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ABSTRACT
In this paper the problem of Compressive Sensing (CS) is
addressed. The focus is on estimating a proper measurement
matrix for compressive sampling of signals. The fact that
a small mutual coherence between the measurement matrix
and the representing matrix is a requirement for achieving a
successful CS is now well known. Therefore, designing mea-
surement matrices with smaller coherence is desired. In this
paper a gradient descent method is proposed to optimize the
measurement matrix. The proposed algorithm is designed to
minimize the mutual coherence which is described as abso-
lute off-diagonal elements of the corresponding Gram ma-
trix. The optimization is mainly applied to random Gaussian
matrices which is common in CS. An extended approach is
also presented for sparse signals with respect to redundant
dictionaries. Our experiments yield promising results and
show higher reconstruction quality of the proposed method
compared to those of both unoptimized case and previous
methods.

1. INTRODUCTION

Compressive Sensing (CS) [1] [2] is one of the recent in-
teresting fields in signal and image processing communi-
ties. It has been utilized in many different applications from
biomedical signal and image processing [3] to communica-
tion [4] and astronomy [5]. The core idea in CS is a novel
sampling technique which under certain conditions can lead
to a smaller rate compared to conventional Shannon’s sam-
pling rate. The key requirement for achieving a successful
CS is compressibility or more precisely sparsity of the in-
put signal. A sparse signal has a small number of active
(nonzero) components compared to its total length. This
property can either exist in the sampling domain of the sig-
nal or with respect to other basis such as Fourier, wavelet,
curvelet or any other basis. A CS scenario mainly consists
of two crucial parts; encoding (sampling) and decoding (re-
covery). We formally explain both parts in this section, but
the focus in this work is on the first part where we try to
improve the sensing process which consequently affects the
reconstruction performance.

Let x ∈ Rn be a sparse signal, meaning to have at most
s¿ n nonzero elements. We now want to find p linear mea-
surements termed as y = Φx, where s < p < n, and Φ∈Rp×n

is the measurement matrix. Obviously, p = s is the best pos-
sible choice. However, since we are not aware of the loca-
tions and the values of the nonzero elements when recon-
structing x from y, a larger p is needed to guarantee the re-
covery of x [6]. In addition, the structure of Φ is not arbi-
trary, and should be adopted based upon some specific rules.

For instance, it has been proved [6] that for a Φ with i.i.d
Gaussian entries with zero mean and variance 1/p the bound
p ≥ C · s · log(n/p) is achievable and can guarantee the ex-
act reconstruction of x with overwhelming probability1. The
same condition can be applied to binary matrices with inde-
pendent entries taking values ±1/

√
p. As another example,

we imply Fourier ensembles which are obtained by selecting
p renormalized rows from the n× n discrete Fourier trans-
form, with the bound p≥C · s · (logn)6.

Now, assume that x is not sparse in the present form (e.g.
time domain), but it can be sparsely represented in another
basis (e.g. Fourier, wavelet, etc.). Mathematically speaking,
we name α the sparse version of x satisfying x = Ψα , where
Ψ ∈ Rn×m is called the representing (or sparsifying) dictio-
nary (or basis). Ψ is called a complete dictionary if n = m,
otherwise n < m and we call it overcomplete (or redundant).
For consistency in notations we always consider complete
dictionaries thorough the paper, unless it is stated. The ex-
tension to overcomplete dictionaries is easy though. In order
to achieve a successful CS, we must choose a Φ having least
possible coherence with Ψ. In other words, a D := ΦΨ is
desired to have columns with small correlations [7]. This
property is termed as mutual coherence, and usually denoted
by µ . More details about µ will be discussed later in this
paper. The mutual coherence also affects the bound for p
such that p≥C ·µ2 · s · (logn)6 [6]. Interestingly, it is shown
that random ensembles are largely incoherent with any fixed
basis [7]. This is a useful property which allows us to non-
adaptively choose a random Φ for any type of signal. More
details and proofs in this context can be found in [6] and the
references therein.

The second crucial job in CS is reconstruction, which
can be described as solving the well known underdetermind
problem with sparsity constraint,

min‖α‖0 s.t. y = ΦΨα ≡ Dα (1)

where ‖·‖k denotes the `k-norm in general, and here, `0-norm
gives the support of α , which is actually the level of spar-
sity. Although this problem is sometimes described in other
forms, the main issue is to find the sparsest possible α sat-
isfying y = Dα . Unfortunately, the problem (1) is noncon-
vex in general, and the solution needs a combinatorial search
among all possible sparse α , which is not feasible. However,
there are some greedy methods trying to iteratively solve (1).
The family of Matching Pursuit (MP) [8] methods such as
Orthogonal Matching Pursuit (OMP), stagewise OMP [9],
and Iterative Hard Thresholding (IHT) [10] mainly attempt

1C is a computable constant.
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to solve (1) by selecting the vectors of D which are mostly
correlated with y. Thanks to the greedy nature of these algo-
rithms; they are fast. In contrast, there have been proposed
some optimization-based methods, mainly achievable by lin-
ear programming, called Basis Pursuit (PB) [11] which at-
tempt to recover α by converting (1) into a convex problem
which relaxes the `0-norm to an `1-norm problem:

min‖α‖1 s.t. y = ΦΨα ≡ Dα (2)

Although random matrices are suitable choices for Φ, it
has been recently shown that optimizing Φ with the hope
of reducing the mutual coherence can improve the perfor-
mance [12–15]. Elad [12] attempts to iteratively decrease
the average mutual coherence using a shrinkage operation
followed by a Singular Value Decomposition (SVD) step.
Duarte-Carvajalino et al. [13] take the advantage of an eigen-
value decomposition process followed by a KSVD-based al-
gorithm [13] (see also [16]) to optimize Φ and train Ψ, re-
spectively. Overally, the results of the current methods show
enhancement in terms of both reconstruction error and com-
pression rate. That motivates us to work more on optimizing
the measurement matrix to obtain better results and also at-
tempt to make the optimization process more efficient, spe-
cially for large-scale signals.

In this paper we propose a gradient-based optimization
approach to decrease the mutual coherence between the mea-
surement matrix and the representing matrix. This can be
achieved by minimizing the absolute off-diagonal elements
of the corresponding Gram matrix G = D̃T D̃, where D̃ is
the column-normalized version of D, and (.)T denotes the
transposition. Our idea is to approximate G with an identity
matrix using a gradient descent method.

In the next section we formally express the sensing prob-
lem and the required mathematics related to optimization of
the measurement matrix. Then, in section 3, the gradient-
based optimization method is described in details. In section
4, the simulations are given to examine the proposed method
from practical perspectives. Finally, the paper is concluded
in section 5.

2. PROBLEM FORMULATION

Similar to the notations in the previous section, we consider
the signal x to be sparse with cardinality s over the dictionary
Ψ ∈ Rn×m. Consider the noiseless case, we are going to take
p < n linear measurements which based on CS rules can be
done by multiplying a Φ with random i.i.d Gaussian entries
such that y = ΦΨα2. However, p cannot exceed the bounds
mentioned in the previous section, which highly depends on
the coherence between Φ and Ψ and the level of sparsity s.
One of the suitable ways to measure the coherence between
Φ and Ψ is to look at the columns of D, instead. As D = ΦΨ,
the mutual coherence (which is desired to be minimized) can
be defined as the maximum absolute value and normalized
inner product between all columns in D which can be de-
scribed as follows [11],

µ(D) = max
i 6= j,1≤i, j≤m

{
|dT

i d j|
‖di‖ ·

∥∥d j
∥∥

}
(3)

2Note that in cases where x is sparse in the current domain, we ignore Ψ
and consider x = α and Φ = D without loss of generality.

Another suitable way to describe µ , especially for the
purpose of this paper, is to compute the Gram matrix G =
D̃T D̃, where D̃ is column-normalized version of D. We then
define µmx (which is equal to µ(D)), as the maximum abso-
lute off-diagonal elements in G,

µmx = max
i 6= j,1≤i, j≤m

∣∣gi j
∣∣ . (4)

Moreover, the average absolute off-diagonal elements in
G is another useful measure defined as

µav =
∑i 6= j

∣∣gi j
∣∣

m(m−1)
. (5)

Mainly, there are two important reasons why we are in-
terested in matrices with small coherence and these motivate
us to optimize Φ with the aim of decreasing the coherence.
Suppose that the following inequality holds:

‖α‖0 <
1
2

(
1+

1
µ(D)

)
(6)

then, α is necessarily the sparsest reconstructed signal when
y and D are known, and both BP and OMP are guaranteed
to succeed [12] [17] [18]. This implies that as long as µ
is very small, a successful reconstruction is achievable for a
wider range of sparsity degree. Another key notion here is
considering the Restricted Isometry Property (RIP) [6] [11],
which implies that for a proper isometry constant, RIP en-
sures any subset of columns in D with cardinality less than
sparsity level s, is nearly orthogonal. This results in a better
CS behavior and guarantees the identifiability of the original
signal by both OMP and BP [13].

3. PROPOSED APPROACH

So far, it has been realized that a low coherence between
columns of D is a desired property in CS framework. In sec-
tion 2, the mathematical expression of coherence led to com-
puting the Gram matrix and from that point we concluded
that small absolute off-diagonal elements in D is desired. Let
us now consider the ideal case, where minimum possible co-
herence (µmx = µav = 0) occurs. This situation will give us
G = Imm, where Imm is identity matrix with indicated dimen-
sions (note that D̃ is column-normalized). Unfortunately, this
may only occur when p ≥ m, which is meaningless in CS.
However, we might be able to introduce a measurement ma-
trix leading to a G as close as possible to identity, even if
p < m. One way to provide such a matrix is to solve the
following problem,

Ĝ = argmin
G
‖G− I ‖2

∞ (7)

where ‖ . ‖∞ is defined as the maximum absolute off-diagonal
elements of G. However, we prefer to use the Frobenius
norm denoted as ‖ . ‖F , which has the advantages of sim-
plifying the minimization problem, and also participating not
only the maximum absolute off-diagonal, but all off-diagonal
elements of G in the minimization process. Therefor, mini-
mizing (7) with Frobenius norm will effectively, but not di-
rectly, minimize µmx and µav.

In order to set up a practical cost function for our prob-
lem, assume either the case where x is sparse in current do-
main (i.e. D = Φ), or the dictionary Ψ is square (n = m).
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Note, however, the extension to the case of redundant dic-
tionaries (n < m) is easy and will be explained later in the
sequel. If we then express G in terms of D̃ and replace it
in (7) we obtain the following unconstrained minimization
problem,

D̂ = argmin
D̃
‖ D̃T D̃− I ‖2

F (8)

To minimize (8), we adopt a gradient-descent method. To
do this, we first define the corresponding error as,

E =‖ D̃T D̃− I ‖2
F= Tr{(D̃T D̃− I)(D̃T D̃− I)T} (9)

where Tr{·} denotes the trace operation.
Then, we need to compute the gradient of E with respect

to elements of D̃, denoted by d̃i j,

∇E ≡ ∂E
∂ d̃i j

= 4D̃(D̃T D̃− I) (10)

Once the gradient of E is obtained, the solution for (8)
can be described as an iterative process to update D̃ ←
D̃−η∇E, where η > 0 is the stepsize which can be fixed or
variable. Consequently, the full description of update equa-
tion in each iteration is expressed as,

D̃(i+1) = D̃(i)− η̂D̃(i)(D̃
T
(i)D̃(i)− I) (11)

where i is the iteration index and η̂ is the new stepsize after
merging the scaler 4 in (10) with η . The proposed algorithm
starts with an initial random D̃(0) and then iteratively updat-
ing D̃. In addition, a normalization step for columns of D̃,
denoted by d̃ j with j = 1,2 . . .n, is required at each iteration:

d̃ j
(i+1) ← d̃ j

(i)/‖d̃ j
(i)‖2 (12)

After K iterations, when the convergence condition(s) is(are)
met, D̂ = D̃(K) is given as the solution for (8). Finally, if
x is sparse in its current domain, Φ̂ = D̂ would actually be
the required measurement matrix and the algorithm is termi-
nated. However, if x is sparse over Ψnn, then an inverse or
pseudoinverse is required to obtain the measurement matrix
Φ̂ = D̂Ψ−1. Note that the gradient descent methods, mainly
do not guarantee a global minimum, but can normally pro-
vide a local minimum. The pseudocode of the proposed al-
gorithm is given in Algorithm 1.

In order to extend the above algorithm for the case of
sparse signals over a dictionary Ψnm, with n < m, we only
need to consider Ψ in converting (7) to (8). Since G =
D̃T D̃ = ΨT ΦT ΦΨ, we modify the minimization problem and
obtain,

Φ̂ = argmin
Φ̃
‖ΨT ΦT ΦΨ− I ‖2

F (13)

The gradient of the error is then computed,

∂E
∂φi j

= 4ΦΨ(ΨT ΦT ΦΨ− I)ΨT (14)

and the update equation which directly updates Φ is ex-
pressed as:

Φ(i+1) = Φ(i)−ηΦ(i)Ψ(ΨT ΦT
(i)Φ(i)Ψ− I)ΨT . (15)

Algorithm 1: Gradient-descent optimization.
Input: Sparse representation basis Ψnn (if necessary),

Stepsize η , Maximum number of iterations K.
Output: Measurement matrix Φpn.
begin

Initialize D to a random matrix.
for k=1 to K do

for j=1 to n do
d j ←− d j/‖d j‖2

end
D←− D−ηD(DT D− I)

end
if Ψnn has been given as input then

Φ̂←− DΨ−1

else
Φ̂←− D

end
end

4. SIMULATION RESULTS

In this section we illustrate some results of our experiments
to show the ability of the proposed method in optimizing the
measurement matrix and consequently its effect in the recon-
struction process. The results are encouraging and show that
the idea of optimizing the measurement matrix can increase
the performance in CS framework.

In the first experiment we built up a random dictionary
Ψ(200×400) and a random Φ(100×200) both with i.i.d Gaus-
sian elements. We then ran the proposed algorithm with
η = 0.02 and 60 number of iterations to optimize Φ. We
also applied Elad’s algorithm [12] to the same Φ and Ψ. The
parameters we used for Elad’s method were: the shrinkage
parameter γ = 0.5, a fixed threshold t = 0.25 and 60 num-
ber of iterations. Figure 1(a) shows the distribution of ab-
solute off-diagonal elements of G for this experiment. As
seen from the figure, after applying the proposed method,
the distribution becomes denser with more coefficients close
to zero. This change verifies a smaller coherence between Φ
and Ψ, which is also confirmed by having µav = 0.0075 and
µmx = 0.3887 in this experiment, compared to µav = 0.0148
and µmx = 0.4995, for unoptimized Φ. Elad’s method im-
proves the coherence, almost similarly; µav = 0.0187 and
µmx = 0.4255. However, large µav in Elad’s method, also
reported in [13], is due to an undesired peak around 0.15 in
Figure 1(a), which may weaken the RIP conditions [13]. This
drawback has been well mitigated in the proposed method as
can be noticed from Figure 1(a). The same results are also
seen for random i.i.d Gaussian Φ(100×200) and Discrete co-
sine transform (DCT) Ψ(200×200), shown in Figure 1(b).

In the next experiment we generated a set of 10000 sparse
signals with the length of n = 120, at random locations and
random amplitudes, for nonzero samples. We chose DCT
bases for Ψ, with the size of 120×120, i.e. n = m = 120. In
this experiment we used η = 0.01 and 150 number of itera-
tions. For Elad’s method we used γ = 0.95, relative threshold
t = 20% and 1000 number of iterations:
• First, we fixed the sparsity level to s = 8 and varied p

from 20 to 80 in taking the measurements y = ΦpnΨnnα .
We then applied three reconstruction methods: IHT,
OMP, and BP on all 10000 signals. This experiment was
repeated for each p ∈ [20 80], and then the relative error
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(a) Φ: Random, and Ψ: Random.
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(b) Φ: Random, and Ψ: DCT.

Figure 1: Distribution of off-diagonal elements of G.

rate between the reconstructed signals and the original
signals were computed. The result of this experiment is
shown in Figure 2. It is seen that optimization of Φ has a
considerable influence in reducing the reconstruction er-
ror. In addition, it is observed that the proposed method
works better compared to the work in [12]. It is also seen
that the error rate is almost similar for both proposed and
Elad’s, when using BP for recustruction (Figure 2 (c)).

• Second, in order to evaluate the performance of the pro-
posed method against changes in cardinality, we fixed
p = 30 and varied the sparsity level from 1 to 20, and
then reconstructed x by applying IHT and OMP for all
10000 sparse signals. The computed relative error rate
for this experiment is shown in Figure 3. Again we see
improvement compared to unoptimized case.
In the last experiment, we studied the effects of the pro-

posed optimization on sampling and reconstruction of real
images. Due to huge number of pixels, it is mainly impossi-
ble to process the whole image, directly. Hence, we applied
the multi-scale strategy proposed in [19] and [20], consider-
ing wavelet transform as the representing dictionary to spar-
sify the input image. We used symmlet8 wavelet with coars-
est scale at 4 and the finest scale at 5, and followed the same
procedure as in [19]. As an illustrative example, the “Mon-
drian” image of size 256× 256 was compressed using un-
optimized and optimized measurement matrices. Following
the same procedure in [19] to keep the approximation coef-
ficients, the whole image was then compressed to 870 sam-
ples. Then, the image was reconstructed using HALS CS
method [19, 21]. As can be seen from Figure 4, the recon-
struction error computed as ε = ‖x̂− x‖2/‖x‖2, where x̂ is
the reconstructed image, is less when we compress the im-
age using the proposed optimized measurement matrix. We
also recorded the running time of this experiment where a
desktop computer with a Core 2 Duo CPU of 3.00 GHz, and
2 G Bytes of RAM was used. It is seen from Figure 4 that
adding the optimization step increases the running time, as
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Figure 2: Relative error rate vs. the number of measurements p,
using (a) IHT, (b) OMP, and (c) BP for reconstruction.
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Figure 3: Relative error rate vs. the sparsity level s, using (a) IHT
and (b) OMP for reconstruction.

expected. However, less computation time of the proposed
method compared to Elad’s is noticeable.

5. DISCUSSION AND CONCLUSION

In this paper the problem of compressive sensing is investi-
gated. A new gradient-based approach is proposed in which
the aim is to optimize the measurement matrix in order to de-
crease the mutual coherence. An extension to the proposed
algorithm is also presented which is suitable for sparse sig-
nals with respect to overcomplete dictionaries. The results of
our simulations on both real and synthetic signals are promis-
ing and confirm that optimization of the measurement matrix
increases the performance, which is introduced in terms of
reconstruction error and the number of measurements taken.
In practice, however, the proposed method is still not appli-
cable to very large-scale problems. Lower complexity of the
proposed method, compared to the previous methods, indi-

430



50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250

(b) ε = 0.168, t = 2.13 sec.

50 100 150 200 250

50

100

150

200

250

(c) ε = 0.157, t = 19.37 sec.

50 100 150 200 250

50

100

150

200

250

(d) ε = 0.163, t = 444.3 sec.

Figure 4: Reconstruction of Mondrian image using HALS CS
method. (a) Original image. Reconstruction with (b) no optimiza-
tion, (c) proposed optimization, and (d) Elad’s optimization of the
measurement matrix.

cates the possibility of appropriateness of such methods for
very large-scale problems. This fact has not been reported in
the literature yet and needs to be challenged.
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