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ABSTRACT 

This paper presents a simple and robust method to improve 
detection and quantification of nociceptive withdrawal re-
flexes in surface electromyography, based on pre-processing 
the signals with the Teager-Kaiser energy operator. With-
drawal responses were recorded from tibialis anterior and 
soleus muscles in three hundred subjects, and a subset of 
fifty recordings of each muscle were classified by an expert 
as either exhibiting a reflex or not. Performance of five de-
tection algorithms was compared against the expert’s classi-
fication using a receiver operating characteristic analysis. 
Results showed improvement in the performance of all algo-
rithms when the pre-processing algorithm was applied. 

1. INTRODUCTION 

The nociceptive withdrawal reflex (NWR) is a typical reac-
tion observed in almost all living species, with the purpose 
of withdrawing the extremities from potential tissue-
damaging agents. It was first described at the beginning of 
the 20th century by Sherrington, who observed that nocicep-
tive (i.e., painful) electrical stimulation of the limbs in ani-
mals caused a flexion of the stimulated limb to withdraw it 
from the stimulus, associated with an extension of the other 
limb to preserve balance [1]. This pattern was therefore 
named ‘flexion reflex’, although later research showed that 
an extension reflex could also be elicited [2], thus expand-
ing the concept to the more general term ‘withdrawal re-
flex’. The NWR has been suggested as an electrophysio-
logical measure correlated to pain in humans [3], and it has 
been proven useful as an assessment tool for chemical and 
pharmacological modulation of pain processing and no-
ciceptive neurotransmission at spinal level, as well as in the 
research of chronic pain and other painful disorders (for a 
review, see [4]). 

A NWR can be elicited by natural and artificial stimuli. 
Examples of natural stimuli are heat and pressure, which 
activate specific pain receptors in the skin [5]. On the other 
hand, electrical stimulation is the most widely used artifi-
cial method for eliciting the NWR [6]. This kind of stimu-
lus bypasses the skin receptor and generates an action po-
tential directly in the sensory nerve. In both cases, electro-

myography (EMG) is commonly used to record the reflex 
response from the muscles [1,2,7].  

There are two different recording strategies for EMG: inva-
sive, in which a direct measurement of muscle fibre activity 
is obtained by intra-muscular needle electrodes, and non-
invasive, where integrated potentials are acquired by sur-
face electrodes placed on the skin. For the NWR, surface 
EMG (sEMG) recording is generally preferred. The most 
important advantage of sEMG is that it is not necessary to 
insert needles into the muscle, which could change the sen-
sory inflow to the spinal cord and therefore affect the spinal 
control. However, sEMG has the disadvantage of possible 
contamination by noise, e.g., ambient and transducer noise, 
artefacts and unwanted signals from other muscles in close 
proximity to the muscle fibres of interest, namely myoelec-
tric cross-talk [8]. 

Several methods for detection and quantification of the 
NWR in sEMG recordings have been introduced, e.g., inte-
grated and mean sEMG [9], area under the curve [10], 
maximal peak to peak values [11], and root mean square 
[7], among others. Nevertheless, there is no consensus on 
which one is the best method to define a threshold for the 
NWR and determine its most significant characteristics. 
Furthermore, the performance of all these techniques is 
negatively affected when the sEMG signal is contaminated 
with noise. Most of the methods developed to overcome 
this difficulty are complex and computationally intense, and 
often a priori knowledge of the properties of the sEMG 
signals is required [12]. That is not the case of the algo-
rithm proposed in this paper, which simply consists on a 
nonlinear operator that tracks the energy of the system that 
produces a signal instead of the signal’s energy itself. It was 
developed by Teager while working on nonlinear speech 
modelling, but later applied also in other fields, such as 
image processing and pattern recognition [13]. 

In the present study, a fast and simple method to improve 
the characterization of the NWR is proposed. It consists on 
pre-processing the sEMG signals with the Teager-Kaiser 
energy operator (TKEO) prior to the detection and quantifi-
cation stage. This paper presents the methodology for the 
recording and analysis of the NWR, the basic theory behind 
the TKEO and its application on real sEMG data. Results 
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will be presented, demonstrating improvement over tradi-
tional detection and quantification techniques. 

2. MATERIALS AND METHODS 

2.1 Teager-Kaiser energy operator 

The TKEO is a simple algorithm that allows estimating the 
energy required to generate, in a sense, a given signal. This 
should not be mistaken with the traditional definition of 
energy from the signal processing field, i.e., the average of 
the sum of the squares of the magnitude of the signal’s 
samples. It is more related to the ‘physical’ concept of the 
energy of a simple oscillation, which is proportional to the 
square of the amplitude and to the square of the frequency 
of the oscillation.  

The discrete TKEO Ψ  is defined in time domain as: 

 2
1 1[ ]n n n nx x x x+ −Ψ = −  (1) 

For a given oscillatory signal, 

 cos( )n nx A ω φ= +  (2) 

the output of the TKEO is given by (Li et al., 2007) 

 2 2[ ] sin ( )n nx A ωΨ =  (3) 

This expression is exact when 2nω π≤ , that is, when the 

maximum frequency mf  of the signal is one-fourth of the 

sampling frequency 
sf . Also, for small values of nω , 

sin( )n nω ω≈ . If 4nω π≤ , i.e., 1 8m sf f ≤ , the error of 

the approximation is below 10%. Thus, we can rewrite (3) 
as follows: 

 2 2 2 2[ ] sin ( )n n nx A Aω ωΨ = ≈  (4) 

The above expression gives a good approximation of the 
energy of an oscillatory signal, based on its instantaneous 
amplitude and frequency values. The algorithm is very sim-
ple and robust (since it involves only two multiplications 
and a sum, and there are not divisions); it has a very short 
response time to changes in amplitude and frequency (it 
depends on three consecutive sampling instants), and the 
resulting estimation of the energy is independent of the 
initial phase, φ , of the oscillation. 

Surface EMG consists of the sum of the electrical activity 
of the active motor units in a muscle as detected by elec-
trodes placed on the skin. When the muscle contracts, the 
motor units fire action potentials, which are usually accom-
panied by an instantaneous increase in both amplitude and 
frequency contents of the sEMG signal. Therefore, the 
TKEO becomes a useful tool in order to detect this simulta-
neous variation and differentiate it from artefacts or cross-
talk, which have a different pattern for amplitude-frequency 
variations. 

 

2.2 Recording and analysis of the NWR 

2.2.1 Subjects 

Three hundred healthy volunteers (168 men and 108 
women, ages ranging from 18 to 80 years) participated in 
the study. Informed consent was obtained from all subjects, 
and the Helsinki declaration was respected. 

2.2.2 Electrical stimulation 

Ten electrodes (copper, diameter 0.8 cm) were non-
uniformly mounted on the sole of the foot and a common 
anode (10 x 14 cm) was placed on the dorsum of the foot. A 
computer-controlled stimulator delivered a stimulus to one 
electrode at a time in a randomized order, with a random 
inter-stimulus interval ranging from 10 to 15 s. Each stimu-
lus consisted of a constant-current pulse train of 5 individual 
1 ms pulses delivered at 200 Hz. For each electrode position, 
the lowest stimulus intensity that evoked pain (i.e., the pain 
threshold) was assessed, and a stimulation intensity of 1.5 
times higher than the pain threshold was selected. Each elec-
trode site was stimulated 4 times.  

2.2.3 EMG recordings 

The EMG was recorded with surface electrodes from tibialis 
anterior (TA) and soleus (SOL) muscles. Before attaching 
the electrodes, the skin was slightly abraded and cleaned 
with isopropyl alcohol. sEMG signals were amplified (up to 
50000 times), filtered (5–500 Hz, 2nd order), sampled (2000 
Hz), displayed on the computer screen and stored on a hard 
drive. sEMG signals were recorded from 200 ms before 
stimulation to 800 ms after stimulation onset. 

2.2.4 Data analysis 

Fifty sEMG recordings from each muscle were randomly 
chosen to be classified by an expert as either exhibiting or 
not exhibiting a reflex response, in order to have a ‘gold 
standard’ against which to compare the performance of the 
algorithms. All the measurements were calculated on the 
60–180 ms post-stimulation interval (where reflex activity 
may appear), and the 0–120 ms pre-stimulation interval was 
used as a measurement of background activity. Standard 
methods for detection and quantification of the NWR were 
employed, as described in [14]: Signal-to-Noise Ratio (SNR, 
power ratio between the NWR interval and the background 
activity), Interval Mean Value (IMV, mean value of the recti-
fied NWR interval), Interval Peak Value (IPV, peak value of 
the rectified NWR interval), Mean Z-Score (MZS, IMV mi-
nus background activity mean value and divided by back-
ground activity standard deviation) and Peak Z-Score (PZS, 
IPV minus background activity mean value and divided by 
background activity standard deviation).  

2.2.5 Performance assessment 

A receiver operating characteristic (ROC) analysis was car-
ried out to determine the performance of each method while 
detecting the NWR. The methods were compared against the 
classification of the expert using the area under the ROC 
curve. The area under the ROC curve corresponds to the 
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probability of correctly identifying which recording is just 
‘noise’ and which is ‘signal plus noise’. Thus, an area under 
the ROC curve close to 1.0 implies good performance of the 
method, meaning that it is able to discriminate between 
presence and absence of the NWR in a recording, and an 
area under the ROC curve close to 0.5 implies that the 
method is not capable to determine whether there is a reflex 
in the recording or not.  

3. RESULTS 

Figure 1 shows the effect of the TKEO on sEMG signals 
acquired simultaneously. Note the amount of cross-talk in 
the first part of the SOL signal, and how it is reduced after 
pre-processing, compared to the reflex size. 

A comparison of the areas under the ROC curve for each 
algorithm is shown in Table 1, with and without TKEO pre-
processing. All area under the ROC curve estimates are 
significant (p < 0.001).  

Table 1. Receiver operating characteristic analysis. 

4. DISCUSSION 

ROC analysis showed a good performance of all methods in 
the detection of the NWR, as previously reported in [13]. 
Methods involving peak values (IPV and PZS) performed 
best, with areas under the ROC curve greater than 0.92. 
There is a noticeable difference between performances in 
TA recordings compared to SOL recordings: NWR detec-
tion in TA is in average 5% better than in SOL. This is to 
be expected because SOL signals are more affected by 
cross-talk and noise than TA signals, due to the fact that the 
most common withdrawal pattern is dorsiflexion of the an-
kle, which mostly involves TA activity [7]. Nevertheless, 
with TKEO pre-processing this difference disappears (with 
improvements up to 12% in some cases), and all methods 
accomplish areas under the ROC curve greater than 0.95, 
therefore becoming reliable for NWR detection task. 

Since there is not an objective pattern to measure the accu-
racy of quantification for any method, a comparison cannot 
be established. Previous work using both simulated sEMG 
models and experimental data showed that the frequency 
content of the signal recorded alone cannot give any indica-
tion on crosstalk, and as a consequence, cross-talk reduc-
tion cannot be achieved by temporal high-pass filtering 
only [15]. Here, it could be argued that if the detection im-
proves after pre-processing the recordings with the TKEO 
(taking into account both amplitude and frequency content), 
it must be due to a reduction in the effect of noise and 
cross-talk over the signals, that is, an enhancement in the 
signal-to-noise ratio (as can be seen on the example in Fig. 
1). Thus, if the signal-to-noise ratio improves, then the 
quantification process should be more accurate, leading to a 
better characterization of the NWR.  

 Tibialis Anterior  Soleus 

Method 
Without 
TKEO 

With 
TKEO 

 Without 
TKEO 

With 
TKEO 

SNR 0.94 0.96  0.86 0.98 

IMV 0.91 0.96  0.89 0.98 

IPV 0.97 0.98  0.95 0.97 

MZS 0.92 0.95  0.83 0.95 

PZS 0.97 0.98  0.92 0.98 

Figure 1: Examples of sEMG signals befor before and after pre-processing (R: reflex, CT: cross-talk) 
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The theory behind the TKEO was originally developed 
within the field of AM-FM demodulation methods. Over 
the years, these techniques have evolved in order to find 
new solutions for the problems within that field, and new 
algorithms were developed based on the TKEO, such as 
MESA [16] and PACED [17]. Furthermore, re-evaluation 
of the Hilbert transform led to the development of tech-
niques like EMD [18] and IHT [19]. All these techniques 
constitute the current state of the art in AM-FM demodula-
tion [20], and as such, they have grown in complexity 
throughout the years. On the other hand, the TKEO still 
preserves its simplicity and robustness that for example 
makes it suitable for use in online pre-processing of sEMG 
signals [21]. 

In conclusion, TKEO pre-processing improves the detection 
and quantification of the NWR regardless of the methods 
chosen for these tasks. A more extensive analysis involving 
a larger number of recordings is planned in order to obtain 
more accurate statistics. 
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