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ABSTRACT
A new spatiotemporal filtering method for single trial estimation
of event related potential (ERP) subcomponents is presented here.
The method is an extension of the recent method for estimation of
ERP components developed by Li et al. [1]. This method can be
used for estimation of ERP subcomponents when they have tempo-
ral overlap and are often viewed as one component. Using the scalp
projection of the subcomponents, a new constraint is added to the
cost function which can deflate the other subcomponents. Therefore,
the proposed method is capable of estimating the ERP subcompo-
nents effectively. The method is applied to both simulated and real
data and has been shown to perform very well even in low signal
to noise ratios. The approach can be especially useful in mental
fatigue analysis where the relative variability of the P300 subcom-
ponents are the key factors in order to detect the level of fatigue.

Index Terms— Event related potential (ERP), subcompo-
nent, spatiotemporal filtering, constraint.

1. INTRODUCTION

Event related potentials (ERPs) are voltage fluctuations in EEG in-
duced within the brain and are time locked to sensory, motor, or
cognitive events [2][3]. They are used mainly by clinicians in or-
der to assess a number of neurological disorders and cognitive pro-
cesses. An ERP wave consists of a sequence of labeled positive
and negative amplitude components. These components reflect var-
ious sensory, cognitive and motor processes that are classified on
the basis of their scalp distributions and responses to experimental
stimuli.

One common approach to analyze the ERP components is to
average the time-locked single-trial measurements. Averaging the
EEG over a number of trials to obtain the ERP waveform results in
loss of information related to trial-to-trial variability. The ERP vari-
ability across trials can be exploited in identification of many brain
abnormalities. An effective analysis of ERPs should then be based
on single trial estimation. Several methods such as Wiener [4],
maximum a posterior (MAP) [5] and Kalman filtering approaches
[6] have been used in single trial estimation. Other methods are
proposed in [7] and [8] which are based on principal component
analysis (PCA) and independent component analysis (ICA). These
methods are not suitable in low signal to noise ratios and may fail
in many situations because of very low signal to background noise
power and inter-trial variability of the recorded ERPs.

Recently a method for spatiotemporal ERP component estima-
tion from single trials is developed in [1]. The method is effective in
ERP component estimation in negative signal to noise ratios. This
method assumes that there is no temporal correlation or overlap be-
tween the components; in the case of having correlated components
or subcomponents it can not achieve correct results. Therefore, in
this paper we have extended and modified the method presented in
[1] in order to have a single trial estimation of ERP subcomponents
where there is inherent temporal correlation between the subcom-
ponents.
Our proposed method for estimation of the ERP subcomponent de-
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scriptors defines two cost functions (in the case of having two sub-
components which have temporal correlation) and estimates the la-
tency, amplitude, and scalp projections of both subcomponents. The
method can be generalized and considered for the case that there are
more than two subcomponents. However, because one important is-
sue is to deal with the P300 subcomponents (i.e. P3a and P3b), the
method can be used specifically for P300 subcomponent estimation.
In this paper it is shown mathematically that the method in [1] for
ERP component estimation can not be used for ERP subcomponent
estimation because of temporal correlation between the subcompo-
nents whereas, the new ERP subcomponent estimation method pro-
posed here can result in a very good estimation of ERP subcom-
ponent descriptors (latency, amplitude and scalp projection). The
proposed method is highly demanded for some applications such as
mental fatigue in which single trial estimation of P300 subcompo-
nents and their variability can be utilized in detecting the level or
degree of fatigue. The remainder of the paper is structured as fol-
lows. In section 2 linear generative EEG model is described. Then,
in section 3 the new spatiotemporal filtering method is explained. In
section 4 the results of applying the spatiotemporal filtering to both
simulated and real data are provided. Finally, section 5 concludes
the paper.

2. LINEAR GENERATIVE EEG MODEL

In this section a composite EEG model which includes two gener-
ally correlated subcomponents is provided and then a new approach
for estimation of their parameters is proposed. To do this we start
with writing the linear generative EEG model in the matrix form as:

X = a.s+
N

∑
i=1

bini (1)

where X is a D× T matrix which represents the single-trial EEG
data with D channels and T samples, s is a 1×T vector that can be
the time course of ERP component, ni denotes the noise in general
and N is the number of noise components. The vectors a and bi are
of dimension D× 1 and can be considered as the projection of the
corresponding source to the electrodes on the scalp. X can also be
modeled in terms of its constituent normalized components as:

X = σs0a0.s0 +
N

∑
i=1

σib0in0i (2)

where a0, s0, and n0i are the normalized versions of the their coun-
terparts in (1). The scalars σs0 and σi are the overall contributions of
the sources to the multichannel EEG data. For a stable normalized
scalp projection a0, it is expected that a0 is fixed for all the trials and
the amplitude σs0 may change across trials. Now consider the new
formulation which decomposes the ERP component into its corre-
lated subcomponents (we can assume that we are dealing with P300
that has two overlapped subcomponents as P3a and P3b):

X = σ1a1.s1 +σ2a2.s2 +
N

∑
i=1

σib0in0i (3)
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where σ1, a1 and s1 are the amplitude, scalp projection, and time
course of the first subcomponent, and σ2, a2 and s2 are the ampli-
tude, scalp projection, and time course of the second subcomponent
of the combined component described by σs0, a0, s0 in equation (2).
Suppose that the first subcomponent is estimated and normalized as
y1. If we multiply its transpose to both sides of equation (3) we
have the following relation (the cross term n0i.y

T
1 almost vanishes

because it is assumed that the noise is uncorrelated with the ERP
subcomponents):

X.yT
1 = σ1a1.s1.y

T
1 +σ2a2.s2.y

T
1 (4)

If we assume that the normalized estimated subcomponent y1 is
exactly the same as the first source, the first term will be equal to
σ1a1 (the normalization operation makes s1.y

T
1 equal to 1). The

main concern is the second term in which s2.y
T
1 becomes a scale

factor because of temporal correlation between the subcomponents.
If s2.y

T
1 were zero (in the case of having no temporal correlation),

X.yT
1 could result in an estimation of a1. Therefore, multiplication

of one of the estimated subcomponents can not give us an estimate
of its corresponding scalp projection because of the non zero na-
ture of the second term in equation (4) when the subcomponents are
temporally correlated.

This procedure is used in [1] in order to have an initial estimation
of scalp projection a of the ERP component which is considered
to be uncorrelated with the noise. But we showed that the method
is not capable of estimating the scalp projections of the ERP sub-
components when there are some other correlated subcomponents.
Hence, we need to extend the method to work for estimation of ERP
subcomponents. The proposed method here is based on a cost func-
tion which can suppress one of the subcomponents. It is assumed
that the noise is uncorrelated with both subcomponents and there-
fore, a filter is designed for estimation of the ERP subcomponents.
Now consider the following constrained problem:

min ||wT X−r1||22 sub ject to wT a2 = 0 (5)

Where both w and a2 are D× 1 vectors, r1 is an 1× T vector,
and D is the number of channels. Using Lagrange multipliers, the
constrained problem can be converted to an unconstrained problem:

F = ||wT X−r1||22 +wT a2q (6)

where q is the Lagrange multiplier. The gradient of F with respect
to wT is:

∂F
∂wT =

∂
∂wT {r1r

T
1 −2r1X

T w+wT XXT w+wT a2q}
=−2r1X

T +2wT XXT +qaT
2

(7)

By setting the above equation to zero and solving it for wT , we get
the following equation:

wT = 0.5(2r1X
T −qaT

2 )C−1
x (8)

where Cx = XXT . By substitution of (8) into the constraint in (5),
we obtain:

wT a2 = 0.5(2r1X
T −qaT

2 )C−1
x a2 = 0; (9)

The scale q is obtained as:

q =
2r1X

T C−1
x a2

aT
2 C−1

x a2
(10)

Now consider the main cost function in (5):

G = ||wT X−r1||22 (11)

If we set G to zero, the optimum solution given by wT
opt to extract

r1 is:
wT

opt = r1X
T C−1

x (12)

If we multiply wT
opt to both sides of equation (3), it can be seen that

in order to have an estimation of s1, by having an appropriate refer-
ence source for s1 that is r1, wT

opta1 will become 1/σ1 and wT
opta2

will become zero. Therefore, we can conclude that in the case of
having the exact reference for s1, wT

opta1 = 1/σ1 and wT
opta2 = 0.

Substitute wT
opt from equation (12) into wT

opta2 = 0, the following
equation is achieved:

r1X
T C−1

x a2 = 0 (13)

Equation (13) is equal to the numerator of equation (10) and the
Lagrange multiplier will be equal to zero. This is expected because
this makes the cost functions F and G equal to each other. In other
words, when it is reasonable that wT

opta2 = 0 there is no need to
add an extra constraint wT a2 = 0 because as explained, this is hold
implicitly. Now, consider the following cost function:

F̃ = ||wT X−r1||22 +wT ã2q̃ (14)

using equation (10) we have the following solution for the Lagrange
multiplier:

q̃ =
2r1X

T C−1
x ã2

ãT
2 C−1

x ã2
(15)

with the help of equation (8) we find wT as follows:

wT = r1X
T C−1

x − r1X
T C−1

x ã2

ãT
2 C−1

x ã2
ãT

2 C−1
x

w = C−1
x XrT

1 −
r1X

T C−1
x ã2

ãT
2 C−1

x ã2
C−1

x ã2

(16)

we multiply both sides of the above equation by XT to obtain the
following equation:

XT w = XT C−1
x XrT

1 −
r1X

T C−1
x ã2

ãT
2 C−1

x ã2
XT C−1

x ã2 (17)

In this paper, a suitable choice is made for ã1 and ã2 as:

ã1 = XrT
1

ã2 = XrT
2

(18)

Therefore, it is simple to derive the following equations:

ã1 = σ1a1s1r
T
1 +σ2a2s2r

T
1

ã2 = σ1a1s1r
T
2 +σ2a2s2r

T
2

ã1 = σ1a1s1r
T
1 +

(ã2−σ1a1s1r
T
2 )

s2r
T
2

s2r
T
1

ã1 = σ1a1s1r
T
1 + ã2

s2r
T
1

s2r
T
2
−σ1a1

s1r
T
2 (s2r

T
1 )

s2r
T
2

(19)

Using equation (17), the following equations can be derived:

XT w = XT C−1
x XrT

1 −
ãT

1 C−1
x ã2

ãT
2 C−1

x ã2
XT C−1

x ã2

= XT C−1
x XrT

1

−
[σ1s1r

T
1 aT

1 + s2r
T
1

s2rT
2
ãT

2 −σ1
s1r

T
2 (s2r

T
1 )

s2rT
2

aT
1 ]C−1

x ã2

ãT
2 C−1

x ã2
XT C−1

x ã2

(20)
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Now we want to show that aT
1 C−1

x ã2 = 0. We use equation (13)
with swapped indices as:

r2X
T C−1

x a1 = 0

ãT
2 C−1

x a1 = 0

aT
1 C−1

x ã2 = 0

(21)

Therefore, equation (20) can be simplified to:

XT w = XT C−1
x XrT

1 −
[ s2r

T
1

s2rT
2
ãT

2 ]C−1
x ã2

ãT
2 C−1

x ã2
XT C−1

x ã2

= XT C−1
x XrT

1 − [
s2r

T
1

s2r
T
2

]XT C−1
x ã2

= XT C−1
x [σ1a1s1r

T
1 +σ2a2s2r

T
1 ]

−XT C−1
x [

s2r
T
1

s2r
T
2

][σ1a1s1r
T
2 +σ2a2s2r

T
2 ]

= XT C−1
x [σ1a1s1r

T
1 +σ2a2s2r

T
1 ]

−XT C−1
x [

s2r
T
1

s2r
T
2

σ1a1s1r
T
2 +σ2a2s2r

T
1 ]

(22)

XT w can be simplified more into:

XT w = XT C−1
x [σ1a1s1r

T
1 ]−XT C−1

x [
s2r

T
1

s2r
T
2

σ1a1s1r
T
2 ]

= XT C−1
x σ1a1[s1r

T
1 −

s2r
T
1

s2r
T
2

(s1r
T
2 )]

(23)

Then, we can derive the following equation:

XXT w = XXT C−1
x σ1a1[s1r

T
1 −

s2r
T
1

s2r
T
2

(s1r
T
2 )] (24)

Considering Cx =XXT and XXT C−1
x = I, the following equation

is derived:

XXT w = σ1a1[s1r
T
1 −

s2r
T
1

s2r
T
2

(s1r
T
2 )] (25)

If we normalize XXT w, a1 will be obtained. Therefore, follow-
ing (18) if we use ã2 = XrT

2 and solve equation (14) and multiply
the resulted w by XXT , we can have an estimate of a1 which is
the scalp projection of the first subcomponent whose correspond-
ing temporal reference signal is given by r1. Therefore, solving
equation (14) is effective and useful in estimation of the scalp pro-
jection of one of the subcomponents which is the main contribution
of this paper. One significant achievement in this paper which has
also been confirmed by the simulated results, is that when there is
a mismatch between the reference signal and the actual source the
normalized vector of XXT w does not change or because of dif-
ferent noise level it changes very slightly. In other words, the es-
timation of scalp projection of one of the ERP subcomponents is
independent of the choice of reference signals. In the case of hav-
ing a mismatch between the actual source and the reference signal,
still we can have a very good approximation of scalp projections
of the subcomponents. This is because the mismatch results in the
change of the scale ([s1r

T
1 − s2r

T
1

s2rT
2
(s1r

T
2 )]) in equation (25) in the

estimation. After normalization however, this has no effect.
Estimation of scalp projection of the correlated subcomponents

is very useful for localization of the ERP subcomponent in the brain.
However, in order to have the temporal estimation for each subcom-
ponent, we need to solve equation (11) and find wT

opt given in (12)
and then multiply it by X. Therefore, having a reference signal for

each subcomponent, wT
optX can be the temporal estimation of that

subcomponent.
The pseudocode for the new spatiotemporal filtering methodol-

ogy is provided in Algorithm 1. ERP subcomponents are modeled
using parametric functions in many studies and among them Gaus-
sian waveform is very common [9][10]. Although real ERP sub-
components may not look exactly Gaussian the modeling results in
a robust and fast estimation of the peak parameters (latency and am-
plitude) that neurophysiologists and cognitive scientists are primary
concerned. Like the method in [1] we used Gamma wave as an ap-
proximation to ERP subcomponents because any desired shapes can
be easily obtained by tuning its parameters. Based on the given al-
gorithm, first, we generate two references (r1,r2) representing the
first and second subcomponents using Gamma functions expressed
as:

r(t) = ctk−1exp(− t
θ

) (26)

Where k > 0 is a shape parameter, θ > 0 is a scale parameter, and c
is a normalizing constant. After generating Gamma wave as a ref-
erence signal for each ERP subcomponent, we slide each wave in
a range of valid latencies or order to generate more reference sig-
nals for both subcomponents. The peak latency of the reference is
denoted as τ . After generating the references, the value of ã1 and
ã2 can be obtained using equation (18). Then, it is possible to solve
the constrained problem given in (14) considering each reference
and ãi(i=1,2) that is obtained by considering the reference for an-
other subcomponent. Next, we estimate w1(τ1) and w2(τ2) using
equation (16) as shown in Algorithm 1. Then, considering three cost
functions (J1(τ1), J2(τ2), and J̃(τ1,τ2)), the reference signals, for
which the sum of the three cost functions is minimum, are selected.
Then we are able to estimate a1, a2, σ1, and σ2. These estimates are
shown in Algorithm 1. Practically, it is expected to get better results
in peak latency estimation if we use J̃(τ1,τ2) cost function. This is
not surprising since for temporal estimation of the subcomponents
it is reasonable to use wopt given in equation (12) and for the esti-
mation of scalp projections and the amplitude it is better to use the
constrained problem given in (14). Therefore, for peak latency es-
timation we use wopt resulted when using the reference signals for
subcomponents and considering J̃(τ1,τ2) cost function.

3. RESULTS

In this section, the results of applying the proposed method to both
simulated and real data are provided. The goal of the simulation
study is to evaluate the ability of the method in peak latency, ampli-
tude, and scalp projection estimation in different SNR levels. The
method is then applied to real data.

3.1 Simulation Study

In order to evaluate the method and quantify the estimation er-
ror for ERP subcomponent descriptor (latency, amplitude) two
Gamma waves are generated as ERP subcomponents. Therefore,
the Gamma waves are used as approximations to ERP subcompo-
nents because the desired shapes can be easily achieved by adjusting
their parameters. For simplicity of writing, we call the first sub-
component P3a and the second subcomponent P3b. The simulated
subcomponents are shown in Fig. 1 as the synthetic P3a and P3b
subcomponents. Two scalp projections which are somehow orthog-
onal are generated for P3a and P3b. Then, using equation (3), a 20
channel dataset is generated. Each channel includes 40 trials. In all
of the trials the latency of P3a is fixed at 150 ms and the latency of
P3b is fixed at 200 ms. Therefore, the subcomponents are relatively
highly correlated in time domain. The amplitudes of P3a and P3b
changes in different trials. The variance of the noise is fixed at all
the trials. However the noise changes slightly from trial to trial.
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Algorithm 1 New spatiotemporal filtering method
-Generate r1(τ1),r2(τ2) considering reasonable ranges of peak
latencies[τ1 ∈Ts1,τ2 ∈Ts2] for the first and second
subcomponents using Gamma waves
-Set ã1(τ1) = Xr1(τ1)T and ã2(τ2) = Xr2(τ2)T

-Find w1(τ1) = C−1
x Xr1(τ1)T − r1(τ1)XT C−1

x ã2(τ2)
ãT

2 (τ2)C−1
x ã2(τ2)

C−1
x ã2(τ2)

w2(τ2) = C−1
x Xr2(τ2)T − r2(τ2)XT C−1

x ã1(τ1)
ãT

1 (τ1)C−1
x ã1(τ1)

C−1
x ã1(τ1)

-Set J1(τ1) = ||wT
1 (τ1)X−r1(τ1)||22 +w1(τ1)T ã2(τ2)q̃

J2(τ2) = ||wT
2 (τ2)X−r2(τ2)||22 +w2(τ2)T ã1(τ1)q̂

J̃(τ1,τ2) = ||(r(τ1)+r(τ2))[XT C−1
x X− I]||22+

||r(τ1)[XT C−1
x X− I]||22 + ||r(τ2)[XT C−1

x X− I]||22
[l1, l2] = argminτ1,τ2(J1(τ1)+J2(τ2)+ J̃(τ1,τ2))

-Estimate a1 = XXT w1(l1)
norm(XXT w1(l1))

a2 = XXT w2(l2)
norm(XXT w2(l2))

σ1 = 1/[(r1(l1)XT C−1
x )(a1)]

σ2 = 1/[(r2(l2)XT C−1
x )(a2)]

-Find the peak latencies as [τ̃1, τ̃2] = argminτ1,τ2 J̃(τ1,τ2)

We have applied the method to the simulated data considering the
reference signal as the actual synthetic data and the results are
shown in Table 1. The first column corresponds to the average value
of SNR for all 40 trials. The second and fifth columns are the mean
and variance of the estimated latencies for P3a and P3b respectively.
The mean and variance of the ratio between the actual and estimated
amplitudes are available in the third and sixth columns. This value
should be close to 1. The correlations between the estimated scalp
projections and actual scalp projections are available in forth and
seventh columns. The variance of the noise is changed in order to
generate different levels of SNR and the algorithm is run for the
new SNR level. The available noise power is measured by SNR in

Table 1. Estimated latencies, amplitudes and scalp projections for
simulated P3a and P3b in the case of exact match

SNR(dB) P3a latency P3a amplitude P3a scalp projection P3b latency P3b amplitude P3b scalp projection

-4.7985 153.8000±2.0406 1.6039±0.1285 0.9701 206.0500±4.5907 1.4127±0.0837 0.9792
-3.9647 154.3500±2.0450 1.5071±0.1219 0.9751 204.5250±3.9222 1.3517±0.1003 0.9818
-3.0178 153.5000±1.7687 1.4662±0.1022 0.9791 202.8500±4.7907 1.2890±0.0809 0.9853
-2.0325 153.6000±1.5326 1.4165±0.0947 0.9819 203±4.3853 1.2306±0.0576 0.9888
-0.8349 152.8750±1.3623 1.3680±0.0839 0.9858 201.4250±4.4600 1.1866±0.0556 0.9910
0.4663 152.6250±1.1916 1.3294±0.0751 0.9881 201.9750±3.8263 1.1409±0.0480 0.9936
2.0559 152.1000±1.0077 1.2914±0.0660 0.9906 201.4000±2.8266 1.0993±0.0603 0.9953
2.9637 151.6500±0.6998 1.2636±0.0700 0.9920 199.9250±3.5833 1.0789±0.0491 0.9964
3.9945 151.3250±0.6558 1.2680±0.0543 0.9933 200.3250±2.7492 1.0629±0.0363 0.9967
5.1388 151.1250±0.6864 1.2413±0.0484 0.9941 200.1000±2.8627 1.0523±0.0432 0.9978
6.4869 150.8500±0.6222 1.2313±0.0490 0.9945 200.9500±2.5815 1.0295±0.0319 0.9983
8.1083 150.5250±0.5541 1.2131±0.0441 0.9955 200.2750±2.3964 1.0102±0.0201 0.9988
10.0147 150.5000±0.5064 1.2019±0.0336 0.9955 200.4500±1.5013 0.9940±0.0275 0.9992
12.5061 150.0750±0.2667 1.1768±0.0345 0.9962 199.7250±1.3202 0.9691±0.0183 0.9995
16.0293 150.0250±0.1581 1.1705±0.0295 0.9964 200.2500±0.8697 0.9537±0.0121 0.9997

Table 2. Estimated latencies, amplitudes and scalp projections for
simulated P3a and P3b in the case of Mismatch

SNR(dB) P3a latency P3a amplitude P3a scalp projection P3b latency P3b amplitude P3b scalp projection

-3.9329 166.7250±5.5423 1.6461±0.1211 0.9716 182.1500±12.0268 1.3083±0.0960 0.9809
-3.0555 167.6750±4.9634 1.5950±0.1095 0.9740 182.9000±14.0307 1.2197±0.0722 0.9852
-2.0338 167.3000±4.3276 1.5141±0.1036 0.9794 180.4500±12.0829 1.1469±0.0921 0.9883
-0.8666 167.4500±4.2242 1.4607±0.0858 0.9813 181.6750±13.6107 1.0856±0.0795 0.9903
0.5041 164.8750±2.9368 1.4239±0.0773 0.9852 183.1500±15.3749 1.0325±0.0430 0.9927
2.0499 164.1500±2.2481 1.4002±0.0670 0.9866 189.4750±18.9804 0.9768±0.0454 0.9952
2.9711 163.7000±1.5722 1.3712±0.0627 0.9875 192.8750±20.0617 0.9541±0.0530 0.9958
3.9868 163.0250±1.3105 1.3432±0.0619 0.9890 199.3000±20.1357 0.9237±0.0420 0.9968
5.1544 163.3000±1.2445 1.3433±0.0508 0.9906 207.4500±17.7460 0.9074±0.0286 0.9974
6.4777 164.3750±1.1477 1.3173±0.0512 0.9910 216.7500±6.8827 0.8900±0.0329 0.9982
7.9829 165.5250±0.6789 1.3138±0.0396 0.9910 219.2000±0.8829 0.8725±0.0261 0.9985
10.0087 166.5250±0.6400 1.3013±0.0423 0.9914 220.3500±0.8022 0.8481±0.0218 0.9990

dB which is defined as:

SNR = 10log(
Psignal

Pnoise
) (27)

Therefore, in the case of exact match, when the reference is the ac-
tual synthetic signal, with an increase in SNR the variances of the
latency and amplitude estimations decrease and the means of the la-
tency and amplitude tend toward the actual values. The correlation
coefficients of the actual and estimated scalp projections increase
and reach almost to 1. Also, we used two references for P3a and
P3b which were not the exact synthetic signals. These presumed
waves for P3a and P3b are shown in Fig. 1. The results of esti-
mated latency, amplitude, and scalp projections are shown in Table
2. When the SNR increases, the variances of estimations for la-
tency and amplitude decrease. But there is some error in latency
estimation which is about 20 ms. This can not be significant in
some applications. It is possible to enhance the method in order to
achieve better results when there is a mismatch between the actual
and presumed subcomponents. However, still we have good esti-
mations for the scalp projections of both subcomponents which are
significant and favorable.

3.2 Real Data
The EEG data were recorded using a Nihon Kohden model EEG-
F/G amplifier and Neuroscan Acquire 4.0 software. EEG activity
was recorded following the international 10 – 20 electrode setting
system from 15 electrodes. The reference electrodes were linked to
the earlobes. The impedance for all the electrodes was below 5kΩ,
the sampling frequency Fs = 2 kHz, and the data were subsequently
bandpass filtered (0.1 – 70 Hz). Subjects were required to sit alert
and still with their eyes closed to avoid any interference. The stimuli
were presented through ear plugs inserted in the ear. Forty rare tones
(1 kHz) were randomly distributed amongst 160 frequent tones (2
kHz).
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Fig. 2. (a) Reference signals for P3a and P3b, (b) Estimated amplitudes for P3a and P3b in different trials.
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Fig. 3. Scalp projections of P3a in four selected progressive trials.

The subjects were asked to press a button as soon as they heard
a low tone (1 kHz). The task was designed to assess basic memory
processes. ERP components measured in this task included N100,
P200, N200, and P3a and P3b. It is selected 40 trials of the data and
the presented method for estimation of latency, amplitude and scalp
projection of P3a and P3b is applied. Based on the averaged ERP
of 40 trials and also having some prior knowledge about the data,
we have selected two reference signal for P3a and P3b which are
shown in Fig. 2(a) . The amplitude variations of the P3a and P3b are
shown in Fig. 2(b). The mean latency of P3a was 283.3ms and the
mean latency of P3b was obtained as 367.6ms. The estimated scalp
projections of P3a and P3b in four selected but progressive trials
are shown respectively in Fig. 3 and Fig. 4. The P3a has a more
fronto-central distribution as expected and P3b has more posterior
distribution. The scalp projections are plotted using EEGlab [11].

4. DISCUSSION AND CONCLUSIONS
In this paper we proposed a new method for single trial estimation of
the ERP subcomponents. The method defines a new cost function in
which the scalp projection of each subcomponent can be estimated.
The proposed method in this paper overcomes the problem of exis-
tence of temporal correlation between the subcomponents or even
between components in the recently developed spatiotemporal fil-
tering method. Simulated results show that the method is robust in
estimation of latency, amplitude, and scalp projections of ERP sub-
components when there is a correlation between subcomponents.
The scalp projections of both subcomponents can be estimated with
high accuracy even in the case that there is a mismatch between
the reference signal and the actual source. This is very important
when we are dealing with localization of ERP subcomponents in
the brain. Since the scalp projections can be effectively analyzed
and used in order to give us the exact location of the source in the
brain. Also It has been shown that the method is effective for sin-
gle trial estimation of P300 subcomponents. This is very useful for
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Fig. 4. Scalp projections of P3b in four selected progressive trials.

some applications such as mental fatigue where the variability of
P300 subcomponent descriptors can determine the fatigue state.
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