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ABSTRACT 
In this paper, the design of wideband fractional delay filter 
is investigated. First, the reconstruction formula of inter-
laced sampling method is applied to design wideband frac-
tional delay filter by using index substitution and window 
method. The filter coefficients are easily computed because 
closed-form design is obtained. Then, the weighted least 
squares method is used to design wideband fractional delay 
filters. Finally, numerical examples are demonstrated to 
show that the proposed method has smaller design error 
than the conventional fractional delay filter without using 
the interlaced sampling scheme. 

1. INTRODUCTION 

   In many signal processing applications, there is a need for a 
delay that is a fraction of the sampling period. These applica-
tions include beam steering of antenna array, time adjustment 
in digital receivers, modeling of music instruments, speech 
coding and synthesis, image interpolation and comb filter 
design etc [1]-[8]. An excellent survey of the fractional delay 
filter design is presented in tutorial paper [1]. The ideal fre-
quency response of fractional delay filter is given by 

                           Dj
d eH ωω −=)(                            (1) 

where D  is a positive real number in the desired range. So 
far, the fractional delay filters are all designed under the 
Shannon sampling scheme, as shown in Fig.1. Usually, the 
Shannon sampling scheme is implemented by using one ana-
log-to-digital (ADC) converter. In this case, the frequency 
response of the FIR filter used to approximate this specifica-
tion is given by 
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Thus, the traditional design problem is how to determine the 
filter )(zH  such that the actual frequency response 

)( ωjeH  fits the ideal response )(ωdH  as well as possible. 
Until now, several methods have been proposed to solve this 
design problem such as window method, Lagrange interpola-
tion method, maximally flat method, weighted least squares 
method and discrete Fourier transform method etc. In these 
designs, the frequency response error is defined by 
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If the filter coefficients )(kh  in Eq.(2) are real-valued, the 
frequency response error at πω =  is given by 
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Thus, the absolute value of error )(1 πE  can be written as 
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So, there is an irreducible error at πω =  for conventional 
designs [2]. This means that the wideband fractional delay 
filter design can not be achieved by using Shannon sampling 
scheme in Fig.1. Therefore, it is interesting to use other sam-
pling methods to design wideband fractional delay filter. 
   In the literature, there exist various sampling methods ex-
cept the Shannon sampling scheme. Some typical ones are 
band-pass sampling, interlaced sampling, derivative sam-
pling and generalized sampling etc [9][10]. Thus, it is inter-
esting to design wideband fractional delay filter based on 
these sampling schemes. In this paper, we will use the inter-
laced sampling method to design fractional delay filter which 
is composed of two filters )(1 zG  and )(2 zG , as depicted 
in Fig.2. Usually, the interlaced sampling scheme is imple-
mented by using two parallel analog-to-digital converters 
with different control clocks. Because )( τ−nx  is the de-
layed version of )(nx , it is easy to show that the frequency-
domain relation between input and output in Fig.2 is given 
by 
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where )( ωjeX  and )( ωjeY  are the Fourier transforms of 
)(nx  and )(ny . Thus, the design problem is how to de-

termine the filters )(1 zG  and )(2 zG  such that the actual 

frequency response )()( 21
ωωτω jjj eGeeG −+  approxi-

mates the ideal response )(ωdH  as well as possible. In this 
case, the frequency response error is defined by  

   )()()()( 212 ωω ωωτω
d

jjj HeGeeGE −+= −   (7) 
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So, the error at πω =  for real valued filters )(1 zG  and 
)(2 zG  is given by 
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Thus, the absolute value of the error )(2 πE  can be written 
as 
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If the filters )(1 zG  and )(2 zG  are designed to satisfy the 
following two equalities: 
        )cos()1()cos()1( 21 DGG ππτ =−+−    (10a) 

         )sin()1()sin( 2 DG ππτ −=−             (10b) 
then the error )(2 πE  will reduce to zero. This means that 
the wideband fractional delay filter design can be achieved 
by using interlaced sampling scheme. The design details will 
be studied in next sections. 

2. WINDOW METHOD 

  In this section, the interlaced sampling method is first re-
viewed. Then, we apply this method to design fractional de-
lay filter by using window approach. Finally, numerical ex-
ample is used to compare the proposed approach with con-
ventional window method based on Shannon sampling 
scheme. 

2.1 Design Method 
Let )(nx  and )( τ−nx  be the uniform samples of the 

band-limited signal )(tx  and its delayed signal )( τ−tx , 
then the )(tx  can be reconstructed by using the formula: 
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where 
       )()cot()2()( 2 tsincttsincta ⋅⋅+= τππ      (12) 

       )()cot()2()( 2 tsincttsinctb ⋅⋅−= τππ     (13) 
with tttsinc ππ /)sin()( = . The proof of this formula can 
be found in [9][10]. In the following, the index substitution 
and window method will be used to obtain two filters 

)(1 zG  and )(2 zG  in Fig.2. Using the index substitution 
knm −= , Eq.(11) can be rewritten as  
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Taking Dnt −= , then Eq.(14) can be expressed as 
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Define )(ˆ1 kg  and )(ˆ 2 kg  as 

                    )()(ˆ 1 Dkakg −=                             (16a) 

                    )()(ˆ 2 Dkbkg −+= τ                     (16b) 
then Eq.(15) can be rewritten as  
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where notation ∗  denotes the operator of convolution sum. 
Taking the discrete-time Fourier transform at both sides of 
Eq.(17), we get 
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where )( ωωτ jj eXe −  is the Fourier transform of )( τ−nx . 
Canceling the )( ωjeX  at both sides of Eq.(18), we have 
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Based on the above results, we choose two filters )(1 zG  
and )(2 zG  in Fig.1(b) as 
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where filter coefficients )(1 kg  and )(2 kg  are obtained 
from )(ˆ1 kg  and )(ˆ 2 kg  by using window approach below: 

        2,1)(ˆ)()( == ikgkwkg iii           (21) 
with 
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The length of window )(kwi  is 1+− ibiu NN . From 
Eq.(16), we know that the center of window interval 

],[ iuib NN  should be close to the delay D  for reducing the 
truncation error caused by windowing. So far, the interlaced 
sampling design has been described. Now, let us study the 
implementation complexity. From Fig.1 and Fig.2, it is clear 
that the implementation complexity can be divided into ADC 
part and filter part. In the filter part, the complexity of the 
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proposed filters )(1 zG , )(2 zG  and conventional filter 
)(zH  can be evaluated by using Eq.(2) and Eq.(20). If the 

direct-form realization is used, the number of adders and 
multipliers to implement filter )(zH  in Fig.1 are N  and 

1+N , while the number of adders and multipliers to imple-
ment FIR filters )(1 zG  and )(2 zG  in Fig.2 are 

)(
2

1
∑
=

−
i

ibiu NN  and )1(
2

1
∑
=

+−
i

ibiu NN . In the ADC part, it 

can be observed that the interlaced sampling method needs 
one more ADC than the Shannon sampling method. In the 
next subsection, one numerical example will be studied. 

2.2 Design Example and Comparison 
In the following, one numerical example performed with 

MATLAB language in an IBM PC compatible computer is 
used to demonstrate the effectiveness of the proposed win-
dow method. To evaluate the performance, the normalized 
root mean squares (NRMS) error is defined by 
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where )()()( 21
ωωτωω jjjj eGeeGeG −+=  in 

the proposed design approach. Obviously, the smaller NRMS 
error E  is, the better performance the design method is. If 

)( ωjeG  in Eq.(23) is changed to )( ωjeH , E  is the 
NRMS error of conventional design. In this paper, the E  is 
computed by using numerical rectangular integration method 
with step size 1000

π . Now, let us study an example below: 
Example 1: In this example, we will compare the proposed 
method with conventional window method based on Shan-
non sampling scheme. To achieve this purpose, the conven-
tional window method is briefly described below: Taking the 
inverse discrete-time Fourier transform of ideal frequency 
response )(ωdH , the ideal impulse response is given by 
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In the conventional window method, the filter coefficients 
)(kh  in Eq.(2) are given by 

                      )()()( khkwkh id=                        (25) 

where )(kw  is a prescribed window function of length 
1+N . A numerical example is now studied. The parame-

ters are chosen as 4121 == bb NN , 6021 == uu NN , 
5.0=τ  and 100=N . Fig.3 shows the NRMS error 

curve E  (solid line) of the proposed method for various 
delay D  with step size 40

1 . The dashed line is the result of 
conventional rectangular window method based on Shannon 
sampling scheme with 1)( =kw  for Nk ≤≤0 . It is 
clear that the error of proposed method is smaller than the 

conventional method. Fig.4(a)(b) show the magnitude re-
sponse and group delay of fractional delay filter designed by 
proposed method for 5.0=τ , 4121 == bb NN , 

6021 == uu NN  and 4.50=D . Fig.4(c)(d) show the 
magnitude response and group delay of fractional delay filter 
designed by conventional rectangular window method for 

100=N  and 4.50=D . Obviously, the proposed method 
has smaller design error in the high frequency range than 
Shannon sampling method. That is, the wideband design can 
be accomplished by the proposed method based on interlaced 
sampling scheme. Now, the complexity issue is addressed. 
Because 4121 == bb NN , 6021 == uu NN  and 

100=N  are chosen, the number of adders and multipliers 
to implement two filters )(1 zG  and )(2 zG  are 38 and 40, 
while the number of adders and multipliers to implement 
filter )(zH  are 100 and 101. Obviously, the implementation 
complexity of )(1 zG  and )(2 zG  is smaller than that of 

)(zH . Although the filter-part accuracy and complexity of 
proposed method is better than conventional method, the 
proposed method needs one more ADC than the conventional 
method, as shown in Fig.1 and Fig.2. Thus, the improvement 
in filter part is at the cost of the increase of complexity in the 
ADC part. 

3. WEIGHTED LEAST SQUARES METHOD 

In this section, the weighted least squares (WLS) method 
is first used to design fractional delay filter whose coeffi-
cients can be obtained by solving matrix inversion. Then, 
numerical comparison with conventional WLS design is 
made. 

3.1 Design method 
    Taking ωjez = , the frequency response of filters )(1 zG  
and )(2 zG  in Eq.(20) can be written as 
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Thus, the frequency response )()( 21
ωωτω jjj eGeeG −+  

is gotten as 
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Defining the following four vectors 
 T
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then the frequency response in Eq.(27) can be rewritten as 
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where two vectors are 
                             TTT ][ 21 ggg =                                  (30a) 

                     TTT ])()([)( 21 ωωω eee =                    (30b) 
For WLS design, the filter coefficient vector g  is deter-
mined by minimizing the following error function: 
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where )(ωW  is a nonnegative weighting function. Substi-
tuting Eq.(29) into Eq.(31) and using the conjugate symmetry 

*)()( ωω dd HH =− , we get 
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where matrix Q , vector q , and scalar c  are given by 
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The above superscript H  denotes the Hermitian and ]Re[⋅  
stands for real part of a complex number. Because )(1 gJ  is 
a quadratic function of g , the optimal solution is given by 

                               qQg -1
opt =                                    (34) 

So far, the WLS design based on interlaced sampling scheme 
has been described. In the following, let us study one design 
example. 
    3.2 Design Example 

Now, a numerical example is used to compare the pro-
posed WLS design with conventional WLS design based on 
Shannon sampling scheme. The filter coefficients of the con-
ventional WLS are obtained by minimizing the following 
cost function: 

ωωω
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where frequency response )( ωjeH  is given in Eq.(2) and 

vector TNhhh ])()1()0([ L=h . Because this is the 
standard least squares FIR filter design problem, its optimal 
solution can be obtained easily by using the method in the 
textbook [11]. Moreover, the integrals in Eq.(33) and Eq.(35) 
are computed by using numerical rectangular integration 
method with step size 1000

π . Let us study an example below: 
Example 2: In this example, the filter parameters are chosen 
as 101 =bN , 201 =uN , 132 =bN , 172 =uN , 

5.0=τ , 30=N  and uniform weighting function is used, 
i.e., 1)( =ωW . Fig.5(a) shows the NRMS error curve E  
of the proposed WLS method for various delay D . Fig.5(b) 

is the NRMS error of conventional WLS method based on 
Shannon sampling scheme. It is clear that the error of pro-
posed WLS method is smaller than the conventional WLS 
method. Fig.6(a)(b) show the magnitude response and group 
delay of fractional delay filter designed by proposed method 
for 101 =bN , 201 =uN , 132 =bN , 172 =uN , 

5.0=τ , and 3.15=D . Fig.6(c)(d) show the magnitude 
response and group delay of fractional delay filter designed 
by conventional WLS method for 30=N  and 3.15=D . 
Obviously, the proposed method has smaller design error in 
the high frequency range than Shannon sampling method. 
That is, wideband design can be accomplished by proposed 
WLS method based on interlaced sampling scheme. Now, 
the complexity comparison is presented. Because 

101 =bN , 201 =uN , 132 =bN , 172 =uN  and 
30=N  are chosen, the number of adders and multipliers 

to implement the filters )(1 zG  and )(2 zG  are 14 and 16, 
while the number of adders and multipliers to implement 
filter )(zH  are 30 and 31. It is clear that the implementa-
tion complexity of )(1 zG  and )(2 zG  is smaller than that 
of )(zH . Although the accuracy and complexity of pro-
posed WLS method is better than conventional WLS method 
in the filter part, the proposed method needs one more ADC 
than the conventional method in the ADC part, as depicted 
in Fig.1 and Fig.2. 

4. CONCLUSIONS 

    In this paper, the design of wideband fractional delay fil-
ter has been investigated. First, the reconstruction formula of 
interlaced sampling method is applied to design wideband 
fractional delay filter by using window method. The filter 
coefficients are easily computed because closed-form design 
is obtained. Then, the weighted least squares method is used 
to design wideband fractional delay filters. Finally, numeri-
cal examples are demonstrated to show that the proposed 
method has smaller design error than the conventional frac-
tional delay filter without using interlaced sampling scheme. 
However, only one-dimensional fractional delay filter is 
studied in this paper. Thus, it is interesting to extend the 
proposed method to design two-dimensional fractional delay 
filters in the future. 
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Fig.1 The design of fractional delay filter based on Shannon 
sampling scheme implemented by one analog-to-digital con-
verter (ADC). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 The design of fractional delay filter based on interlaced 
sampling scheme implemented by two parallel analog-to-
digital converters with different control clocks. 
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Fig.3 The NRMS error curve E  (solid line) of the proposed 
window method for various delay D . The dashed line is the 
result of conventional Shannon sampling window method. 
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Fig.4 The magnitude response and group delay of the de-
signed fractional delay filters. (a)(b) Proposed interlaced 
sampling window method. (c)(d) Conventional Shannon 
sampling window method. 
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Fig.5 (a) The NRMS error E  of the proposed WLS method 
for various delay D . (b) The NRMS error E  of the conven-
tional WLS method for various delay D  
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Fig.6 The magnitude response and group delay of the de-
signed fractional delay filters. (a)(b) Proposed WLS method. 
(c)(d) Conventional WLS method. 
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