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ABSTRACT fulfil the criterion of strong sidelobe suppression, [14].15

Multi taper spectrogram decomposition of the time-lag ker-The aspect of time-frequency localization and orthogayali
nel of a time-frequency distribution might result in compu-in the time-frequency domain (in contrast to only consider-
tationally efficient calculations if the number of multi egs ~ IN9 the frequency domain) was noted by [16] and made the
to be considered in the spectrogram are small. In this pdjermlte funct|ons to_become often_ used as multi tapers for
per, penalty functions are designed and used in the comput@Pectrogram estimation of non-stationary processes.

tion of multi tapers corresponding to the Wigner distribati The Wigner distribution gives the best time-frequency
time-lag kernel. The resulting multi taper spectrogram wil concentration and the aim is to find the multi tapers cor-
approximately fulfill the concentration of the Wigner distr ésponding to this kernel, with the corresponding time-
bution but will also suppress the usual Wigner distributionffequency kernel limited to a predefined doppler-lag band-
cross-terms outside a predetermined doppler-lag bandwidtWidth to prevent cross-terms. In this paper we use the idea
The level of the cross-term suppression is determined by &f [15] to suppress the sidelobes of the multi taper spectro-
parameter of the penalty function. The proposed method us@am outside a pre-determined ambiguity domain area. An
a limited number of multi tapers which is determined by the@dvantage of the approach is that the number of windowed
decided bandwidth. The time-frequency concentrationef th SPEctrograms to be averaged are limited. The idea was ini-
proposed method is compared to other well-known distribui@lly presented in [17] using another penalty function and
tions. The performance for white noise disturbances are aldimiting the Thomson multi taper kernel.

evaluated.
2. SPECTROGRAM DECOMPOSITION OF
1. INTRODUCTION TIME-FREQUENCY KERNELS

d he connection between a multi taper spectrogram and a
signal processing literature and a large number of timeSmoothed Wigner distribution is found using the following

frequency distributions have been proposed for variousgyp 2PProach. The multi taper spectrogram is defined as

of applications. From time-frequency concentration view- K -

point, the Wigner distribution is the optimal choice with S(t, f) = Z ak|/ hi(t—t)x(t)e 2dy 2 (1)
high time-frequency resolution and today a large number of & —®

time-frequency kernels exist with different ability to gupss

the resulting cross-terms from the Wigner distributiog, e. Witht; =t + 5 andt =t — 3,

[1, 2, 3, 4]. Another important aspect is also when the signal

components to be resolved are disturbed by additive noise. K N S SN

The theoretical results for computing the bias and variance  (t,f) = ak/m/mx(t +EX (U -3)

of the Wigner distribution for the case of additive noise are k=L 777

?i\]/en in [5] and a minimum-variance kernel is obtained in he(t —t' — %)h;(tftur %)e—iZTrdeTdt', )
6].

_ Computationally efficient algorithms can be found us-\yq jgentify the instantaneous autocorrelation function as
ing the eigenvalues and eigenvectors of the rotated time-la
kernel, where the resulting multi taper spectrogram is the T, ., T

smoothed Wigner-Ville estimate, [4]. The phrase multi ta- M, T) =x(t+ E)X (t- 5)’ (3)
per was originally introduced by Thomson, [7], for the case _

of stationary processes with smooth spectra. Multi taper dednd the time-lag kernel

composition of time-lag kernels have been analyzed from K . .

several aspects, for existing kernels, e.g., in [8, 9], aad n _ Dopes T

multi taper techniques for non-stationary signal anallyaise p(t.T) k;akhk(“r Z)h"(t 2)’ “)
also been proposed, e.g., in [10, 11, 12, 13]. One of the

advantages of the Thomson multi tapers is the strong sidgjiving the quadratic class of time-frequency distribusipn
lobe suppression outside a predetermined frequency aiterv [18], as

Other methods have been proposed for the multi taper spec- o o

trum estimate of stationary processes where the tapers aI@Q(L f)=S(t,f) :/ / re(t’, r)p(tft’,r)*e‘iz””dt’dr.

The area of time-frequency analysis is well covered in th
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Defining Doppler penalty function-DP

t1+t
P (ty,tp) = p(%,tl —ty), (6) A doppler penalty (DP) function is defined in [15],
i rot iofi i
and if the kernep"®(t,t2) satisfies the Hermitian property Su(v) poif % <|v|<05 2)
P (t1,t2) = (p™ (t2,t1))", v 1if |v]< 2

then solving the integral to decrease the leakage from the sidelobes outside the

ot doppler interval of widthAv,. A corresponding penalty
/P (t1,t2)q(t1)dts = Aq(tz) Toeplitz covariance matrisW,, is found as
results in eigenvaluedy and eigenfunctionsy(t) which rw, (0) rw, (1) oo Iy, (N=1)
form a complete set and can be used as weightsnd multi rw, (1) rw, (0) co Iy, (N=2)
tapershg(t) = agk(t), k=1... K, in Eq. (1). W, = . ) . ;
Quadratic time-frequency distributions can be formu- : B :
lated as a multiplication of the Doppler-lag (or ambiguity rw,(N=1) rw(N=2) ... rw(0)
domain) kernel _ _ _ (13)
wherery, (n),n=0...N —1, is the time-discrete covariance
ov.T) = /°° o(t, T)e 2™t (7  function corresponding i, (v).

and the ambiguity function L-ag penalty function-L.P

N A simple lag penalty (LP) function is a diqgonal suppres_sion
AV T) = r(t.T)e 2™ gt 8 matrix Wy, (N x N), where values outside a certain time
(V. 7) /4» A7) ’ ®) interval are suppressed. The diagonal elem&hi®, n) =

as we(n), is defined by

AZ(V,T) = AV, T)- (v, T). _ At
) o . _J P if IN2-n+1>=2
The Wigner distribution has the simple doppler-lag kernel Wi =13 1 Gthenise 2 (14)
¢(v,1) = 1 for all values ofv andt and by using penalty
functions we attempt to limit this function with the aim to

reduce cross-terms. Doppler-lag penalty function-DLP
The combination to a penalty function that influences lag-
3. PENALTY FUNCTIONS as well as doppler domain in a proper way is not straight

forward and could be done in many different ways, e.g. as
in, [17]. In this paper we choose the definition of a doppler-
p(t,T) = 3(t). (9) lag penalty function (DLP) as the matiW,; with elements
as
In the discrete-time case the corresponding rotated tage-|

The time-lag kernel of the Wigner distribution is defined as

kernelp"® (ty, tz) = 5(1452), is sampled giving a rotated ker- P-Wy(n,m) if [N/2—n+1]> 22
nel matrix 0 o 1 Wyr(n,m) = AND |N/2—m+1|> %
o W, (n,m) otherwise
0 1 0 (15)
R= : (10)  which almost corresponds to just suppressing the taper func
1 0 tions 10 dB outside the time intervAlrp. The resulting ta-
1 0 --- 0 pers from such a suppression is however not orthogonal to

. the matrixR which is the case for the tapers found from
In [15], a frequency penalty function was used to SUPPresg,e solution of the generalized eigenvalue problem usieg th
the sidelobes of the multi tapers suitable for the statipnar enalty matrixW,;. The orthogonality property of the ta-

case of a peaked spectrum. The multi tapers and weighigy s is always considered to be important from variance re-
were given as the solution of a generalized eigenvalue prolyction aspects.

lem - . : .

' It is notable that using &-matrix corresponding to the

Rak=AWax, k=1...N, (11) time-lag kernel of the Wigner distribution, the solutiortioé

where the covariance matriR, N x N, corresponded to a generalized eigenvalue problem will be a rotation of the in-
peaked spectrum and the matéW, N x N, was the cor- verse penalty matrix. The interpretation of using the Wigne
responding covariance matrix of a penalty spectrum with aistribution time-lag kernel and limiting with use of petyal
pre-defined bandwidth and side-lobe suppression. A sinfunctions is however intuitively nice.
ilar idea is used here where the set of multi tapegs= The corresponding multi taper spectrograms are named
ak = [ak(0) ak(1)...aqk(N — 1)]" and the weightsy, = Ay,  according to the penalty function used for the matridds,(
k=1...K, are found from the solution of Eqg. (11) wiR  W; and W) asDoppler Penalty Wigner Distribution-
given from Eq. (10) andwW will be specified below. The DPWD, Lag Penalty Wigner Distribution -LPWD and
multi tapers and weights are then used to compute the corr®oppler Lag Penalty Wigner Distribution-DLPWD re-
sponding discrete-time case of the spectrogram in Eq. (1). spectively.
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Figure 1: The four first multi tapers (upper row) and weight-Figure 2: The ambiguity domain kernels using the differ-
ing factors (lower row) using different penalty functionglw  ent penalty functions with paramete¥s= 128,P = 10 dB,
parameterdl = 128,P = 10 dB,A1p = 64 andAvp = 0.08.  Atp = 64 andAv, = 0.08.

4. MULTI TAPERSAND WEIGHTS tionsin Eq. (7), corresponding to the multi tapers and wieigh
ing factors of Figure 1 are depicted in Figure 2. We see that

An example from the solution of the resulting eigenvectorghe DP function causes a suppression of 10 dB outside the
and eigenvalues from applying the different penalty funcpredefined bandwidtAv, = 0.08. For the LPWD the am-
tions of Eq. (11) are shown in Figure 1. The length of thebiguity kernel is very accurate, which is caused by the large
tapers ardN = 128 and the parameters of the penalty func-degrees of freedom of the large number of tapers as each win-
tions areP = 10 dB, Avy = 0.08 andAt, = 64. The four dow is only one or two samples long. For the DLPWD the
first eigenvectors for each case are depicted in the upper figuppression is 10 dB outside the time limit&f, = 64 as
ures and the eigenvalues in decreasing order are plotthd in twell as the frequency limifv, = 0.08.
lower figures. A number of eigenvalues, determined by the
frequency bandwidtiv,, have absolute values close to one 5. EVALUATION
and the remaining are close to the chosen suppression level ) ] ) ) ]
P =10 dB (0.1). The number of averaged spectrograms i,q_:omplex sinusoids _W|th Gaussian envelopes at different
Eq. (1), determined bi is chosen as the number of eigen_nme_-frequency Iocat|ons_are often us_ed to evaluate_ the res
values with absolute values significantly larger thah Gor olution performance of different algorithms. We define one

the DP functionK = 11. such sinusoidal component as

The resulting eigenvectors from the LPWD are not very _ N N N
useful from the aspect of multi taper spectrogram calcorfati sn =& hin—=) —=<n<—=, (16)
as each taper just cover one or two samples. This is of course 2 2 2

a result of the diagonal penalty matrix combined with the 12

anti-diagonaR-matrix from the Wigner distribution. If the whereh(n) =e %" andNs = 64 andf, = 0.05.
LP function should have been combined with some other dis-

tribution kernel, the tapers would have been more useful. We.1 Resolution and suppression of cross-terms

use these windows for comparison although the results frof, acqally investigate the advantages and drawbacks in
the estimation will be similar of using a Doppler-indepene o of time- and frequency resolution, different com-
kernel with a lag-window of constant level one and 0.1 OUtpinations of time-shifteds(n — &) and frequency-shifted
side a certain lag bandwidth. The number of eigenvalues th;gg ’

have absolute values larger than 0.1, determined by the | n)e?"* signals withd and & as parameters, are evalu-
bandwidthAT, = 64, are in this case, i.e&, = AT, = 64. ed. The following four different cases are investigated:

In the third case, where the DLP function are combine _ o ohi
according to Eq. (15), the eigenvectors show a lag limitatio ) xan) = s(n)+sn 6‘.) time-shift _ (7
corresponding td\r, = 64 samples. This can be compared2) X(n)= s(n)+s(n)e?™% frequency-shift
with the multi tapers of the DPWD, which cover all time _ B & i ohi
samples. The shapes of the tapers are otherwise similar %3 X3(n) = s(n)+s(n d)ez tlme frequency Sh.lft
the shapes of the tapers of the DPWD although a more réh) Xa(n) = s(n)+s(n— &) +s(n)e?™ +s(n— §)e?™r
stricted number of eigenvaluds$,= 6, now are found to be time-, frequency- and time-frequency-shifts
larger than QL, which gives a reasonable number of spectro-
grams to be averaged. As the Wigner distribution of a single component is well

The ambiguity domain kernels of the different distribu- known to have the best time-frequency resolution, the sum
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of the Wigner distributions of the single components is ch
sen as the ideal performance, e.g. for Case 1,

Sdeal(t7f> :S(ta f)+s(t*dvf>a

where S(t, f) is the Wigner distribution ofs(n). The
usual cross-terms from the Wigner distribution of mult
component signals are not included in the ideal performat
function. The performance of the penalty function algq
rithms is compared to the performance of a number of we
known algorithms/kernels using the measure,
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where we use a grid of 256 samples in the time domain &uu

256 samples in the frequency domain corresponding to Q. , )

to 0.25 of normalized frequency. It can be noted that théigure 3: The normalized mean square error for different al-
Wigner distribution ofx;(n) for i = 1,2 ...3 of Eq. (18), gorithms and different cases: a) Case 1 - Time-shift, b) Case
(2-component signals) givel SEnorm = 1. The reason is of 2 - Frequgncy—shlft , €) Case 3_ - Tlme—frequency-shlft, d)

course that the sum of the power of the cross-terms is equ&i@se 4 - Time-, frequency- and time-frequency-shift.

to the sum of the power of the two components, [4].

The parameter choices for all algorithms evaluated are in ) ) o
each case optimized to give the smallest posmnorm LPWD (not ShOWﬂ) give a result C|OS_e to the V\_/lgner distri-
for & = 64 andd; = 0.08. The methods compared are bution (not shown),N|SEnorm ~ 1), as time domain suppres-
the proposed three different multi taper cases of Sectipn [\8ion has no effect in the frequency domain.
the single Hanning window spectrogram (Hann), the Choi- For Case 3, Figure 3c), the two components are shifted
Williams kernel (CW-kernel), [3], the lag-independentiker  both in time and frequency and the smallest errors are now
(LI-kernel) and the doppler-independent kernel (DI-kéxne given from LPWD, DPWD, DLPWD as well as from the
[4]. The CW-kernel is defined as CW-kernel. The parameter choices are the same as for the

cases above for all methods except for the CW-kernel where
v2.12 o = 2.5 now gives the smallest error. A closer study shows

M SEnorm =

0.07/60 0.09/80

Pv.T) =€, that the DLPWD gives the smallest error of all algorithms for
d; > 0.06 andd > 48 (the limits of the penalty function) but
the L1-kernel as V2 that the CW-kernel is lower for larger values@fand .
p(v,71)=¢e 7, Including components with shifts in all directions, the 4

component case of Case 4, give cross-terms between all com-
ponents in all directions, and the CW-kernel now using opti-
mal parameter choice = 0.03 give cross-term errors in the
directions of the time- and frequency- axis, Figure 3d). The
resultis very similar to Hann fak > 40 andd; > 0.05. With

For Case 1 we compare the results of Hann, DI-kernel angptimal parameter settings, same as above, the performance
CW-kernel with the results from the methods with differ- of the LPWD and DPWD are bad as theyjust suppress cross-
ent penalty functions. The optimal parameters chosen afigrms in either time- or frequency direction. The DLPWD

0 = 1300 for the DI-kernel and = 0.08 for the CW-kernel.  however, gives a very nice performance for components with

For Hann, the window length isl = 56. The lag penalty |arger distances than the penalty function bandwidth.
function parameter is chosenas, = 32 for LPWD and for

the DPWD asivp = 0.04. For the DLPWDAT, = 48 and
Avp = 0.06. The results of Figure 3a) show that the LPWD,
DLPWD and the DI-kernel have similar performances whenrhe performance for one signal compongny of Eq. (16) is
the distance between the two time-shifted components is irinvestigated for different amounts of additive noise whhee
creased. Fody > 40 Hann as well as the CW-kernel gives disturbance is complex-valued circularly symmetric Gaus-
a much largeMSEorm. The DPWD (not shown) gives a sian white noise with varying standard deviatiBn The
MSEnorm ~ 1 which is similar to the Wigner distribution (not number of simulations in each case are 500 and the perfor-
shown) as the frequency penalty function does not effect thenance is measured as the estimated normalized mean square
cross-terms between two time-shifted components. error, MSEnorm, EQ. (18), from these measurements com-

In Case 2, the LI-kernel witlw = 0.002 is used instead pared to the Wigner distributio§(t, f) of s(n). The algo-
of the DI-kernel as the LI-kernel has a better suppression dfthm parameters are for Harth= 56, the CW-kernetr =
cross-terms between frequency-shifted components. All th2.5, the LI-kernelo = 0.002 and the DI-kerne&r = 1300.
other methods have the same parameter choices as in Caséar the penalty function algorithms the parameter choices
From the results in Figure 3b), the LI-kernel, the DPWD andare At, = 32 for LPWD, Avp, = 0.04 for the DPWD and
the DLPWD have the smallest error. The CW-kernel andAtp = 48,Avp = 0.06 for the DLPWD.
Hann have largeMSEorm for 8; > 0.05. In this case the In Figure 4, the resultindlSEnorm for all the different

and the DI-kernel as

N

_T

ov.1)=e 5.

5.2 Noise sensitivity
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