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ABSTRACT new fast and efficient Adaptive weights-Conjugate gradient

In this paper, we present a robust and efficient structure foTOeIOIItZ matrix (ACT) algorithm was proposed for the recon-

the reconstruction of uniform samples of a signal from its re Struction of uniform samples of a signal from its recurrent
P 9 nonuniform samples. The iterative Conjugate Gradient (CG)

current nonuniform samples. This structure makes use of thg o iihm is briefly described in Proposition 3 in [8]. The
synthesis part of a uniform discrete Fourier transform (DFT CT algorithm in [8] utilizes a Toeplitz Hermitian matrix,

g:/%c:ngtg)?iS]l'itnertf)i?tgl:t');:fg:gg&?g?hsgtrﬂ?ﬁg;?hzr.ef'nefme hich is inverted by means of the CG algorithm to obtain the
9 D! yector of reconstructed uniform samples of the signal. df th

a nonuniform DFT matrix, the numerical stability of which - ; ;

' . o time gap between any two adjacent samples is suitably upper
cannot be guaranteed. The poor numerical stability of th%oun%e%, then the cgndition Jnumber of I?he Toeplitz I-)ilerrgﬁ—
inverse is overcome in a modified structure by inVerting &;,, ayix is also upper bounded (Proposition 2 in [8]).SThi
preconditioned matrix having an improved numerically St@yeans that the Toeplitz Hermitian matrix has a numerically
ble inverse. Necessary and sufficient conditions that ensui, -\ ~"ierse if the gap between any two adjacent time in-
numerical stability of the preconditioned matrix inverse/é

stants is suitably upper bounded (upper bound of which is
been presented. given in [8]).

1. INTRODUCTION The statement of our problem is as follows: In this paper,
we address one of the limitations of the alternative model fil
There are a variety of applications in which the signals areerbank reconstruction structure proposed in [7] (thirchpo
sampled nonuniformly and some of them have been disin Section VIl of [7]). The reconstruction structure pretegh
cussed in [1, 2]. Different reconstruction schemes foriobta in [7] makes use of the inverse of a nonuniform DFT matrix.
ing uniform samples of a signal from its nonuniform sam-This inverse matrix will become numerically unstable if any
ples have been proposed and a few of them are presentego delays (nonuniform time instants) are almost equal. In
in [1]. A common type of nonuniform sampling is recur- this paper, we precondition the nonuniform DFT matrix used
rent nonuniform sampling. When many parallel low speedn [7] in a specific manner to obtain a Toeplitz Hermitian
A/D converters are operating in a time-interleaved mannematrix similar to the one utilized in [8]. Since our precon-
[3], there will be a time offset among these A/D convertersditioned matrix and the Toeplitz Hermitian matrix in [8] are
This results in a sequence of recurrent nonuniform samplesimilar, the conditions under which the Toeplitz Hermitian
of the original signal. The filterbank interpretations of re matrix has a numerically stable inverse are also applidable
current nonuniform sampling scheme have been proposed gur preconditioned matrix. We utilize the same conditions
[2,4]. The problem of recurrent nonuniform sampling andprovided in Proposition 1 and 2 in [8] to obtain the neces-
its reconstruction for multiband signals have been stuiied sary and sufficient conditions for our preconditioned nxatri
[5,6]. In [2], multilevel piecewise constant filters haveebe to have a numerically stable inverse. Finally, we present a
used. A new alternative model has been proposed in suchraodified, robust and efficient reconstruction structurecivhi
manner that there is a simple mutual relation between differmakes use of the inverse of the Toeplitz Hermitian precon-
ent filters, as outlined in [7] . This mutual relation can beditioned matrix. For the recurrent nonuniform samplingset
used to switch the order of the up-samplers and the filtersatisfying the above conditions, our modified robust filter-
resulting in a realization with improved efficiency. bank reconstruction structure is a better choice than the re
In [7], an alternative model has been described by theonstruction structure proposed in [7]. However, a linndat
analysis part of a uniform DFT modulated filterbank, fromof our modified reconstruction structure is that the numeri-
which different uniformly distributed and down-samplee-fr cal stability of the preconditioned matrix cannot be guaran
guency bands are mixed in a particular manner. This alteteed for sampling sets violating the above conditions. i th
native model description gives an efficient structure for re paper, an example is provided to demonstrate a case where
constructing uniform samples of a signal from its recurrenthe modified structure gives accurate output in lower num-
nonuniform samples [7]. The limitations of this filterbank ber of CG method iterations when compared to the original
reconstruction structure have been explained in [7]. Ind8] structure. Our proposed approach is suitable for apptinati
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where the maximum separation of the sampling points canombinedly represent the recurrent nonuniform sam-

be controlled but not the minimum separation. ples of x(t). Their frequency responses are given by
This paper is organized as follows: In Section 2, weyy(el?), Y1(ejs), ... ,and Yy_1(€l9), i.e, {Yp(eje) 'Bl;g_

briefly discuss the reconstruction equation and the recon- B . ia

struction structure proposed in [7]. In Section 3, we previdq:Or 'ep .(Eil)()f;l""’(N.ef 1),  define Ysp(e”) E.IS

an upper bound for the condition number of the precondiYsp(€'" €' ) =Yp(e)¥). LetF be aK x K DFT matrix

tioned matrix. This section also lists the necessary and sulvith elements(F)pq = W9, for p,g=0,1,...,(K - 1),

ficient conditions under which the upper bound exists. Wavhere the twiddle factonk = e 127K, The frequency shift

present a modified robust and efficient reconstruction struc___ . . ' o LS —K2L.(k-1)

ture which makes use of the inverse of the preconditione r?trle IS defiﬂed ahsft_ddlaDgF{'\l{VK . e Wi . };j b

matrix. In Section 4, we discuss the simulation results an r—z_resgre, € shiite malrix IS represented by

Section 5 concludes the paper. s_ T . . - .
Notation Convention: We will follow the same notation . Th€ matrix-vector equation describing the alternative

convention as outlined in [7]. Lower case characters reprediScrete-time model presented in [7], is given by

sent the signals in the time-domain and upper case chasacter

represent the signals in the frequency-domain. Underlined Y (elf) = 1 AR WX (/K 2)

boldface characters are used for vectors, boldface cleaisact K

for matricesdiag{} is a diagonal matridW is the pseudo-

inverse of the matri¥V, cond(Q) represents thie-condition  \yhere X(el?/K)y = [X(el/K . WKK%), L X(elOK
number of the matrix@ andsort(.) is the square root func- k-1 _ ) . _
tion. W 2)IT,  A@EYX) = diag{e 100K, . e Im10/K],

Wi is aN x K nonuniform DFT matrix with entrieW) , =

2. EFFICIENT DFT MODULATED FILTERBANK L _ _
W ,fork=0,1,...,(N-1)andp=0,1,...,(K—
RECONSTRUCTION STRUCTURE [7] 1). Also, we haveY,(el®) — [Yao(€i®),..., Yan_1(e1®)]T.

In [7], a new alternative discrete-time analysis model & th The frequency responses of the outputs representing
recurrent nonuniform sampling scenario was presented Ththe recurrent nonuniform samples are given by the fol-
new alternative model was introduced in order to avoid thdowing vector:  Y(el) = [Yo(el?),...,Yn_1(el?)]T =
phase jump in the Fundamental Interval (FI) of the aliasecﬂyso(eje.ej<K71)n)7_”’y$N71(eje.ei(KflﬁT)]T_

signal that results after the down-sampling operation.sThi" “rhe description of the alternative discrete-time model
alternative model structure was illustrated in Fig. 8 of [7] ¢ the recurrent nonuniform sampling scenario in [7] con-

This model was described by the analysis part of a uniform; f ; f th iformlv distri .
DFT modulated filterbank from which the uniformly dis—rTéIStS of a mixture of the&k uniformly distributed down

. K-1 .
tributed and down-sampled frequency bands were mixed ifampled frequency bandsX(el®/K . W, "), X(elé/K .

a specific manner. This new alternative model was used %) X (el6/K -ng) andX (ei®/K ,W*%) From
; g . % ) e, k k .

obtain an efficient DFT modulated filterbank structure fer re [(2), the reconstruction equation can be presented as

constructing uniform samples of a signal from its recurren

nonuniform samples. The down-sampler and the up-sampler 1 _ _ _

values of this structure are defined lés Also, £ is the X 16/Ky —wWT. A71(el0/K) .y (e?) . (3)

Nyquist rate and the recurrence peridg= KTp. Each of the

Kinputs to this structure is taken éttir_nes the Nyquist rate. Based on [7], the efficient DFT modulated filterbank recon-

This implies that the recurrent nonuniform samples arertakestruction structure for recurrent nonuniform samplesiake

at the Nyquist rate. Here, we consider the same structurg times the Nyquist rate is given in Figure 1.

with recurrent nonuniform samples taken at a rate greater

than or equal to the Nyquist rate. Now, each recurrence pe-

riod (Ts) consists ofN nonuniform sampling points, where

N > K. Thus, the recurrent nonuniform samples are consid-

ered here aﬁ times the Nyquist rate. The baditnonuni-

form time instants in a recurrence period dmTo ';;01, We have,W" = (WHW)~*WH and the matriW"W will

where 0< To < T1 < --- < Tn_1 < K. The complete set of have a bounded condition number if a subse sfampling

recurrent nonuniform time instants fore (—eo, o) is given  INstants (from the totaN sampling instants in a recurrence

by period) are sufficiently separated. But, in practice, diffe
T,To+nTs, p=0,1,...,(N—1). ent delays (nonuniform time lrnstantg) can almost be gqual

_ _ o _ to each other. In such casd¥," used in the reconstruction
Let the normalized nonuniform time instant he= ¢, for  structure in Figure 1 will have poor numerical stability.igh

3. AMODIFIED ROBUST AND EFFICIENT DFT
MODULATED FILTERBANK RECONSTRUCTION
STRUCTURE

i=0,1,...,(N=-1). leads to inaccurate reconstruction of uniform samples@f th
signal or results in a slow convergence of the output in Fig-
O<to<ti<---<tyo1< 1. (1)  ure 1towards the original signal uniform samples. One com-

_ mon technique to overcome this problem is to precondition
From [7], let X(el®) represent the discrete-time Fourier the nonuniform DFT matrisW, such that the resultant ma-
transform (DTFT) of the uniform samples of the original trix has an improved condition number. In this paper, we
continuous-time signalx(t). The output discrete-time preconditiorW in a specific way (as described below) to ob-
signals of the alternative discrete-time model in [7]tain a Toeplitz Hermitian matrix whose properties have been
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Figure 1: Efficient DFT modulated filterbank structure fargastruction from recursive nonuniform samples take% fimes

the Nyquist rate (from [7])

discussed in [8]. From (2),

WL X(@/K) = A HO) V(@)
Let the diagonal matrixé = diag{do, a1,...,an-_1}, where
{ap}}—g are positive adaptive weights defined in [8]. Multi-
plying the above equation By" G on both sides, we obtain

%-WHGw-x(eie/K) =WHG-A1(¥K). v (el?) .

The preconditioner used fW is (W" G)~* and the resultant

matrix obtained after preconditioning @ = WHGW. The
modified reconstruction equation is given by

1

The preconditioned matri@ is aK x K Toeplitz Hermitian

matrix with elements,

(Qkq= (WH GW)q= Z apWK*(k*Q)Tp
p=0

. 2n(k-q)tp

N—-1
— (Quq= 3 ape
p=0

for k,g=0,1,...,(K—1). The dimensions o are inde-
pendent ofN (humber of nonuniform sampling points per

N-1

X =QIWI G- ATHE?) Y (elf) .

(4)

N—1 ,
= Z apeJZH(qu)tp , (5)
p=0

recurrence period), which is not so in the case ofithe K

matrixW. The adaptive weights [8] are defined as

tpi1—tp
ap="2 P L p_01..,(N-1),

2 )

(6)

wheret_1 =ty_1— 1 andty =tp+ 1. This impliest_1 =

no1 — K and 1y = 10+ K. We can observe that the matrix

Q is same as the transpose of the mafrix defined in [8].
The factors and 2V defined in [8] correspond to the factors sampling instants in the subset §f nonuniform sampling

N andK — 1, respectively. Sinc&,, is a Hermitian matrix,

the same condition number. This implies tAg} defined in

[8] and Q have the same condition number. In [8], an upper
bound for the condition number df,, was obtained, when
the maximal gap is less thag%%. We define a similar upper
bound for the condition number € and the conditions un-
der which the bound exists. Fpr=0,1,...,N, let maximal
gap bed = maxy(tp —tp—1) andd = maxy(Tp — Tp-1).

0= ()

Based on [8], the equivalent condition on the maximal gap is

=>d<L (8)

1
0< k-1 K—1

O<mp<n<---<1ty.1<K. (9)

Hence, (8) and (9) are the two conditions to be satisfied in
order to have a finite upper bound feond(Q). From these
two assumptions, we obtain

145K-1)\
1-5(K—1)

cond(Q) < (

1+ (K—1)>2 10

N | X

<
= cond(Q) < (1— (K1)
As d moves closer tq, the upper bound fazond(Q)
goes towards infinity. Such sampling sets should be avoided
for obtaining a good performance. Fdr= 1, we have
cond(Q) < (2K —1)? and therefored < 1 can be considered
to be a safe range for obtaining a good condition number.
SinceW is not a square matrix, we have to interpret
cond(W) as sgrt(cond(WHW)).  Hencecond(W) has a
proper upper bound if a subset Kf nonuniform sampling
instants (from theN nonuniform sampling instants in a re-
currence period) are sufficiently separated. But, if any two

instants are almost equal, theand(W) will have a poor up-

Tw and TJ\, will have the same eigenvalues and, thereforeper bound and hence numerical stabilitysf will be poor.
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Figure 2: Modified robust and efficient DFT modulated filtarkaealization of reconstruction of uniform samples from
recursive nonuniform samples

Whereas, the upper bound fmnd(Q) is independent of the have followed the same implementation scheme as given in

clustering effects of the nonuniform time instants. Hence[7]. Resolution factor of fractional delay i = 55 = 0.05.

for sampling sets satisfying (8) and (9), the ma@will  The length of the fractional delay FIR filters used js= 38

have a good numerically stable inverse irrespective of theoefficients. The nonuniform time instants considered@re |

shortest distance between the nonuniform time instants. Th0.05, 0.1, 0.2, 0.8, 1.2, 2, 3,4, 5, 6, 7, 8, 8.9, 9.9, 10, 11, 12

does not mean thatond(Q) is smaller thancond(W) for 13, 14, 15, 16, 16.9, 17.9]. We can observe that the assumed

all sampling sets satisfying (8) and (9). But, utiliziQy*  sampling set satisfies (8) and (9). We compare the original

instead ofW' in Figure 1 guarantees better and improvedreéconstruction structure (Figure 1) output with our modifie

numerical stability for sampling sets satisfying (8) angi (9 robust reconstruction structure (Figure 2) output. The

which leads to accurate reconstruction. Also, ma@iseing ~ Parameter used for comparison is the Error-to-SignaleRati

Toeplitz Hermitian, there are many fast direct and itemtiv (ESR) defined by

Toeplitz solvers for solving (4), some of which are presédnte

in [9,10]. One efficient iterative method for solving (4) is ESR_ 3 (X(nTo) —X(nTo))?

the Conjugate Gradient (CG) acceleration method briefly de- o Y (x(nTo))2 ’

scribed in Proposition 3 in [8]. A poor numerically stable

matrix will require much larger number of CG method itera-wherex(nTo) represents the reconstructed uniform samples.

tions when compared to a numerically stable matrix in ordeFor computingE SR, we have used a fragment of length 2500

to converge to an approximate inverse solution. samples which only excludes few samples at both the ends,
By implementing (4), we obtain a modified, robust andj.e., fromn = 501 ton = 3000. We use the CG iterative

efficient DFT modulated filterbank reconstruction struetur method to compare thESR (in dB) of both the structures

presented in Figure 2. Since there are many fast Toeplitwith respect to the number of iterations. Sindkin the

solvers for inverting the Toeplitz Hermitian mat} we can  original reconstruction structure is a rectangular matBig

say that our proposed reconstruction structure is more effinethod is applied for inverting the square maWX'W (size

cient than the reconstruction structure proposed in [7$0Al K x K). For the proposed modified reconstruction structure,

since the matrixQ has a better numerically stable inverse cG method is applied to invert thex K matrix Q.

for sampling sets satisfying (8) and (9), we can say that our From Table 1, we can observe that the modified recon-

proposed reconstruction structure is more robust tharethe rstryction structure proposed in this paper gives accunatte o

construction structure proposed in [7]. _ put using much lower number of iterations. This demon-
For sampling sets violating (8) and (9), the improved nu-strates that our proposed reconstruction structure hase mo

merical stability ofQ ! cannot be guaranteed. This is a lim- numerically stable inverse compared to the reconstruction

itation of the modified reconstruction structure presefited structure proposed in [7].

Figure 2. It should be noted that all the recurrent nonuni-

form samples are available simultaneously at the inputs of 5. CONCLUSION

the structure in Figure 2.

In this paper, we presented a robust and efficient structure f

4. SIMULATION RESULTS reconstructing uniform samples of a signal from its reautrre
nonuniform samples. The structure presented has been ob-
The continuous time signal considered i%(t) =  tained by preconditioning the matrW used in the recon-

2sin(0.1mt) + sin(0.4mt) + 3sin(0.75mt). The sam- struction structure discussed in [8]. Equations (8) and (9)
pling interval isTop = 1 s and 3600 uniform samples &ft)  provide the necessary and sufficient conditions for the ieond
have been considered. We assukie= 18 andN = 24.  tion number of the preconditioned mati@to have a finite

There are many ways to implement non-integer delays. Wapper bound. For nonuniform sampling sets satisfying (8)
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Table 1: Comparison of convergence rate of outputs of origi-
nal and modified reconstruction structures using CG metho[j1 0]

Number of Error-to-Signal ratio (dB)
iterations | Original structure] Modified structure
1 -6.2876 -21.1847
2 -16.6271 -38.3623
3 -34.4162 -61.8226
4 -46.1789 -67.7101
5 -61.4257 -67.6265
6 -67.5299 -67.6239
7 -67.6184 -67.6233

and (9), the matriXQ of our modified reconstruction struc-
ture (Figure 2) has an improved numerically stable inverse
compared to the matrW used in the original reconstruction
structure (Figure 1) given in [7]. However, a limitation bgt
modified reconstruction structure is that the numericdlista

ity of Q1 cannot be guaranteed for sampling sets violating
(8) and (9).
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