NWR interval),Interval Peak ValugIPV, peak value of
the rectified NWR interval)Mean Z-ScorgMZS, IMV mi-
nus background activity mean value and divided agkb
ground activity standard deviation) aRdak Z-ScoréPZS,
IPV minus background activity mean value and dislidbsy
background activity standard deviation).

2.2.5 Performance assessment

A receiver operating characteristic (ROC) analygis car-
ried out to determine the performance of each nabthiuile
detecting the NWR. The methods were compared aghims
classification of the expert using the area untter ROC
curve. The area under the ROC curve correspondketo
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Figure 1: Examples of SEMG signals befor beforeatet pre-processingr( reflex, CT: cross-talk)

probability of correctly identifying which recordinis just
‘noise’ and which is ‘signal plus noise’. Thus, @aea under 4, DISCUSSION
the ROC curve close to 1.0 implies good performaridae
method, meaning that it is able to discriminateween
presence and absence of the NWR in a recording,aand
area under the ROC curve close to 0.5 implies that
method is not capable to determine whether theaerédlex
in the recording or not.

ROC analysis showed a good performance of all nastio
the detection of the NWR, as previously reportedliB].
Methods involving peak values (IPV and PZS) perfedm
best, with areas under the ROC curve greater th@a. 0
There is a noticeable difference between perforesrnio
TA recordings compared to SOL recordings: NWR detec
3 RESULTS tion in TA is in average 5% be_tter than in SOL. sTH to

' be expected because SOL signals are more affegted b
Figure 1 shows the effect of the TKEO on sEMG dligina cross-talk and noise than TA signals, due to thetfeat the
acquired simultaneously. Note the amount of crallisih ~ most common withdrawal pattern is dorsiflexion loé tan-
the first part of the SOL signal, and how it isuwedd after kle, which mostly involves TA activity [7]. Nevertess,
pre-processing, compared to the reflex size. with TKEO pre-processing this difference disappdaiish
improvements up to 12% in some cases), and all gdsth
accomplish areas under the ROC curve greater ti2# O
therefore becoming reliable for NWR detection task.

A comparison of the areas under the ROC curve dohe
algorithm is shown in Table 1, with and without T&pre-
processing. All area under the ROC curve estimates
significant © < 0.001). Since there is not an objective pattern to meash@eccu-
racy of quantification for any method, a comparisannot
be established. Previous work using both simulatesiG
models and experimental data showed that the fregue

Table 1. Receiver operating characteristic analysis.

TibialisAnterior Soleus content of the signal recorded alone cannot giyeiaaica-

_ _ _ _ tion on crosstalk, and as a consequence, crossedlkc-

Method Without  With Without ~ With tion cannot be achieved by temporal high-passrifilge
TKEO  TKEO TKEO  TKEO only [15]. Here, it could be argued that if the etion im-

proves after pre-processing the recordings withTtK&EO

SNR 0.94 0.96 0.86 0.98 (taking into accounboth amplitude and frequency content),
IMV 0.91 0.96 0.89 0.98 it must be due to a reduction in the effect of aeo&d
cross-talk over the signals, that is, an enhanceinethe
IPV 0.97 0.98 0.95 0.97 signal-to-noise ratio (as can be seen on the examgFig.
1). Thus, if the signal-to-noise ratio improvesegrththe
MZS 0.92 0.95 0.83 0.95 guantification process should be more accuratéjrigao a
PZS 0.97 0.98 0.92 0.98 better characterization of the NWR.
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The theory behind the TKEO was originally developed
within the field of AM-FM demodulation methods. Qve

the years, these techniques have evolved in omdind
new solutions for the problems within that fielchdanew

algorithms were developed based on the TKEO, ssch a
MESA [16] and PACED [17]. Furthermore, re-evaluatio

of the Hilbert transform led to the developmentteth-
niques like EMD [18] and IHT [19]. All these teclynies
constitute the current state of the art in AM-FMmbelula-

tion [20], and as such, they have grown in compyexi

pathways to the tibialis anterior muscle in humans”
Acta Physiol. Scand163(4), 391-401, 1998.

[11] D. M. Koceja, R. H. Bernacki & G. Kamen, “Meit+

ology for the quantitative assessment of human
crossed-spinal reflex pathway#led. Biol. Eng. Com-
put.,29(6), 603-606, 1991.

[12] X. Li, P. Zhou & A. S. Aruin, “Teager-Kaiserngrgy

Operation of Surface EMG Improves Muscle Activity
Onset Detection”,Ann. Biomed. Eng.35(9), 1532-
1538, 2007.

throughout the years. On the other hand, the TKEID s [13] J. F. Kaiser, “On a simple algorithm to cabtel the

preserves its simplicity and robustness that foange
makes it suitable for use in online pre-processihgEMG
signals [21].

In conclusion, TKEO pre-processing improves thecksin
and quantification of the NWR regardless of the hods
chosen for these tasks. A more extensive analysahing
a larger number of recordings is planned in ordeshitain
more accurate statistics.
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