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ABSTRACT

In this paper, we present a robust and efficient structure for
the reconstruction of uniform samples of a signal from its re-
current nonuniform samples. This structure makes use of the
synthesis part of a uniform discrete Fourier transform (DFT)
modulated filterbank. The proposed structure is a refinement
over an existing filterbank structure that utilizes the inverse of
a nonuniform DFT matrix, the numerical stability of which
cannot be guaranteed. The poor numerical stability of the
inverse is overcome in a modified structure by inverting a
preconditioned matrix having an improved numerically sta-
ble inverse. Necessary and sufficient conditions that ensure
numerical stability of the preconditioned matrix inverse have
been presented.

1. INTRODUCTION

There are a variety of applications in which the signals are
sampled nonuniformly and some of them have been dis-
cussed in [1, 2]. Different reconstruction schemes for obtain-
ing uniform samples of a signal from its nonuniform sam-
ples have been proposed and a few of them are presented
in [1]. A common type of nonuniform sampling is recur-
rent nonuniform sampling. When many parallel low speed
A/D converters are operating in a time-interleaved manner
[3], there will be a time offset among these A/D converters.
This results in a sequence of recurrent nonuniform samples
of the original signal. The filterbank interpretations of re-
current nonuniform sampling scheme have been proposed in
[2, 4]. The problem of recurrent nonuniform sampling and
its reconstruction for multiband signals have been studiedin
[5, 6]. In [2], multilevel piecewise constant filters have been
used. A new alternative model has been proposed in such a
manner that there is a simple mutual relation between differ-
ent filters, as outlined in [7] . This mutual relation can be
used to switch the order of the up-samplers and the filters,
resulting in a realization with improved efficiency.

In [7], an alternative model has been described by the
analysis part of a uniform DFT modulated filterbank, from
which different uniformly distributed and down-sampled fre-
quency bands are mixed in a particular manner. This alter-
native model description gives an efficient structure for re-
constructing uniform samples of a signal from its recurrent
nonuniform samples [7]. The limitations of this filterbank
reconstruction structure have been explained in [7]. In [8], a

new fast and efficient Adaptive weights-Conjugate gradient-
Toeplitz matrix (ACT) algorithm was proposed for the recon-
struction of uniform samples of a signal from its recurrent
nonuniform samples. The iterative Conjugate Gradient (CG)
algorithm is briefly described in Proposition 3 in [8]. The
ACT algorithm in [8] utilizes a Toeplitz Hermitian matrix,
which is inverted by means of the CG algorithm to obtain the
vector of reconstructed uniform samples of the signal. If the
time gap between any two adjacent samples is suitably upper
bounded, then the condition number of the Toeplitz Hermi-
tian matrix is also upper bounded (Proposition 2 in [8]). This
means that the Toeplitz Hermitian matrix has a numerically
stable inverse if the gap between any two adjacent time in-
stants is suitably upper bounded (upper bound of which is
given in [8]).

The statement of our problem is as follows: In this paper,
we address one of the limitations of the alternative model fil-
terbank reconstruction structure proposed in [7] (third point
in Section VII of [7]). The reconstruction structure presented
in [7] makes use of the inverse of a nonuniform DFT matrix.
This inverse matrix will become numerically unstable if any
two delays (nonuniform time instants) are almost equal. In
this paper, we precondition the nonuniform DFT matrix used
in [7] in a specific manner to obtain a Toeplitz Hermitian
matrix similar to the one utilized in [8]. Since our precon-
ditioned matrix and the Toeplitz Hermitian matrix in [8] are
similar, the conditions under which the Toeplitz Hermitian
matrix has a numerically stable inverse are also applicablefor
our preconditioned matrix. We utilize the same conditions
provided in Proposition 1 and 2 in [8] to obtain the neces-
sary and sufficient conditions for our preconditioned matrix
to have a numerically stable inverse. Finally, we present a
modified, robust and efficient reconstruction structure which
makes use of the inverse of the Toeplitz Hermitian precon-
ditioned matrix. For the recurrent nonuniform sampling sets
satisfying the above conditions, our modified robust filter-
bank reconstruction structure is a better choice than the re-
construction structure proposed in [7]. However, a limitation
of our modified reconstruction structure is that the numeri-
cal stability of the preconditioned matrix cannot be guaran-
teed for sampling sets violating the above conditions. In this
paper, an example is provided to demonstrate a case where
the modified structure gives accurate output in lower num-
ber of CG method iterations when compared to the original
structure. Our proposed approach is suitable for applications
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where the maximum separation of the sampling points can
be controlled but not the minimum separation.

This paper is organized as follows: In Section 2, we
briefly discuss the reconstruction equation and the recon-
struction structure proposed in [7]. In Section 3, we provide
an upper bound for the condition number of the precondi-
tioned matrix. This section also lists the necessary and suf-
ficient conditions under which the upper bound exists. We
present a modified robust and efficient reconstruction struc-
ture which makes use of the inverse of the preconditioned
matrix. In Section 4, we discuss the simulation results and
Section 5 concludes the paper.

Notation Convention: We will follow the same notation
convention as outlined in [7]. Lower case characters repre-
sent the signals in the time-domain and upper case characters
represent the signals in the frequency-domain. Underlined
boldface characters are used for vectors, boldface characters
for matrices,diag{} is a diagonal matrix,WWW † is the pseudo-
inverse of the matrixWWW , cond(QQQ) represents thel2-condition
number of the matrixQQQ andsqrt(.) is the square root func-
tion.

2. EFFICIENT DFT MODULATED FILTERBANK
RECONSTRUCTION STRUCTURE [7]

In [7], a new alternative discrete-time analysis model of the
recurrent nonuniform sampling scenario was presented. This
new alternative model was introduced in order to avoid the
phase jump in the Fundamental Interval (FI) of the aliased
signal that results after the down-sampling operation. This
alternative model structure was illustrated in Fig. 8 of [7].
This model was described by the analysis part of a uniform
DFT modulated filterbank from which the uniformly dis-
tributed and down-sampled frequency bands were mixed in
a specific manner. This new alternative model was used to
obtain an efficient DFT modulated filterbank structure for re-
constructing uniform samples of a signal from its recurrent
nonuniform samples. The down-sampler and the up-sampler
values of this structure are defined asK. Also, 1

T0
is the

Nyquist rate and the recurrence period,Ts = KT0. Each of the
K inputs to this structure is taken at1

K times the Nyquist rate.
This implies that the recurrent nonuniform samples are taken
at the Nyquist rate. Here, we consider the same structure
with recurrent nonuniform samples taken at a rate greater
than or equal to the Nyquist rate. Now, each recurrence pe-
riod (Ts) consists ofN nonuniform sampling points, where
N ≥ K. Thus, the recurrent nonuniform samples are consid-
ered here atNK times the Nyquist rate. The basicN nonuni-
form time instants in a recurrence period are{τpT0}

N−1
p=0 ,

where 0≤ τ0 < τ1 < · · · < τN−1 < K. The complete set of
recurrent nonuniform time instants forn ∈ (−∞,∞) is given
by

τpT0 +nTs, p = 0,1, . . . ,(N −1).

Let the normalized nonuniform time instant beti = τi
K , for

i = 0,1, . . . ,(N −1).

0≤ t0 < t1 < · · · < tN−1 < 1 . (1)

From [7], let X(e jθ ) represent the discrete-time Fourier
transform (DTFT) of the uniform samples of the original
continuous-time signalx(t). The output discrete-time
signals of the alternative discrete-time model in [7]

combinedly represent the recurrent nonuniform sam-
ples of x(t). Their frequency responses are given by
Y0(e jθ ), Y1(e jθ ), . . . ,and YN−1(e jθ ), i.e., {Yp(e jθ )}N−1

p=0 .

For p = 0,1, . . . ,(N − 1), define Ys,p(e jθ ) as
Ys,p(e jθ e j(K−1)π) = Yp(e jθ ). Let FFF be aK ×K DFT matrix
with elements(FFF)p,q = W pq

K , for p,q = 0,1, . . . ,(K − 1),
where the twiddle factorWK = e− j2π/K . The frequency shift

matrix is defined asSSS = diag{W
−K−1

2 ·0
K , . . . ,W

−K−1
2 ·(K−1)

K }.
Therefore, the shifted DFT matrix is represented by
FFFs = SSSFFF .

The matrix-vector equation describing the alternative
discrete-time model presented in [7], is given by

YYY s(e
jθ ) =

1
K
·∆∆∆(e jθ/K) ·WWW ·XXX(e jθ/K) , (2)

where XXX(e jθ/K) = [X(e jθ/K · W
K−1

2
K ), . . . ,X(e jθ/K ·

W
−K−1

2
K )]T , ∆∆∆(e jθ/K) = diag{e− jτ0θ/K , . . . ,e− jτN−1θ/K},

WWW is aN ×K nonuniform DFT matrix with entries(WWW )k,p =

W
(p−K−1

2 )τk
K , for k = 0,1, . . . ,(N −1) and p = 0,1, . . . ,(K −

1). Also, we haveYYY s(e
jθ ) = [Ys,0(e jθ ), . . . ,Ys,N−1(e jθ )]T .

The frequency responses of the outputs representing
the recurrent nonuniform samples are given by the fol-
lowing vector: YYY (e jθ ) = [Y0(e jθ ), . . . ,YN−1(e jθ )]T =

[Ys,0(e jθ · e j(K−1)π), . . . ,Ys,N−1(e jθ · e j(K−1)π)]T .
The description of the alternative discrete-time model

of the recurrent nonuniform sampling scenario in [7] con-
sists of a mixture of theK uniformly distributed down-

sampled frequency bands:X(e jθ/K · W
K−1

2
K ), X(e jθ/K ·

W
K−3

2
K ), . . . , X(e jθ/K ·W

−K−3
2

K ) andX(e jθ/K ·W
−K−1

2
K ). From

(2), the reconstruction equation can be presented as

1
K
·XXX(e jθ/K) = WWW † ·∆∆∆−1(e jθ/K) ·YYY s(e

jθ ) . (3)

Based on [7], the efficient DFT modulated filterbank recon-
struction structure for recurrent nonuniform samples taken at
N
K times the Nyquist rate is given in Figure 1.

3. A MODIFIED ROBUST AND EFFICIENT DFT
MODULATED FILTERBANK RECONSTRUCTION

STRUCTURE

We have,WWW † = (WWW HWWW )−1WWW H and the matrixWWW HWWW will
have a bounded condition number if a subset ofK sampling
instants (from the totalN sampling instants in a recurrence
period) are sufficiently separated. But, in practice, differ-
ent delays (nonuniform time instants) can almost be equal
to each other. In such cases,WWW † used in the reconstruction
structure in Figure 1 will have poor numerical stability. This
leads to inaccurate reconstruction of uniform samples of the
signal or results in a slow convergence of the output in Fig-
ure 1 towards the original signal uniform samples. One com-
mon technique to overcome this problem is to precondition
the nonuniform DFT matrixWWW , such that the resultant ma-
trix has an improved condition number. In this paper, we
preconditionWWW in a specific way (as described below) to ob-
tain a Toeplitz Hermitian matrix whose properties have been
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Figure 1: Efficient DFT modulated filterbank structure for reconstruction from recursive nonuniform samples taken atN
K times

the Nyquist rate (from [7])

discussed in [8]. From (2),

1
K
·WWW ·XXX(e jθ/K) = ∆∆∆−1(e jθ/K) ·YYY s(e

jθ ) .

Let the diagonal matrixGGG = diag{α0,α1, . . . ,αN−1}, where
{αp}

N−1
p=0 are positive adaptive weights defined in [8]. Multi-

plying the above equation byWWW HGGG on both sides, we obtain

1
K
·WWW HGGGWWW ·XXX(e jθ/K) = WWW HGGG ·∆∆∆−1(e jθ/K) ·YYY s(e

jθ ) .

The preconditioner used forWWW is (WWW HGGG)−1 and the resultant
matrix obtained after preconditioning isQQQ = WWW HGGGWWW . The
modified reconstruction equation is given by

1
K
·XXX(e jθ/K) = QQQ−1WWW HGGG ·∆∆∆−1(e jθ/K) ·YYY s(e

jθ ) . (4)

The preconditioned matrixQQQ is aK ×K Toeplitz Hermitian
matrix with elements,

(QQQ)k,q = (WWW HGGGWWW )k,q =
N−1

∑
p=0

αpW
−(k−q)τp
K

=⇒ (QQQ)k,q =
N−1

∑
p=0

αpe j
2π(k−q)τp

K =
N−1

∑
p=0

αpe j2π(k−q)tp , (5)

for k,q = 0,1, . . . ,(K − 1). The dimensions ofQQQ are inde-
pendent ofN (number of nonuniform sampling points per
recurrence period), which is not so in the case of theN ×K
matrixWWW . The adaptive weights [8] are defined as

αp =
tp+1− tp−1

2
, p = 0,1, . . . ,(N −1) , (6)

wheret−1 = tN−1 − 1 andtN = t0 + 1. This impliesτ−1 =
τN−1−K andτN = τ0 + K. We can observe that the matrix
QQQ is same as the transpose of the matrixTTT w defined in [8].
The factorsr and 2M defined in [8] correspond to the factors
N andK −1, respectively. SinceTTT w is a Hermitian matrix,
TTT w and TTT T

w will have the same eigenvalues and, therefore

the same condition number. This implies thatTTT w defined in
[8] andQQQ have the same condition number. In [8], an upper
bound for the condition number ofTTT w was obtained, when
the maximal gap is less than12M . We define a similar upper
bound for the condition number ofQQQ and the conditions un-
der which the bound exists. Forp = 0,1, . . . ,N, let maximal
gap beδ = maxp(tp − tp−1) andd = maxp(τp − τp−1).

δ =
d
K

(7)

Based on [8], the equivalent condition on the maximal gap is

δ <
1

K −1
=⇒ d <

K
K −1

(8)

0≤ τ0 < τ1 < · · · < τN−1 < K . (9)

Hence, (8) and (9) are the two conditions to be satisfied in
order to have a finite upper bound forcond(QQQ). From these
two assumptions, we obtain

cond(QQQ) ≤

(

1+δ (K −1)

1−δ (K −1)

)2

=⇒ cond(QQQ) ≤

(

1+ d
K (K −1)

1− d
K (K −1)

)2

(10)

As d moves closer to K
K−1, the upper bound forcond(QQQ)

goes towards infinity. Such sampling sets should be avoided
for obtaining a good performance. Ford = 1, we have
cond(QQQ)≤ (2K−1)2 and therefore,d ≤ 1 can be considered
to be a safe range for obtaining a good condition number.

SinceWWW is not a square matrix, we have to interpret
cond(WWW ) as sqrt(cond(WWW HWWW )). Hence cond(WWW ) has a
proper upper bound if a subset ofK nonuniform sampling
instants (from theN nonuniform sampling instants in a re-
currence period) are sufficiently separated. But, if any two
sampling instants in the subset ofK nonuniform sampling
instants are almost equal, thencond(WWW ) will have a poor up-
per bound and hence numerical stability ofWWW † will be poor.
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Figure 2: Modified robust and efficient DFT modulated filterbank realization of reconstruction of uniform samples from
recursive nonuniform samples

Whereas, the upper bound forcond(QQQ) is independent of the
clustering effects of the nonuniform time instants. Hence,
for sampling sets satisfying (8) and (9), the matrixQQQ will
have a good numerically stable inverse irrespective of the
shortest distance between the nonuniform time instants. This
does not mean thatcond(QQQ) is smaller thancond(WWW ) for
all sampling sets satisfying (8) and (9). But, utilizingQQQ−1

instead ofWWW † in Figure 1 guarantees better and improved
numerical stability for sampling sets satisfying (8) and (9),
which leads to accurate reconstruction. Also, matrixQQQ being
Toeplitz Hermitian, there are many fast direct and iterative
Toeplitz solvers for solving (4), some of which are presented
in [9, 10]. One efficient iterative method for solving (4) is
the Conjugate Gradient (CG) acceleration method briefly de-
scribed in Proposition 3 in [8]. A poor numerically stable
matrix will require much larger number of CG method itera-
tions when compared to a numerically stable matrix in order
to converge to an approximate inverse solution.

By implementing (4), we obtain a modified, robust and
efficient DFT modulated filterbank reconstruction structure
presented in Figure 2. Since there are many fast Toeplitz
solvers for inverting the Toeplitz Hermitian matrixQQQ, we can
say that our proposed reconstruction structure is more effi-
cient than the reconstruction structure proposed in [7]. Also,
since the matrixQQQ has a better numerically stable inverse
for sampling sets satisfying (8) and (9), we can say that our
proposed reconstruction structure is more robust than the re-
construction structure proposed in [7].

For sampling sets violating (8) and (9), the improved nu-
merical stability ofQQQ−1 cannot be guaranteed. This is a lim-
itation of the modified reconstruction structure presentedin
Figure 2. It should be noted that all the recurrent nonuni-
form samples are available simultaneously at the inputs of
the structure in Figure 2.

4. SIMULATION RESULTS

The continuous time signal considered isx(t) =
2sin(0.1πt) + sin(0.4πt) + 3sin(0.75πt). The sam-
pling interval isT0 = 1 s and 3600 uniform samples ofx(t)
have been considered. We assumeK = 18 andN = 24.
There are many ways to implement non-integer delays. We

have followed the same implementation scheme as given in
[7]. Resolution factor of fractional delay is1L = 1

20 = 0.05.
The length of the fractional delay FIR filters used isLp = 38
coefficients. The nonuniform time instants considered are [0,
0.05, 0.1, 0.2, 0.8, 1.2, 2, 3, 4, 5, 6, 7, 8, 8.9, 9.9, 10, 11, 12,
13, 14, 15, 16, 16.9, 17.9]. We can observe that the assumed
sampling set satisfies (8) and (9). We compare the original
reconstruction structure (Figure 1) output with our modified
robust reconstruction structure (Figure 2) output. The
parameter used for comparison is the Error-to-Signal-Ratio
(ESR) defined by

ESR =
∑(x(nT0)− x̂(nT0))

2

∑(x(nT0))2 ,

where ˆx(nT0) represents the reconstructed uniform samples.
For computingESR, we have used a fragment of length 2500
samples which only excludes few samples at both the ends,
i.e., from n = 501 to n = 3000. We use the CG iterative
method to compare theESR (in dB) of both the structures
with respect to the number of iterations. SinceWWW in the
original reconstruction structure is a rectangular matrix, CG
method is applied for inverting the square matrixWWW HWWW (size
K ×K). For the proposed modified reconstruction structure,
CG method is applied to invert theK ×K matrix QQQ.

From Table 1, we can observe that the modified recon-
struction structure proposed in this paper gives accurate out-
put using much lower number of iterations. This demon-
strates that our proposed reconstruction structure has a more
numerically stable inverse compared to the reconstruction
structure proposed in [7].

5. CONCLUSION

In this paper, we presented a robust and efficient structure for
reconstructing uniform samples of a signal from its recurrent
nonuniform samples. The structure presented has been ob-
tained by preconditioning the matrixWWW used in the recon-
struction structure discussed in [8]. Equations (8) and (9)
provide the necessary and sufficient conditions for the condi-
tion number of the preconditioned matrixQQQ to have a finite
upper bound. For nonuniform sampling sets satisfying (8)
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Table 1: Comparison of convergence rate of outputs of origi-
nal and modified reconstruction structures using CG method

Number of Error-to-Signal ratio (dB)

iterations Original structure Modified structure

1 -6.2876 -21.1847
2 -16.6271 -38.3623
3 -34.4162 -61.8226
4 -46.1789 -67.7101
5 -61.4257 -67.6265
6 -67.5299 -67.6239
7 -67.6184 -67.6233

and (9), the matrixQQQ of our modified reconstruction struc-
ture (Figure 2) has an improved numerically stable inverse
compared to the matrixWWW used in the original reconstruction
structure (Figure 1) given in [7]. However, a limitation of the
modified reconstruction structure is that the numerical stabil-
ity of QQQ−1 cannot be guaranteed for sampling sets violating
(8) and (9).
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