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ABSTRACT
Photoacoustic imaging provides high spatial resolution im-
ages of biological tissues and is useful for molecular imag-
ing. The exact reconstruction algorithms for photoacous-
tic imaging are either slow or assume a continuous sensor
with infinite bandwidth. We propose a novel reconstruc-
tion method which expands the source distribution function
in the Fourier-Bessel domain. The source distribution can
be reconstructed from frequency samples corresponding to
the Bessel zeros. Sparsity of the source distribution in the
Fourier-Bessel domain makes reconstruction faster. Further,
this method was extended to the discrete aperture and a con-
dition was derived to avoid spatial aliasing. The proposed
method was verified using numerical simulations.

1. INTRODUCTION

Photoacoustic imaging is done by measuring the acoustic
waves generated by soft tissue due to the absorption of elec-
tromagnetic (EM) energy from optical or radio waves. Ultra-
sound sensors placed on the surface of these tissues record
these acoustic waves from which the distribution of the EM
absorption can be computed. This electromagnetic absorp-
tion is a property related to the type of tissue. Moreover,
photoacoustic imaging can provide a very high spatial reso-
lution and is used for cancer detection, breast imaging, small
animal imaging and molecular imaging.

We address the problem of estimating the absorption dis-
tribution from the measured data. Approximate reconstruc-
tion algorithms include the statistical approach [9] and delay
and sum beamforming [2]. Exact solutions both in the time
and frequency domain were provided in [7, 8], but they con-
sidered a continuous aperture and infinite bandwidth.

In this paper we propose a novel method that expands the
source distribution function in the Fourier-Bessel domain. To
reconstruct the source distribution, we estimate the Fourier-
Bessel coefficients from frequency samples corresponding to
the Bessel zeros. The proposed method does not require in-
finite bandwidth and conditions for exact reconstruction for
the finite bandwidth case is provided. Further, this method
was extended for discrete apertures and a rule was derived
to avoid spatial aliasing. The proposed method is faster than
Fourier-Domain methods since it only uses a subset of fre-
quency samples and can exploit sparsity of the source distri-
bution in the Fourier-Bessel domain.

This paper is arranged as follows: Section 2 provides
background to photoacoustic imaging, Section 3 describes
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the modal expansion of the 2D Green’s functions and Sec-
tion 4 introduces the Fourier-Bessel expansion of the source
distribution. We compare our proposed algorithm to previ-
ous Fourier-Domain methods and extend it for discrete aper-
tures with spatial filtering in Section 5. Section 6 provides
an extension to spherical geometries and Section 7 describes
numerical experiments conducted and the results obtained to
validate our method. Section 8 summarizes the main ideas of
this paper.

Notation: bold lowercase letters represents vectors.

2. PHOTOACOUSTIC THEORY

In this section we provide a short review of the wave equa-
tions for photoacoustic, the reader is referred to [4] which
provides an extensive review of photoacoustic theory.

Provided that thermal diffusion and kinetic viscosity is
ignored, the inhomogeneous Helmholtz equation relating the
heating functionH(xxx, t) and the pressurep(xxx, t) at a vector
positionxxx and timet is

∇2p(xxx, t)− 1
c2

∂
∂ t2 p(xxx, t) =− ρ

Cp

∂
∂ t

H(xxx, t). (1)

Herec denotes the speed of sound which is assumed to be
constant,Cp is the specific heat capacity,ρ is the isobaric vol-
ume expansion coefficient and the heating functionH(xxx, t) is
defined as the thermal energy deposited per unit time and vol-
ume. Further, the heating function is a product of the source
distribution functionA(xxx) (commonly referred to as spatial
absorption function in literature [7,8]) and the temporal illu-
mination functionI(t)

H(xxx, t) = A(xxx)I(t). (2)

Assuming the photo illumination or the RF pulse dura-
tion is short, the temporal illumination function can be ap-
proximated as a Dirac delta function,I(t) = δ (t). Therefore,
the solution to the inhomogeneous Helmholtz equation (1)
based on the Green’s function can be expressed as

p(xxxs, t) = η
∫∫∫

S

A(xxx)
δ ′(t − ||xxxs−xxx||

c )

4π ||xxxs−xxx|| dS (3)

whereη = ρ/Cp, δ ′(t) = ∂δ (t)/∂ t, S is the volume of re-
gion under test andxxxs is the vector position of the ultrasound
sensors. The pressurep(xxxs, t) also represents the time do-
main signal received by a ultrasound sensor placed atxxxs. The
Fourier transform of (3) yields

p(xxxs,k) =−ikcη
∫∫∫

S

A(xxx)G(k;xxxs,xxx) dS (4)
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where wavenumberk = 2π f/c with f as the frequency of
sound andG(k;xxxs,xxx) is the Green’s function. Moreover, the
Fourier transform analysis and synthesis equations applied to
the recorded signals are defined respectively as

p(xxxs,k) =
∫ +∞

−∞
p(xxxs, t)e

i(k/c)t dt (5)

and

p(xxxs, t) =
1

2π

∫ +∞

−∞
p(xxxs,k)e

−i(k/c)t dk. (6)

The estimation of the source distribution functionA(xxx) from
measurements at several positions outside the source region
is an inverse problem. By analyzing (4), we can deduce that
the source distribution function is frequency invariant, i.e.
the source distribution function is the same for all frequen-
cies. Hence, in this paper, the problem of estimatingA(xxx) is
labeled as a frequency invariant source localization problem.

3. 2D GREEN’S FUNCTION

The Green’s function in 2D for the exterior case where all the
sources are enclosed by the sensors is

G(k;xxxs,xxx) =
i
4

H(1)
0 (k||xxxs−xxx||) (7)

whereH(1)
0 (·) is the Hankel function of the first kind and

order zero. Using polar co-ordinates, with position vectorsxxxs
andxxx with radial position ofxs andx; and angular positions
φs andφ respectively, then the addition theorem can be used
to expand the 2D Green’s function [6] as

H(1)
0 (k||xxxs−xxx||) =

∞

∑
n=−∞

H(1)
n (kxs)Jn(kx)e−inφ einφs (8)

which is valid whenxs> xandJn(·) represents a Bessel func-
tion of ordern. This expansion is called eigen basis or modal
expansion of the Green’s function and was used for ultra-
sound reflectivity imaging [3].

4. SOURCE DISTRIBUTION EXPANSION

We define the 2D Fourier-Bessel expansion of the source dis-
tribution function as

A(xxx) =
∞

∑
m=−∞

∞

∑
ℓ=1

βmℓJm

(

zm
ℓ

r0
x

)

eimφ (9)

wherei =
√
−1, zm

ℓ is theℓth root of Jm(·), βmℓ are complex
Fourier-Bessel coefficients wherem is called the mode andℓ
is the index. The source distribution function can represented
by its sample values, however by expanding the source dis-
tribution function in a different domain a more compact rep-
resentation is possible requiring estimation of fewer terms in
order to obtainA(xxx). The next section describes a method to
estimateβmℓ to reconstruct the source distribution.

5. ESTIMATION OF SOURCE DISTRIBUTION

Given that the ultrasound sensors are placed uniformly at a
radiusR> r0, and assuming thatA(xxx) is zero at all radii

greater thanr0 then the signal received by a sensor at an-
gular positionφs and wavenumberk for the 2D case can be
specified as

pR(φs,k) =−ikcη
∫ r0

0

∫ 2π

0
A(xxx)G(k;xxxs,xxx) dφ xdx. (10)

Substituting (9) and (8) into (10) yields

pR(φs,k) =
kcη
4

∞

∑
n=−∞

∞

∑
m=−∞

∞

∑
ℓ=1

H(1)
n (kR)einφs

×
∫ r0

0
βmℓJm

(

zm
ℓ

r0
x

)

Jn(kx) xdx

×
∫ 2π

0
eimφ e−inφ dφ .

(11)

Further, we use the orthogonality property of exponential
functions

∫ 2π

0
eimφ e−inφ dφ =

{

2π if n= m,
0 otherwise.

(12)

to simplify (11) to

pR(φs,k) =
∞

∑
m=−∞

am(k)e
imφs (13)

where

am(k) =
πkcη

2
H(1)

m (kR)
∞

∑
ℓ=1

βmℓ

×
∫ r0

0
Jm(kx)Jm

(

zm
ℓ

r0
x

)

xdx.

(14)

Note that (13) is the spatial Fourier series expansion of the
received signal on a continuous aperture as a function of the
aperture angleφ .

We can estimate theam(k) from the sensor recordings
pR(φs,k) by using the Fourier series analysis equation

am(k) =
1

2π

∫ 2π

0
pR(φs,k)e

−imφs dφs. (15)

We refer toam(k) as modal coefficients and these outline the
angular distribution of the source function.

5.1 Frequency-Radial Duality

The following theorem shows how to estimate the source dis-
tribution coefficientsβmℓ using modal coefficients at a spe-
cific set of frequencies.

Theorem 5.1 (Frequency-Radial duality). For each mode,

taking measurements at frequencies k= z(m)
ℓ /r0 for the dif-

ferent zero indicesℓ we can obtain the 2D Fourier-Bessel co-
efficients, which expands the angular modal basis expansion
to incorporate radial variations. We calculateβmℓ by

βmℓ = hmℓam

(

zm
ℓ

r0

)

(16)

where

hmℓ =
4

πkcηr2
0H(1)

m
( zm

ℓ
r0

R
)

[Jm+1(zm
ℓ )]

2
(17)
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Proof. We use the orthogonality relationship for Bessel func-
tions [1],

∫ r0

0
Jm

(

zm
ℓ′

r0
x

)

Jm

(

zm
ℓ

r0
x

)

xdx

=

{

r2
0
2 [Jm+1(zm

ℓ )]
2 if ℓ= ℓ′,

0 otherwise.

(18)

in (14) atk= zm
ℓ /r0 to obtain

am

(

zm
ℓ

r0

)

=
πkcη

2
H(1)

m (kR)βmℓ
r2
0

2
[Jm+1(z

m
ℓ )]

2 (19)

By applying the definition ofhmℓ provided by (17) in (19) we
obtain (16).

5.2 Comparison with Fourier Domain Methods

This section begins with a brief overview of the Fourier Do-
main algorithms, first proposed for ultrasound imaging [3]
and then modified for photoacoustic imaging [7, 8]. This
algorithm described in 2D expands the source distribution
function as

A(xxx) =
∞

∑
m=0

∫ ∞

0
αm(k)kJm(kx) dk eimφ (20)

and expands the measured signals as

p(xxxs,k) =
∞

∑
m=0

α̂m(k)e
imφs. (21)

We can calculatêαm(k) by the inverse of (21) (a transform
similar to (15)) over all the sensors which are placed in a
circle. Fromα̂m(k), we getαm(k) by

αm(k) =
α̂m(k)

c(k)H(1)
m (kR)

(22)

wherec(k) is a constant equal toπkcη/2. To computeA(xxx)
at a particular point, we take the Hankel transform overk of
αm(k) and then sum over the modes (20). Note thatαm(k) is
equivalent to

∫ R
0

∫ 2π
0 A(xxx)Jm(kx)e−imφ x dx dφ and the orthog-

onality of the bessel functions over an infinite interval [1]
∫ ∞

0
kJm(kx)Jm(kx′) dk=

1
x

δ (x− x′) (23)

is used to recover the source distribution at a particular vec-
tor positionxxx, shown in (20). One of the drawbacks of the
Fourier-Domain methods are that they are computationally
expensive requiring the sum of a large number of terms at
every point, see (20). Further, Fourier-Domain methods re-
quire an infinite bandwidth otherwise the relationship shown
in (23) is no longer valid. The Fourier-Domain method was
modified in [7,8] to recover the source distribution in the time
domain reducing the computational complexity.

Rather than integrating over a frequency range, the pro-
posed algorithm considers the natural integration that oc-
curs as a wave propagates through a region of space and is
therefore not affected by the spatial sampling issues due to
a discrete sensor. The concept of frequency-radial duality

introduced in this paper is novel and has not been utilized
previously for photoacoustic imaging or ultrasound imaging.
Further, given that we know that the source distribution is
bounded in a radial regionr0, we need to only consider fre-
quencies corresponding to the bessel zerosf = czm

l /(2πr0)
and these frequencies are only resolved to a single mode. In
addition, the source distribution can be sparse in the Fourier-
Bessel domain and summation can be done over only the
largest modes and indices. These lead to a large reduction in
computational complexity compared to the Fourier-Domain
methods where all frequencies are used and resolved to all
modes. It is important to mention that a lower boundr0 only
means that less frequency samples are used and has no effect
on the resolution of the reconstructed image.

One pertinent question in photoacoustic imaging is how
to recover the image with a discrete aperture and avoid dis-
tortions due to spatial aliasing. Both the Fourier-domain and
the time-domain methods require infinite bandwidth and a
continuous aperture. Theoretical validation to their exten-
sion to the discrete and finite bandwidth case has not been
provided. The next two sections highlight the advantages of
our approach in considering a discrete aperture and spatial
aliasing.

5.3 Discrete Aperture

In the previous sections, estimation of the Fourier-Besselco-
efficients were done assuming ideal conditions with infinite
bandwidth and a continuous aperture. Exact reconstruction
of the source distributionA(xxx) is possible under these ideal
conditions since the source Fourier-Bessel expansion con-
sists of a sum of infinitely many orthogonal functions. In
this section we provide the conditions under which the source
distribution can be reconstructed with a discrete apertureand
a bandwidth limited by the frequency response of the ultra-
sound transducer.

Provided there areQ uniformly placed sensors at a radius
R, then the discrete aperture response at a wavenumberk, as
a vector is

p̂ppR(φs,k) = [pR(φ
(1)
s ,k), . . . , pR(φ

(Q)
s ,k)]T (24)

whereφ (q)
s is the angular position of theqth sensor. The

modal coefficients can be calculated as a discrete approxi-
mation to (15)

am(k) =
1

2π
eee(m)T p̂ppR(φs,k) ∆φs (25)

where
eee(m) = [e−imφ (1)

s , . . . , e−imφ (Q)
s ]T . (26)

For the discrete aperture, both temporal and spatial alias-
ing can occur. Temporal aliasing can be avoided by using a
sampling frequency that is greater than twice the frequency
response upper limit of the transducer. Given that we need
to decompose the wavefield to a finite number of modes
m∈ [−M, . . . ,M], a minimum number of sensors are required
which must satisfy

Q> 2M. (27)

Additionally, the contributions of the modes higher thanM
should be negligible at this wavenumber in order to avoid
spatial aliasing. The spatial aliasing that can occur due to
overlapping of the higher modes is referred to as modal
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aliasing, more details on this is provided in [5]. Therefore
given a discrete number of sensors, to avoid modal alias-
ing the Fourier-Bessel expansion of the source distribution
should be bandlimited, i.e. coefficients for modes greater
than M should be negligible for the transducer frequency
response. Further, exact reconstruction of the source dis-
tribution is only possible if this expansion has significant
terms for modesm ∈ [−M, . . . ,M] and indices satisfying
kl < zm

ℓ /r0 < ku wherekl andku are the lower and upper limit
of the transducer frequency response respectively.

5.4 Spatial Filtering

It is important to avoid spatial aliasing since this can cause
blurring and distortion in the reconstructed image. The ban-
dlimit restriction of the source distribution to avoid aliasing
limits the use of this method to practical scenario. In litera-
ture, there is currently no method prescribed to perform spa-
tial filtering for photoacoustic image reconstruction. How-
ever, for the method described in this paper spatial filtering
is possible.

The orthogonality relationship for the Bessel functions
(18) can be evaluated for a continuous range of frequencies
as

∫ r0

0
Jm(kx)Jm

(

zm
ℓ

r0
x

)

xdx

=







r2
0
2 [Jm+1(zm

ℓ )]
2 if k=

zm
ℓ

r0
,

zm
ℓ Jm−1(z

m
ℓ )

k2−(zm
ℓ /r0)2

Jm(kr0) otherwise.

(28)

The Bessel functionJm(kr0) in (28) higher than the zeroth
mode are close to zero for values ofkr0 lower than a partic-
ular upper limit. This upper limit increases with the mode
numberm. Using this property, a rule of thumb used in ar-
ray signal processing and in source localization [5] to avoid
spatial aliasing is stated as follows: the maximum number
of modes present for a particular frequency response upper
limit is

minimizem such thatm> kur0. (29)

By limiting the frequency upper limit, spatial filtering is
achieved i.e. the number of modes is limited. This criterion
also governs the number of sensors needed to avoid spatial
aliasing with respect to frequency upper limit. Since if the
number of modes isM, we require more than 2M sensors.

6. EXTENSION TO 3D (SPHERICAL GEOMETRY)

In this paper we have considered a 2D spatial region so that
the notation is simplified and that the main ideas can be con-
cisely described. The algorithm presented can be extended
to a more practical 3D geometry where the source region is
constrained within a spherical region enclosed by the sen-
sors. Firstly the Green,s function satisfying the inhomoge-
neous Helmholtz equation (1) and its modal decomposition
is

G(k;xxxs,xxx) =
eik‖xxxs−xxx‖

4π ‖ xxxs−xxx ‖

= ik
∞

∑
n=0

n

∑
m=−n

h(1)n (kxs) jn(kx)Ymn(x̂xxs)Ymn(x̂xx)
∗.

(30)
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Figure 1: Input sample (a) x-y view (b) x-z view through
the central axis, with arbitrary units (a.u.) for the relative
absorption.

where where(·)∗ denotes the complex conjugate operator,
x̂xx andx̂xxs contains the azimuthal and elevation angles of the
source and sensor respectively,jn(·) is the spherical Bessel

function,h(1)n (·) is the spherical Hankel function andYmn(·)
is the spherical Harmonic function. Further the 3D Fourier-
Bessel expansion of the source distribution is now as follows

A(xxx) =
∞

∑
n′=0

n′

∑
m′=−n′

∞

∑
ℓ=1

αℓ
n′m′ jn′

(

zn′
ℓ

r0
x

)

Ym′n′(x̂xx). (31)

whereαℓ
n′m′ is the 3D Fourier-Bessel coefficient withn′ as

the mode,m′ denotes the order andℓ denotes the index of
the expansion. The procedure for 3D source reconstruction
is the same as the 2D case, i.e. we calculate the coefficients
of the spherical Harmonic functions at frequenciesk= zn′

ℓ /r0

to obtainαℓ
n′m′ which is used to reconstruct the source distri-

bution.

7. NUMERICAL EXPERIMENTS

In this section we describe the numerical experiments per-
formed to validate our proposed algorithm. The set up for the
numerical experiment is shown in Fig. 1, withr0 as 15mm,
speed of propagation is 1.5mm/µs (speed of sound in soft
tissue), the constantη = 1 and the sensors are placed in a
circle at a radius of 50mm. The bandwidth of measurement
is from 0 to 3MHz, this means that modes up to 180 need to
be resolved (29), therefore 380 sensors are placed uniformly
around the source to avoid spatial aliasing. Also, for the ze-
roth mode, only 60 indices can be recovered. In the numeri-
cal experiments, we approximated the signal received at the
sensor for each of the required frequenciesk = zm

ℓ /r0 using
a quadrature approximation to the double integral shown in
(4).

In this work we are interested in estimating the source
distribution function using snapshots differing in frequencies
rather than snapshots differing in time. Therefore, the noise
to be introduced in the simulations has to be defined differ-
ently. Assuming that we use frequencies in the range fromkℓ
to ku then the power of the signal between this range is

Psignal,
1

ku− kℓ

∫ ku

kℓ
| f (ω)|2 dω . (32)

Since we are working with discrete samples, (32) is modified
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Figure 2: Magnitude of Fourier-Bessel coefficients at the
modesm and indicesl of the input source distribution.
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Figure 3: Reconstructed image using the largest 60 estimated
Fourier-Bessel coefficients at a SNR = 20dB.

to

Psignal,
1

ku− kℓ

Ω

∑
ω=2

| f (ω)|2 (γ(ω)− γ(ω −1)). (33)

In (33), there areΩ non-uniform, discrete samples in the fre-
quency range of interest,f (ω) is the signal recorded at the
ωth frequency sample andγ(ω) is the frequency at sample
ω , arranged in ascending order. The SNR in dB can then be
defined in the normal way as 10log10(Psignal/σ2

n) whereσ2
n

is the noise power. Further, the noise is AWGN. For the sim-
ulations a SNR of 20 dB was used, with 20 measurements
available at each required frequency to average out the noise.

We applied our proposed method to the frequency sam-
ples in order to estimateβmℓ. The values of the Fourier-
Bessel coefficients of the input source distribution is shown
in Fig. 2. We can observe that the magnitude of most coeffi-
cients are negligible. A reconstruction using only the largest
estimated 60 Fourier-Bessel coefficients is illustrated byFig.
3 and using 120 Fourier-Bessel coefficients is illustrated by
Fig. 4. It is observed that a better reconstruction with im-
proved resolution results if more coefficientsβmℓ are used.
However, this increases the computational expense.

8. SUMMARY AND CONCLUSIONS

In this paper, we have proposed a novel method for photoa-
coustic image reconstruction which is faster than Fourier-
Domain methods and does not assume infinite bandwidth.
This method can be easily discretized and a relationship be-
tween the number of sensors and upper frequency limit was
provided in order to avoid spatial aliasing. In this method,
we expand the source distribution in the Fourier-Bessel do-
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Figure 4: Reconstructed image using the largest 120 esti-
mated Fourier-Bessel coefficients at a SNR = 20dB.

main. Therefore, the source can be reconstructed by estimat-
ing the Fourier-Bessel coefficients from frequency samples
corresponding to the Bessel zeros.
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