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ABSTRACT 
In this paper, the design of fractional order differentiator is 
investigated. First, the discrete Hartley transform (DHT) 
interpolation method is described. Then, the non-integer 
delay sample estimation of discrete-time sequence is derived 
by using DHT interpolation. Next, the Grünwald-Letnikov 
derivative and non-integer delay sample estimation are ap-
plied to obtain the transfer function of fractional order dif-
ferentiator. Finally, some numerical comparisons with con-
ventional fractional order differentiators are made to dem-
onstrate the effectiveness of this new design approach. 

1. INTRODUCTION 

    In recent years, the concepts of fractional operator and 
measure have been investigated extensively in many engi-
neering applications and science. Four typical examples are 
described as follows: The first is that the fractal dimension is 
used to measure some real-world data such that coastline, 
clouds, dust in the air, and networks of neurons in the body 
[1]. The fractal dimension has been widely used in pattern 
recognition and classification. The second is that the frac-
tional Fourier transform has been studied in the optical 
community and signal processing area [2]. The third is that 
fractional lower order moment has been used to analyze non-
Gaussian signals, which is more realistic than the Gaussian 
model in signal processing applications [3]. The last is that 
fractional calculus has been received great attentions in many 
engineering applications and science including fluid flow, 
automatic control, electrical networks, electromagnetic the-
ory and image processing [4][5].  
    In the research area of fractional calculus, the integer order 
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generalized to fractional order )( xfD υ , where υ  is a real 
number. One of important research topics in fractional calcu-
lus is to implement the fractional operator υD  in continuous 
and discrete time domains. An excellent survey of this im-
plementation has been presented in [6]. For continuous time 
case, some methods for obtaining an approximated rational 
function using evaluation, interpolation and curve fitting 
techniques have been studied. These methods include Carl-
son's method, Roy's method, Chareff's method and Ousta-
loup's method [6]. For discrete time case, there have been 

several methods presented to design FIR and IIR filters for 
implementing operator υD , including fractional differencing 
formula, Tustin method, Taylor series expansion, continued 
fraction, and least-squares method [7]-[10]. 
    On the other hand, the Hartley transform was presented by 
Hartley for analyzing transmission problem in 1942 [11]. In 
1983, Bracewell introduced the discrete Harley transform 
(DHT) and derived its fast computation algorithm [12][13]. 
Given the discrete-time sequence x(0), x(1), ..., x(N-1), the 
DHT pairs are defined by 
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where )sin()cos()( ⋅+⋅=⋅cas . So far, DHT has been 
successfully applied to image processing, data interpolation, 
transform-domain adaptive filtering, data compression and 
fractional delay filter design [14][15]. In this paper, we will 
use DHT-based interpolation method and Grünwald-
Letnikov derivative to design digital fractional order differ-
entiator. The details are described in next sections. 

2. DISCRETE HARTLEY TRANSFORM 
INTERPOLATION METHOD 

    In this section, the zero-padding in DHT domain will be 
applied to interpolate discrete-time signal x(0), x(1), …., x(N-
1).Without losing generality, we only consider the case of 
even-length N. Also, we assume that M is an integer multiple 
of N, say M=NL, where L is the interpolation factor. Given 
the DHT X(k) in Eq.(1), let us define the zero-padded DHT 
as 
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The above DHT has zero values at high frequency band. 
Now, the interpolated sequence )(nxd  is defined as the 

length-M inverse DHT of )(kX d , that is,  
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Substituting Eq.(2) into Eq.(3), we get 
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Using Eq.(1) and the following equality 
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then Eq.(4) can be rewritten as 
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Obviously, the interpolated value of )(nxd  is just the 
weighted average of the data x(m) (m=0,1,...,N-1). Moreover, 
this interpolator will satisfy the following property:  
                                )()( ixiLx d =                                 (7) 
that is, the interpolation becomes an identity at the time 
points of the original length-N signal. Because )(nxd  is the 
interpolated sequence of x(n) with factor L, we have the fol-
lowing relation:  
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for 10 −≤≤ Lp  and 10 −≤≤ Ni . When p=0, Eq.(8) 
reduces to Eq.(7). Combining Eq.(6) and Eq.(8), we have 
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where interpolation basis is given by 
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Using the identities )sin()sin()cos()cos()cos( 212121 θθθθθθ +=− , 
mm )1()cos( −=π  and 0)sin( =πm , we have 
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Substituting Eq.(11) into Eq.(10), the basis is rewritten as 
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where 
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Let L
pit += , then the value of t can be any real number in 

[0,N) if factor L approaches infinity. Substituting L
pit +=  

into Eq.(9), we get 
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This means that the continuous-time signal )(tx  can be 
approximately reconstructed from its samples x(0), x(1), ..., 
x(N-1) in the range [0,N) by using continuous-time interpo-
lation basis ),( tmb . 

3. NON-INTEGER DELAY SAMPLE 
ESTIMATION 

    In this section, we will use DHT interpolation method to 
solve non-integer delay sample estimation problem because 
the proposed fractional order differentiator design method is 
based on this estimation method. The problem to be studied 
is how to estimate non-integer delay sample )( dIns −−  
from the given integer delay samples )(ns , )1( −ns , 

)2( −ns ,..., )1( +− Nns , where I  and N  are integers 
and d  is a real number in the interval ]1,0[ . And, I  is 
usually chosen in the range ]1,0[ −N . In this paper, we 
use the weighted average approach to achieve the purpose, 
that is, non-integer delay sample is estimated by 
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Now, the remaining problem is how to use the DHT interpo-
lation method in the preceding section to determine the 
weights ),( dIrw + . To solve this problem, we choose 
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Substituting Eq.(16) into Eq.(14), we get 
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Let rNm −−= 1 , this expression becomes 
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Replacing t  by dIN −−− 1 , the above equation can be 
rewritten as 
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Comparing Eq.(15) with Eq.(19), we get 
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Finally, given integer N , and delay dI + , the procedure 
to estimate non-integer delay sample )( dIns −−  from the 
given integer delay samples )(ns , )1( −ns , )2( −ns ,..., 

)1( +− Nns  is summarized below:  
Step 1: Use Eq.(20) to compute the weights ),( dIrw + . 
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Step 2: The non-integer delay sample is estimated by 
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4. DESIGN OF FRACTIONAL ORDER 
DIFFERENTIATOR 

    In the literature, there are several definitions of fractional 
derivative and integral such as the Riemann-Liouville, the 
Grünwald-Letnikov and the Caputo definitions [5]. In this 
paper, we will use the Grünwald-Letnikov derivative whose 
definition is given by 
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where coefficient υ
kC  is given by 
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Based on this definition, it can be shown that the fractional 
derivatives of exponential and sinusoidal signals are given by 
                                tt eeD αυαυ α=                               (23a) 
 )sin()sin( 2 υφωωφω πυυ ++=+ tAtAD     (23b) 
Now, let us study the fractional derivative in frequency-
domain below. It is well-known that the continuous time 
Fourier transform pair of signal )(ts  is defined by 
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Taking the fractional derivative at both sides of Eq.(24b), we 
get 
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Thus, the Fourier transform of fractional derivative )(tsD υ  
is )()( ωω υ Sj . This means that when a signal )(ts  passes 
through a differentiator with frequency response υω )( j , 
then the output of differentiator is fractional derivative 

)(tsD υ . Thus, the ideal frequency response of fractional 
order differentiator is υω )( j . So far, the definition of frac-
tional derivative has been described. In what follows, let us 
use the DHT interpolation method and Grünwald-Letnikov 
derivative in Eq.(21) to design a digital fractional order dif-
ferentiator that approximates the following frequency domain 
specification as well as possible: 
                      Ij
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where I  is a prescribed delay value. First, let us define coef-
ficients )(ka  below 
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then the fractional derivative in Eq.(21) can be rewritten as  
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Fig.1 shows the coefficient sequence )(ka  for various order 
υ . It is clear that the )(ka  is a rapidly decaying sequence 
for various order υ . Thus, by truncation, )(tsD υ  in Eq.(28) 
can be approximated by 
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where K  is truncation order. Moreover, by removing limit, 
the )(tsD υ  can be further approximated by 
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Obviously, the smaller h  is, the better approximation in 
Eq.(30) has. By taking Int −= , the discrete-time deriva-
tive signal )( InsD −υ  can be obtained as 
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Because )( khIns −−  are non-integer delay samples of 
signal )(ns , the )( khIns −−  needs to be estimated by 
using the formula in Eq.(15): 
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Substituting Eq.(32) into Eq.(31), we have 
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Defining coefficient 
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then Eq.(33) can be rewritten as the following convolution 
form: 
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where * denotes the convolution sum operator. Taking z-
transform at both sides of Eq.(35), we get 
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where )(zY  is z-transform of )( InsD −υ  and )(zS  is 
z-transform of )(ns . Let FIR filter be defined as 
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then )(zG  is the transfer function of the designed frac-
tional order differentiator which will approximate ideal fre-
quency response Ijej ωυω −)(  well. Now, given integer N , 
fractional order υ , delay I , integer K  and small positive 
number h , the procedure to design fractional order differ-
entiator )( zG  is summarized below:  
Step 1: Use Eq.(20) to compute the weights ),( khIrw + . 
Step 2: Compute coefficients )(ka  by using Eq.(27). 
Step 3: Use Eq.(34) to calculate coefficients )(rg . 
Step 4: The transfer function of the designed fractional order 

differentiator is given by ∑
−

=

−=
1

0
)()(

N

r

rzrgzG . 

Finally, some remarks are made as follows: First, a large 
integer K  needs to be chosen for reducing truncation error 
which occurs in Eq.(29). Second, a smaller positive number 
h  needs to be chosen for reducing the approximation error 
which occurs in Eq.(30). Third, if N  is large, the designed 
fractional order differentiator is a long-length FIR filter. To 
reduce implementation complexity, the Prony method in [16] 
can be used to approximate long-length FIR filter )( zG  by 
an IIR filter below: 

                 

∑

∑

=

−

=

−

+
=

1

1

1
2

0
1

)(1

)(
)( N

n

n

N

n

n

zng

zng
zG               (38) 

5. DESIGN EXAMPLES AND COMPARISONS 

In this section, we will study the design error of the pro-
posed DHT-based fractional order differentiator and compare 
it with conventional methods. To evaluate the performance, 
the integral squares error of frequency response is defined by 
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Obviously, the smaller the error E  is, the better performance 
of design method has.  
Example 1: In this example, the design parameters of the 
proposed method are chosen as 100=N , 40=I , 

5.0=υ , 1000=K  and 02.0=h . Fig.2(a) depicts the 
magnitude responses (solid line) of the )(zG . The dashed 
line is the ideal magnitude response υω . So, the specifica-
tion is fitted well except the region near πω = . Fig.2(b) 
shows the phase response πωω 5.0/]))(([*90 IeGangle j +  
in degree. The dashed line is the ideal response υ90 . It can 
be observed that the specification is approximated well. Now, 
let us compare the proposed method with the conventional 
fractional delay method in [9]. When the design parameters 
are chosen as 100=N , 40=I  and 5.0=υ , the con-
ventional fractional order differentiator is designed by the 
Lagrange fractional delay method used in Fig.4 of [9]. 
Fig.2(c)(d) show the designed results (solid line) of this 
method. The dashed line is ideal response. It can be seen that 
the actual response does not fit the ideal response well in 

high frequency region. If 9.0=λ  is chosen, the error E  of 
conventional fractional delay method in [9] is 0.1255, and the 
error E  of proposed DHT method is 0.0287. Thus, the pro-
posed method has smaller design error than the conventional 
method in [9]. 
Example 2: In this example, let us compare the proposed 
method with the conventional time domain least-squares 
method in [10] whose design procedure is described below: 
Step 1: Expand the fractional order Tustin differentiator 

υ)]([ zU  as the following power series form: 

       

⎟
⎠

⎞
⎜
⎝

⎛
+=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=

∑

∑∑
∞

=

−

∞

=

−−
∞

=

−

−

−

1

00

1

1

1

)(12

)(2

1
12)]([

k

k

k

k
k

k

k
k

zku

zCzC

z
zzU

υ

υυυ

υ
υ

    (40) 

where filter coefficient )(ku  is the convolution sum of 
υ
k

k C)1(−  and υ−
kC . After truncating the high-order terms, 

υ)]([ zU  can be approximated by FIR filter 
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where cN  is the truncation length. 
Step 2: Using the Prony method, the long-length FIR filter 

)( zU  can be approximated by the IIR filter below: 
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Then, the frequency response of filter )(ˆ zUz I−  will ap-
proximate the ideal response  Ij

d ejH ωυωω −= )()(  well. 
Now, one example is used to compare this conventional de-
sign with the proposed design in Eq.(38). The parameters in 
conventional design are chosen as 60=cN , 102 =N  
and 5.0=υ . Fig.3(a)(b) show the magnitude and phase re-
sponses (solid line) of the designed differentiator )(ˆ zU . The 
dashed line is ideal response. The maximum pole radius is 
0.9941, so IIR filter )(ˆ zU  is stable. From this result, it is 
clear that the error of phase is very small, but the magnitude 
error at high frequency band is very large. After )( ωjeG  in 
Eq.(39) is changed to )(ˆ ωω jIj eUe− , the error E  with 

9.0=λ  is 13.4803 for this traditional design. For compari-
son, the designed results of proposed DHT method are re-
ported below. The design parameters are chosen as 60=N , 

9=I , 1000=K , 02.0=h , 101 =N , and 5.0=υ . 
Fig.3(c)(d) show the magnitude and phase responses (solid 
line) of the designed IIR differentiator )(zG  in Eq.(38). The 
dashed line is ideal response. The maximum pole radius is 
0.8169, so IIR filter )(zG  is stable. Compared Fig.3(a)(b) 
with Fig.3(c)(d), it can be observed that the proposed DHT 
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method has better magnitude response than conventional 
method. However, the phase response error of conventional 
approach is smaller than the proposed method. After )( ωjeG  
in Eq.(39) is changed to )( ωjeG , the error E  with 

9.0=λ  is 2.0015 for the DHT design. 

6. CONCLUSIONS 

    In this paper, the design of fractional order differentiator 
has been presented. First, the DHT interpolation method is 
described. Then, non-integer delay sample estimation of 
discrete-time sequence is derived by using DHT interpola-
tion approach. Next, the Grünwald-Letnikov derivative and 
non-integer delay sample estimation are applied to obtain 
the transfer function of fractional order differentiator. Finally, 
the numerical examples are studied to show the usefulness 
of this new design approach. However, only one-
dimensional fractional order differentiator design is studied 
here. Thus, it is interesting to extend the proposed DHT in-
terpolation method to design multi-dimensional fractional 
order differentiators in the future. 
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Fig.1 The coefficient sequence )(ka  for various order υ .  
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Fig.2 The designed results (solid line) of the fractional order 
FIR differentiator. (a)(b) The results of the proposed DHT 
method. (c)(d) The results of the fractional delay method in 
[9]. The dashed line is the ideal response. 
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Fig.3 The designed results (solid line) of the fractional order 
IIR differentiator. (a)(b) The results of )(ˆ zU  in conventional 
method. (c)(d) The results of )(zG  in proposed DHT 
method. The dashed line is the ideal response. 
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