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ABSTRACT
Multi taper spectrogram decomposition of the time-lag ker-
nel of a time-frequency distribution might result in compu-
tationally efficient calculations if the number of multi tapers
to be considered in the spectrogram are small. In this pa-
per, penalty functions are designed and used in the computa-
tion of multi tapers corresponding to the Wigner distribution
time-lag kernel. The resulting multi taper spectrogram will
approximately fulfill the concentration of the Wigner distri-
bution but will also suppress the usual Wigner distribution
cross-terms outside a predetermined doppler-lag bandwidth.
The level of the cross-term suppression is determined by a
parameter of the penalty function. The proposed method uses
a limited number of multi tapers which is determined by the
decided bandwidth. The time-frequency concentration of the
proposed method is compared to other well-known distribu-
tions. The performance for white noise disturbances are also
evaluated.

1. INTRODUCTION

The area of time-frequency analysis is well covered in the
signal processing literature and a large number of time-
frequency distributions have been proposed for various types
of applications. From time-frequency concentration view-
point, the Wigner distribution is the optimal choice with
high time-frequency resolution and today a large number of
time-frequency kernels exist with different ability to suppress
the resulting cross-terms from the Wigner distribution, e.g.,
[1, 2, 3, 4]. Another important aspect is also when the signal
components to be resolved are disturbed by additive noise.
The theoretical results for computing the bias and variance
of the Wigner distribution for the case of additive noise are
given in [5] and a minimum-variance kernel is obtained in
[6].

Computationally efficient algorithms can be found us-
ing the eigenvalues and eigenvectors of the rotated time-lag
kernel, where the resulting multi taper spectrogram is the
smoothed Wigner-Ville estimate, [4]. The phrase multi ta-
per was originally introduced by Thomson, [7], for the case
of stationary processes with smooth spectra. Multi taper de-
composition of time-lag kernels have been analyzed from
several aspects, for existing kernels, e.g., in [8, 9], and new
multi taper techniques for non-stationary signal analysishave
also been proposed, e.g., in [10, 11, 12, 13]. One of the
advantages of the Thomson multi tapers is the strong side-
lobe suppression outside a predetermined frequency interval.
Other methods have been proposed for the multi taper spec-
trum estimate of stationary processes where the tapers also
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fulfil the criterion of strong sidelobe suppression, [14, 15].
The aspect of time-frequency localization and orthogonality
in the time-frequency domain (in contrast to only consider-
ing the frequency domain) was noted by [16] and made the
Hermite functions to become often used as multi tapers for
spectrogram estimation of non-stationary processes.

The Wigner distribution gives the best time-frequency
concentration and the aim is to find the multi tapers cor-
responding to this kernel, with the corresponding time-
frequency kernel limited to a predefined doppler-lag band-
width to prevent cross-terms. In this paper we use the idea
of [15] to suppress the sidelobes of the multi taper spectro-
gram outside a pre-determined ambiguity domain area. An
advantage of the approach is that the number of windowed
spectrograms to be averaged are limited. The idea was ini-
tially presented in [17] using another penalty function and
limiting the Thomson multi taper kernel.

2. SPECTROGRAM DECOMPOSITION OF
TIME-FREQUENCY KERNELS

The connection between a multi taper spectrogram and a
smoothed Wigner distribution is found using the following
approach. The multi taper spectrogram is defined as

Sx(t, f ) =
K

∑
k=1

αk|

∫ ∞

−∞
h∗k(t − t1)x(t1)e

−i2π f t1dt1|
2. (1)

With t1 = t ′ + τ
2 andt2 = t ′− τ

2,

Sx(t, f ) =
K

∑
k=1

αk

∫ ∞

−∞

∫ ∞

−∞
x(t ′ +

τ
2
)x∗(t ′−

τ
2
) ·

hk(t − t ′−
τ
2
)h∗k(t − t ′+

τ
2
)e−i2π f τ dτdt ′. (2)

We identify the instantaneous autocorrelation function as

rx(t,τ) = x(t +
τ
2
)x∗(t −

τ
2
), (3)

and the time-lag kernel

ρ(t,τ) =
K

∑
k=1

αkhk(t +
τ
2
)h∗k(t −

τ
2
), (4)

giving the quadratic class of time-frequency distributions,
[18], as

Cx(t, f )= Sx(t, f )=

∫ ∞

−∞

∫ ∞

−∞
rx(t

′,τ)ρ(t−t ′,τ)∗e−i2π f τdt ′dτ.

(5)
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Defining

ρ rot(t1,t2) = ρ(
t1 + t2

2
,t1− t2), (6)

and if the kernelρ rot(t1,t2) satisfies the Hermitian property

ρ rot(t1,t2) = (ρ rot(t2,t1))
∗,

then solving the integral
∫

ρ rot(t1,t2)q(t1)dt1 = λ q(t2)

results in eigenvaluesλk and eigenfunctionsqk(t) which
form a complete set and can be used as weights,αk, and multi
tapers,hk(t) = qk(t), k = 1 . . . K, in Eq. (1).

Quadratic time-frequency distributions can be formu-
lated as a multiplication of the Doppler-lag (or ambiguity
domain) kernel

φ(ν,τ) =

∫ ∞

−∞
ρ(t,τ)e−i2πνtdt, (7)

and the ambiguity function

Ax(ν,τ) =

∫ ∞

−∞
rx(t,τ)e−i2πνtdt, (8)

as
AC

x (ν,τ) = Ax(ν,τ) ·φ(ν,τ).

The Wigner distribution has the simple doppler-lag kernel
φ(ν,τ) = 1 for all values ofν andτ and by using penalty
functions we attempt to limit this function with the aim to
reduce cross-terms.

3. PENALTY FUNCTIONS

The time-lag kernel of the Wigner distribution is defined as

ρ(t,τ) = δ (t). (9)

In the discrete-time case the corresponding rotated time-lag
kernelρ rot(t1,t2) = δ ( t1+t2

2 ), is sampled giving a rotated ker-
nel matrix

R =













0 · · · 0 1
0 · · · 1 0

· · ·
... 1 0

...
1 0 · · · 0













. (10)

In [15], a frequency penalty function was used to suppress
the sidelobes of the multi tapers suitable for the stationary
case of a peaked spectrum. The multi tapers and weights
were given as the solution of a generalized eigenvalue prob-
lem,

Rqk = λkWqk, k = 1. . .N, (11)

where the covariance matrixR, N ×N, corresponded to a
peaked spectrum and the matrixW, N × N, was the cor-
responding covariance matrix of a penalty spectrum with a
pre-defined bandwidth and side-lobe suppression. A sim-
ilar idea is used here where the set of multi tapershk =
qk = [qk(0) qk(1) . . .qk(N − 1)]T and the weightsαk = λk,
k = 1. . .K, are found from the solution of Eq. (11) withR
given from Eq. (10) andW will be specified below. The
multi tapers and weights are then used to compute the corre-
sponding discrete-time case of the spectrogram in Eq. (1).

Doppler penalty function-DP

A doppler penalty (DP) function is defined in [15],

SWν (ν) =

{

P if ∆νp
2 ≤| ν |< 0.5

1 if | ν |<
∆νp

2

(12)

to decrease the leakage from the sidelobes outside the
doppler interval of width∆νp. A corresponding penalty
Toeplitz covariance matrix,Wν , is found as

Wν =









rWν (0) rWν (1) . . . rWν (N −1)
rWν (1) rWν (0) . . . rWν (N −2)

...
. . .

...
rWν (N −1) rWν (N −2) . . . rWν (0)









,

(13)
whererWν (n), n = 0. . .N −1, is the time-discrete covariance
function corresponding toSWν (ν).

Lag penalty function-LP

A simple lag penalty (LP) function is a diagonal suppression
matrix Wτ , (N × N), where values outside a certain time
interval are suppressed. The diagonal elementsWτ(n,n) =
wτ (n), is defined by

wτ (n) =

{

P if |N/2−n +1| ≥ ∆τp
2

1 otherwise
(14)

Doppler-lag penalty function-DLP

The combination to a penalty function that influences lag-
as well as doppler domain in a proper way is not straight
forward and could be done in many different ways, e.g. as
in, [17]. In this paper we choose the definition of a doppler-
lag penalty function (DLP) as the matrixWντ with elements
as

Wντ(n,m) =







P ·Wν(n,m) if |N/2−n +1| ≥ ∆τp
2

AND |N/2−m+1| ≥ ∆τp
2

Wν(n,m) otherwise,
(15)

which almost corresponds to just suppressing the taper func-
tions 10 dB outside the time interval∆τp. The resulting ta-
pers from such a suppression is however not orthogonal to
the matrixR which is the case for the tapers found from
the solution of the generalized eigenvalue problem using the
penalty matrixWντ . The orthogonality property of the ta-
pers is always considered to be important from variance re-
duction aspects.

It is notable that using aR-matrix corresponding to the
time-lag kernel of the Wigner distribution, the solution ofthe
generalized eigenvalue problem will be a rotation of the in-
verse penalty matrix. The interpretation of using the Wigner
distribution time-lag kernel and limiting with use of penalty
functions is however intuitively nice.

The corresponding multi taper spectrograms are named
according to the penalty function used for the matrices (Wν ,
Wτ andWντ ) asDoppler Penalty Wigner Distribution-
DPWD, Lag Penalty Wigner Distribution -LPWD and
Doppler Lag Penalty Wigner Distribution-DLPWD re-
spectively.
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Figure 1: The four first multi tapers (upper row) and weight-
ing factors (lower row) using different penalty functions with
parametersN = 128,P = 10 dB,∆τp = 64 and∆νp = 0.08.

4. MULTI TAPERS AND WEIGHTS

An example from the solution of the resulting eigenvectors
and eigenvalues from applying the different penalty func-
tions of Eq. (11) are shown in Figure 1. The length of the
tapers areN = 128 and the parameters of the penalty func-
tions areP = 10 dB, ∆νp = 0.08 and∆τp = 64. The four
first eigenvectors for each case are depicted in the upper fig-
ures and the eigenvalues in decreasing order are plotted in the
lower figures. A number of eigenvalues, determined by the
frequency bandwidth∆νp, have absolute values close to one
and the remaining are close to the chosen suppression level
P = 10 dB (0.1). The number of averaged spectrograms in
Eq. (1), determined byK is chosen as the number of eigen-
values with absolute values significantly larger than 0.1. For
the DP function,K = 11.

The resulting eigenvectors from the LPWD are not very
useful from the aspect of multi taper spectrogram calculation
as each taper just cover one or two samples. This is of course
a result of the diagonal penalty matrix combined with the
anti-diagonalR-matrix from the Wigner distribution. If the
LP function should have been combined with some other dis-
tribution kernel, the tapers would have been more useful. We
use these windows for comparison although the results from
the estimation will be similar of using a Doppler-independent
kernel with a lag-window of constant level one and 0.1 out-
side a certain lag bandwidth. The number of eigenvalues that
have absolute values larger than 0.1, determined by the lag
bandwidth∆τp = 64, are in this case, i.e.,K = ∆τp = 64.

In the third case, where the DLP function are combined
according to Eq. (15), the eigenvectors show a lag limitation
corresponding to∆τp = 64 samples. This can be compared
with the multi tapers of the DPWD, which cover all time
samples. The shapes of the tapers are otherwise similar to
the shapes of the tapers of the DPWD although a more re-
stricted number of eigenvalues,K = 6, now are found to be
larger than 0.1, which gives a reasonable number of spectro-
grams to be averaged.

The ambiguity domain kernels of the different distribu-
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Figure 2: The ambiguity domain kernels using the differ-
ent penalty functions with parametersN = 128,P = 10 dB,
∆τp = 64 and∆νp = 0.08.

tions in Eq. (7), corresponding to the multi tapers and weight-
ing factors of Figure 1 are depicted in Figure 2. We see that
the DP function causes a suppression of 10 dB outside the
predefined bandwidth∆νp = 0.08. For the LPWD the am-
biguity kernel is very accurate, which is caused by the large
degrees of freedom of the large number of tapers as each win-
dow is only one or two samples long. For the DLPWD the
suppression is 10 dB outside the time limit of∆τp = 64 as
well as the frequency limit∆νp = 0.08.

5. EVALUATION

Complex sinusoids with Gaussian envelopes at different
time-frequency locations are often used to evaluate the res-
olution performance of different algorithms. We define one
such sinusoidal component as

s(n) = e2π i f0n ·h(n−
Ns

2
) −

Ns

2
≤ n <

Ns

2
, (16)

whereh(n) = e−
1

4Ns
n2

andNs = 64 andf0 = 0.05.

5.1 Resolution and suppression of cross-terms

To actually investigate the advantages and drawbacks in
terms of time- and frequency resolution, different com-
binations of time-shifted,s(n − δt) and frequency-shifted,
s(n)e2π iδ f signals withδt andδ f as parameters, are evalu-
ated. The following four different cases are investigated:

1) x1(n) = s(n)+ s(n− δt) time-shift (17)

2) x2(n) = s(n)+ s(n)e2π iδ f frequency-shift

3) x3(n) = s(n)+ s(n− δt)e
2π iδ f time-frequency-shift

4) x4(n) = s(n)+ s(n− δt)+ s(n)e2π iδ f + s(n− δt)e
2π iδ f

time-, frequency- and time-frequency-shifts

As the Wigner distribution of a single component is well
known to have the best time-frequency resolution, the sum
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of the Wigner distributions of the single components is cho-
sen as the ideal performance, e.g. for Case 1,

Sideal(t, f ) = S(t, f )+ S(t − δt , f ),

where S(t, f ) is the Wigner distribution ofs(n). The
usual cross-terms from the Wigner distribution of multi-
component signals are not included in the ideal performance
function. The performance of the penalty function algo-
rithms is compared to the performance of a number of well-
known algorithms/kernels using the measure,

MSEnorm =

∫

t

∫

f (Salgorithm(t, f )−Sideal(t, f ))2

∫

t

∫

f (Sideal(t, f ))2 , (18)

where we use a grid of 256 samples in the time domain and
256 samples in the frequency domain corresponding to 0
to 0.25 of normalized frequency. It can be noted that the
Wigner distribution ofxi(n) for i = 1,2 . . .3 of Eq. (18),
(2-component signals) giveMSEnorm = 1. The reason is of
course that the sum of the power of the cross-terms is equal
to the sum of the power of the two components, [4].

The parameter choices for all algorithms evaluated are in
each case optimized to give the smallest possibleMSEnorm
for δt = 64 andδ f = 0.08. The methods compared are
the proposed three different multi taper cases of Section IV,
the single Hanning window spectrogram (Hann), the Choi-
Williams kernel (CW-kernel), [3], the lag-independent kernel
(LI-kernel) and the doppler-independent kernel (DI-kernel),
[4]. The CW-kernel is defined as

φ(ν,τ) = e−
ν2·τ2

σ ,

the LI-kernel as

φ(ν,τ) = e−
ν2
σ ,

and the DI-kernel as

φ(ν,τ) = e−
τ2
σ .

For Case 1 we compare the results of Hann, DI-kernel and
CW-kernel with the results from the methods with differ-
ent penalty functions. The optimal parameters chosen are
σ = 1300 for the DI-kernel andσ = 0.08 for the CW-kernel.
For Hann, the window length isN = 56. The lag penalty
function parameter is chosen as∆τp = 32 for LPWD and for
the DPWD as∆νp = 0.04. For the DLPWD,∆τp = 48 and
∆νp = 0.06. The results of Figure 3a) show that the LPWD,
DLPWD and the DI-kernel have similar performances when
the distance between the two time-shifted components is in-
creased. Forδt > 40 Hann as well as the CW-kernel gives
a much largerMSEnorm. The DPWD (not shown) gives a
MSEnorm ≈ 1 which is similar to the Wigner distribution (not
shown) as the frequency penalty function does not effect the
cross-terms between two time-shifted components.

In Case 2, the LI-kernel withσ = 0.002 is used instead
of the DI-kernel as the LI-kernel has a better suppression of
cross-terms between frequency-shifted components. All the
other methods have the same parameter choices as in Case 1.
From the results in Figure 3b), the LI-kernel, the DPWD and
the DLPWD have the smallest error. The CW-kernel and
Hann have largerMSEnorm for δ f > 0.05. In this case the
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Figure 3: The normalized mean square error for different al-
gorithms and different cases: a) Case 1 - Time-shift, b) Case
2 - Frequency-shift , c) Case 3 - Time-frequency-shift, d)
Case 4 - Time-, frequency- and time-frequency-shift.

LPWD (not shown) give a result close to the Wigner distri-
bution (not shown), (MSEnorm ≈ 1), as time domain suppres-
sion has no effect in the frequency domain.

For Case 3, Figure 3c), the two components are shifted
both in time and frequency and the smallest errors are now
given from LPWD, DPWD, DLPWD as well as from the
CW-kernel. The parameter choices are the same as for the
cases above for all methods except for the CW-kernel where
σ = 2.5 now gives the smallest error. A closer study shows
that the DLPWD gives the smallest error of all algorithms for
δ f > 0.06 andδt > 48 (the limits of the penalty function) but
that the CW-kernel is lower for larger values ofδ f andδt .

Including components with shifts in all directions, the 4
component case of Case 4, give cross-terms between all com-
ponents in all directions, and the CW-kernel now using opti-
mal parameter choiceσ = 0.03 give cross-term errors in the
directions of the time- and frequency- axis, Figure 3d). The
result is very similar to Hann forδt > 40 andδ f > 0.05. With
optimal parameter settings, same as above, the performance
of the LPWD and DPWD are bad as they just suppress cross-
terms in either time- or frequency direction. The DLPWD
however, gives a very nice performance for components with
larger distances than the penalty function bandwidth.

5.2 Noise sensitivity

The performance for one signal components(n) of Eq. (16) is
investigated for different amounts of additive noise wherethe
disturbance is complex-valued circularly symmetric Gaus-
sian white noise with varying standard deviationβ . The
number of simulations in each case are 500 and the perfor-
mance is measured as the estimated normalized mean square
error, MSEnorm, Eq. (18), from these measurements com-
pared to the Wigner distributionS(t, f ) of s(n). The algo-
rithm parameters are for HannN = 56, the CW-kernelσ =
2.5, the LI-kernelσ = 0.002 and the DI-kernelσ = 1300.
For the penalty function algorithms the parameter choices
are ∆τp = 32 for LPWD, ∆νp = 0.04 for the DPWD and
∆τp = 48,∆νp = 0.06 for the DLPWD.

In Figure 4, the resultingMSEnorm for all the different
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Figure 4: The normalized mean square error of different al-
gorithm estimates for a Gaussian windowed complex sinu-
soid disturbed by Gaussian noise of varying standard devia-
tion β .

algorithms are depicted. The robustness against large distur-
bances is clearly best for the DLPWD. For very small noise
disturbances, the CW-kernel and Wigner spectrum naturally
have a better performance followed by the LPWD. The rea-
son is of course that for the noise-free single component,
both the Wigner distribution and the CW-kernel perform very
nicely. However, the resolution for the DLPWD, DPWD, the
DI-kernel and the LI-kernel are about the same. The Hann
has a much larger value.

6. CONCLUSION

Different penalty functions are proposed to suppress the
Wigner distribution ambiguity function outside a predefined
doppler-lag bandwidth. Using a multi taper spectrogram
with a reasonable number of spectrogram averages gives the
solution where the multi tapers and weights are computed
from a generalized eigenvalue problem including the Wigner
distribution time-lag matrix and a penalty matrix. The re-
sults show that the proposed method give a better result
than the Choi-Williams kernel, the doppler-independent and
lag-independent kernels as well as the single Hanning spec-
trogram from the aspects of time-frequency resolution and
cross-term suppression. The proposed method does also give
a robust result with low mean square error for signals dis-
turbed by white noise.
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