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ABSTRACT the modal expansion of the 2D Green’s functions and Sec-
Photoacoustic imaging provides high spatial resolution imtion 4 introduces the Fourier-Bessel expansion of the sourc
ages of biological tissues and is useful for molecular imagdistribution. We compare our proposed algorithm to previ-
ing. The exact reconstruction algorithms for photoacouseus Fourier-Domain methods and extend it for discrete aper-
tic imaging are either slow or assume a continuous sensdures with spatial filtering in Section 5. Section 6 provides
with infinite bandwidth. We propose a novel reconstruc-an extension to spherical geometries and Section 7 describe
tion method which expands the source distribution functiomumerical experiments conducted and the results obtained t
in the Fourier-Bessel domain. The source distribution cawalidate our method. Section 8 summarizes the main ideas of
be reconstructed from frequency samples corresponding this paper.
the Bessel zeros. Sparsity of the source distribution in the Notation: bold lowercase letters represents vectors.
Fourier-Bessel domain makes reconstruction faster. Egrth
this method was extended to the discrete aperture and a con- 2. PHOTOACOUSTIC THEORY
dition was derived to avoid spatial aliasing. The propose

o : : ; . qn this section we provide a short review of the wave equa-
method was verified using numerical simulations. P 9

tions for photoacoustic, the reader is referred to [4] which
provides an extensive review of photoacoustic theory.

1. INTRODUCTION Provided that thermal diffusion and kinetic viscosity is
Photoacoustic imaging is done by measuring the acoustignored, the inhomogeneous Helmholtz equation relatieg th
waves generated by soft tissue due to the absorption of elebeating functiorH (x,t) and the pressurp(x,t) at a vector
tromagnetic (EM) energy from optical or radio waves. Ultra-positionx and timet is
sound sensors placed on the surface of these tissues record 19 P
these acoustic waves from which the distribution of the EM sz(x,t) — S —=pxt) = —ﬂ—H(x t). 1)
absorption can be computed. This electromagnetic absorp- c? ot2 Cp ot

tion is a property related to the type of tissue. Moreovery o e ¢ genotes the speed of sound which is assumed to be
photoacoustic imaging can provide a very high spatial resoz,nstantc is the specific heat capacifyis the isobaric vol-
lution and is used for cancer detection, breastimagingllsma, ne expansion coefficient and the heating funck,t) is
animal imaging and molecular imaging. defined as the thermal energy deposited per unittime and vol-

bWe a?dresshthe problerréc()jf estlr‘gatmg the absorption digsme Fyrther, the heating function is a product of the source
tribution from the measured data. Approximate reconstrucgisripytion functionA(x) (commonly referred to as spatial

tion algorithms include the statistical approach [9] anthge
and sum beamforming [2]. Exact solutions both in the tlmq?qt:ﬁga%téofr&;%?l%tﬁ? )m literature [7,8]) and the tempohiai

and frequency domain were provided in [7, 8], but they co
sidered a continuous aperture and infinite bandwidth. H(x,t) = AX)I(t). (2
In this paper we propose a novel method that expands the
source distribution function in the Fourier-Bessel domam
reconstruct the source distribution, we estimate the Eouri
Bessel coefficients from frequency samples corresponding
the Bessel zeros. The proposed method does not require i
finite bandwidth and conditions for exact reconstruction fo

Assuming the photo illumination or the RF pulse dura-

tion is short, the temporal illumination function can be ap-
roximated as a Dirac delta functidrit) = 5(t). Therefore,

%\e solution to the inhomogeneous Helmholtz equation (1)
ased on the Green’s function can be expressed as

the finite bandwidth case is provided. Further, this method X xH)
was extended for discrete apertures and a rule was derived p(Xs,t) =n ///A ds (3)
to avoid spatial aliasing. The proposed method is faster tha 47T| IXs —X||

Fourier-Domain methods since it only uses a subset of fre-

quency samples and can exploit sparsity of the source-distriheren = p/Cp, &'(t) = 946(t)/dt, Sis the volume of re-

bution in the Fourier-Bessel domain. gion under test anxi; is the vector position of the ultrasound
This paper is arranged as follows: Section 2 providesensors. The pressupgXs,t) also represents the time do-

background to photoacoustic imaging, Section 3 describe®ain signal received by a ultrasound sensor placag dhe

Fourier transform of (3) yields
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where wavenumbek = 27tf /c with f as the frequency of greater tharrg then the signal received by a sensor at an-
sound ands(k; xs,X) is the Green’s function. Moreover, the gular positiong and wavenumbek for the 2D case can be
Fourier transform analysis and synthesis equations apfaie specified as

the recorded signals are defined respectively as

'rg 21
pr(@.k) = —iken [ [7 AKG(kxex) dpxix.  (10)
JO 0

Pk = [ plx ! (5)
Substituting (9) and (8) into (10) yields
and ken & 02 2.0 _
+oo : JK) =—— Hn” (kR)€"®
P(X,t) 2 bl ke 0 ) PRk =7~ > 2 2 (KR

I o . o z 11
The estimation of the source distribution functiéfx) from X [ Bmedm X JIn(kx) xdx (11)
measurements at several positions outside the sourcenregio 02 0
is an inverse problem. By analyzing (4), we can deduce that % / neim<pefin<p do
the source distribution function is frequency invariang, i 0 '

the source distribution function is the same for all frequen
cies. Hence, in this paper, the problem of estima#i) is
labeled as a frequency invariant source localization bl

Further, we use the orthogonality property of exponential
functions

Zneim“’ g g — 2 ifn= 12
3. 2D GREEN’'SFUNCTION /0 e de=10 otherwise. 2

The Green'’s function in 2D for the exte_rlor case where all thefo simplify (11) to
sources are enclosed by the sensors is

PRI®K) = 5 am(kje™® (13)
Glkoxs x) = LS (K s X @ w3
L where
WhereHé )(~) is the Hankel function of the first kind and - w
order zero. Us_ing po_Iar co-ordinates, with position vesxgr am(k) = Sl Hr(nl)(kR) z Buv
andx with radial position ofxs andx; and angular positions 2 =] 14
@ and g respectively, then the addition theorem can be used o (14)
to expand the 2D Green’s function [6] as / JIm(kX)Im (—x) xdx

1) _ _ c 4O —ing . ngs Note that (13) is the spatial Fourier series expansion of the
Ho ™ (Klxs =x1) z Hi™ (log) Jn(lxje e ®) received signal on a continuous aperture as a function of the
aperture angle.

which is valid wherxs > xandJn(-) represents a Bessel func- ~ We can estimate tham(k) from the sensor recordings
tion of ordem. This expansion is called eigen basis or modalPrR(¢, k) by using the Fourier series analysis equation
expansion of the Green’s function and was used for ultra-

n=—oo

2 X
sound reflectivity imaging [3]. am(k) = Zi npR((Ps, k)e ™ da. (15)
tJo
4. SOURCE DISTRIBUTION EXPANSION We refer toam(k) as modal coefficients and these outline the

We define the 2D Fourier-Bessel expansion of the source gi@ngular distribution of the source function.
tribution function as 5.1 Frequency-Radial Duality
Alx > By Zm x| dme ©) The following theorem shows how to estimate the source dis-
e MZ me~m tribution coefficients3,, using modal coefficients at a spe-
cific set of frequencies.

wherei = /=1, 2 is the/"" root of J(-), By are complex Theorem 5.1 (Frequency-Radial duaIity)For each mode,
Fourier-Bessel coefﬁuents whemeis called the mode and taking measurements at frequencies k /ro for the dif-

is the index. The source distribution function can repréesin ferent zero indiceéwe can obtain the 2D Fourier-Bessel co-

by its sample values, however by expanding the source diggficients, which expands the angular modal basis expansion
tribution function in a different domain a more compact rep-; incorporate radial variations. We calculafgy by
resentation is possible requiring estimation of fewer geim ' )

order to obtaiPA(X). The next section describes a method to z"

estimateB,y to reconstruct the source distribution. Brv = hvam To (16)
5. ESTIMATION OF SOURCE DISTRIBUTION where 4

Given that the ultrasound sensors are placed uniformly at a Py = i & sz) 3 (g (17)

radiusR > rg, and assuming thaA(x) is zero at all radii CroHm (r_ Hm-1(27)]?
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Proof. We use the orthogonality relationship for Bessel func4ntroduced in this paper is novel and has not been utilized
tions [1], previously for photoacoustic imaging or ultrasound imagin
Further, given that we know that the source distribution is

/rOJ sz J i dlx bounded in a radial region, we need to only consider fre-
o ™\ro" )"\ ro quencies corresponding to the bessel zdrescZ"/(2mo)
r2 ] (18) and these frequencies are only resolved to a single mode. In
_ B (@) ife=2, addition, the source distribution can be sparse in the Eouri
0 otherwise. Bessel domain and summation can be done over only the
largest modes and indices. These lead to a large reduction in
in (14) atk = Z"/ro to obtain computational complexity compared to the Fourier-Domain

methods where all frequencies are used and resolved to all
Zn ik r2 modes. Itis important to mention that a lower boup@dnly
am(ri) = ch H&l)(kR)anEO[Jml(Z?])]Z (19)  means that less frequency samples are used and has no effect
0 on the resolution of the reconstructed image.
i T i ; One pertinent question in photoacoustic imaging is how
El))/tgﬁ]pglg)g the definition oflyy provided by (17)in (19)éve to recover the image with a discrete aperture and avoid dis-
' tortions due to spatial aliasing. Both the Fourier-domaid a
5.2 Comparison with Fourier Domain Methods the time-domain methods require infinite bandwidth and a
_ i ) ) _ _ _ continuous aperture. Theoretical validation to their exte
This section begins with a brief overview of the Fourier Do-gjon o the discrete and finite bandwidth case has not been
main algorithms, first proposed for ultrasound imaging [3]provided. The next two sections highlight the advantages of

and then modified for photoacoustic imaging [7, 8]. Thisgyr approach in considering a discrete aperture and spatial
algorithm described in 2D expands the source d|str|but|o%|iasing_

function as

5.3 Discrete Aperture

AX) = z / am(K)kdn(kx) dk €M% (20)  Inthe previous sections, estimation of the Fourier-Bessel
m=0 /0 efficients were done assuming ideal conditions with infinite
bandwidth and a continuous aperture. Exact reconstruction
of the source distributiod(x) is possible under these ideal
® _ conditions since the source Fourier-Bessel expansion con-
PXs, k) = 5 Qm(k)em®, (21)  sists of a sum of infinitely many orthogonal functions. In
m=0 this section we provide the conditions under which the seurc
distribution can be reconstructed with a discrete apegnde

We can calculatéim(k) by the inverse of (21) (a transform g panqwidth limited by the frequency response of the ultra-
similar to (15)) over all the sensors which are placed in &4 ,n4 transducer.

circle. Fromdm(k), we getam(k) by Provided there ar® uniformly placed sensors at a radius
A R, then the discrete aperture response at a wavenuknbsr
am(k) = il

_Tmr (22) avectoris
c(k)H (kR

Pr(e.K) = [pR(&™ K, ..., pRAV KT (24)
wherec(k) is a constant equal takcn /2. To computeA(x)
at a particular point, we take the Hankel transform dvef  where (ps(q) is the angular position of thg" sensor. The
am(k) and then sum over the modes (20). Note thatk) is  modal coefficients can be calculated as a discrete approxi-
equivalent tofg: [Z" A(X)Im(kx)e ™MPx dx dg and the orthog- mation to (15)
onality of the bessel functions over an infinite interval [1] 1
- 1 an(k) = ——e(m)" Pr(¢,K) Ay (25)
/o kJm(kx)Jm(kX) dk = ;6(x— X) (23)

and expands the measured signals as

where

. o . imal imal@

is used to recover the source distribution at a particular ve e(m) =[em&" e METT (26)
tor positionx, shown in (20). One of the drawbacks of the . : .
Fourier-Domain methods are that they are computational For the discrete aperture, both temporal and spatial alias

|}/ T . .

. L can occur. Temporal aliasing can be avoided by using a
expensive requiring the sum of a large number of terms g can ; :

every point, see (20). Further, Fourier-Domain methods r;eaé]amplmg frequency that is greater than twice the frequency

. oS . : : : response upper limit of the transducer. Given that we need
quire an infinite bandwidth otherwise the relationship show to decompose the wavefield to a finite number of modes

in (23) is no longer valid. The Fourier-Domain method was L .
o PSR - ome [—M,...,M], aminimum number of sensors are required
modified in [7,8] to recover the source distribution in thradi which must satisfy

domain reducing the computational complexity. Q>2M 27)
Rather than integrating over a frequency range, the pro- :

posed algorithm considers the natural integration that ocAdditionally, the contributions of the modes higher thdn

curs as a wave propagates through a region of space andsiBould be negligible at this wavenumber in order to avoid

therefore not affected by the spatial sampling issues due tgpatial aliasing. The spatial aliasing that can occur due to

a discrete sensor. The concept of frequency-radial dualitgverlapping of the higher modes is referred to as modal
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aliasing, more details on this is provided in [5]. Therefore

given a discrete number of sensors, to avoid modal alias

ing the Fourier-Bessel expansion of the source distributio

should be bandlimited, i.e. coefficients for modes greate

than M should be negligible for the transducer frequency

response. Further, exact reconstruction of the source di @ o .
tribution is only possible if this expansion has significant

terms for modesn € [—M,...,M] and indices satisfying

ki < Z"/ro < ky wherek andk, are the lower and upper limit

of the transducer frequency response respectively.
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5.4 Spatial Filtering @ (b)

It is important to avoid spatial aliasing since this can eaus Figure 1: Input sample (a) x-y view (b) x-z view through
blurring and distortion in the reconstructed image. The-banthe central axis, with arbitrary units (a.u.) for the relati
dlimit restriction of the source distribution to avoid aliag ~ absorption.

limits the use of this method to practical scenario. In &iter

ture, there is currently no method prescribed to perform spa

tial filtering for photoacoustic image reconstruction. How where where(-)* denotes the complex conjugate operator,

ever, for the method described in this paper spatial filgerin X andXs contains the azimuthal and elevation angles of the
is possible. source and sensor respectively(-) is the spherical Bessel

The orthogonality relationship for the Bessel function_sfuncuon,hn () is the spherical Hankel function anghn(-)
(18) can be evaluated for a continuous range of frequenciés the spherical Harmonic function. Further the 3D Fourier-

as Bessel expansion of the source distribution is now as falow
"ro Zrén - n 0 Zn/
/0 Jm(kX)\]m<EX) xdx A(X) = Z Z ; n’mJn’(_ )ymm,( ). (31)
2 n=0m'=—n'/=1
Pnia(E k= z @9 | o
= szm 1(ZD wherea’, . is the 3D Fourier-Bessel coefficient witli as

—@"/ro) 2‘]’“('“0) otherwise. the mode,m denotes the order anddenotes the index of

the expansion. The procedure for 3D source reconstruction
The Bessel functiodm(kro) in (28) higher than the zeroth is the same as the 2D case, i.e. we calculate the coefficients
mode are close to zero for valueslop lower than a partic- of the spherlcal Harmonic functions at frequemk%z” /To
ular upper limit. This upper limit increases with the modeto obtaina, , which is used to reconstruct the source distri-
numberm. Using this property, a rule of thumb used in ar- pytion,
ray signal processing and in source localization [5] to @voi
spatial aliasing is stated as follows: the maximum number 7. NUMERICAL EXPERIMENTS

of modes present for a particular frequency response upper
limit is In this section we describe the numerical experiments per-

minimizem such tham > kyfo. (29) formed to validate our proposed algorithm. The set up for the
numerical experiment is shown in Fig. 1, withas 15mm,
By limiting the frequency upper limit, spatial filtering is speed of propagation isSmny us (speed of sound in soft
achieved i.e. the number of modes is limited. This criteriortissue), the constanf = 1 and the sensors are placed in a
also governs the number of sensors needed to avoid spatrifcle at a radius of 50mm. The bandwidth of measurement
aliasing with respect to frequency upper limit. Since if theis from O to 3MHz, this means that modes up to 180 need to
number of modes i, we require more than\ sensors. be resolved (29), therefore 380 sensors are placed uniforml
around the source to avoid spatial aliasing. Also, for the ze
6. EXTENSION TO 3D (SPHERICAL GEOMETRY) roth mode, only 60 indices can be recovered. In the numeri-
cal experiments, we approximated the signal received at the
In this paper we have considered a 2D spatial region so thaensor for each of the required frequendies z"/rg using
the notation is simplified and that the main ideas can be cora quadrature approximation to the double integral shown in
cisely described. The algorithm presented can be extenddd).
to a more practical 3D geometry where the source region is In this work we are interested in estimating the source
constrained within a spherical region enclosed by the serdistribution function using snapshots differing in frequies
sors. Firstly the Green,s function satisfying the inhomogerather than snapshots differing in time. Therefore, theaoi
neous Helmholtz equation (1) and its modal decompositioto be introduced in the simulations has to be defined differ-
is ently. Assuming that we use frequencies in the range &om

to ky then the power of the signal between this range is
elklIxs—x|

_ 1 ku
41T || Xs — X A 2

Since we are working with discrete samples, (32) is modified

G(k, XSax) =

[

n
m=—

n= n
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Figure 2: Magnitude of Fourier-Bessel coefficients at the
modeam and indiced of the input source distribution.
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Figure 4. Reconstructed image using the largest 120 esti-
mated Fourier-Bessel coefficients at a SNR = 20dB.
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Figure 3: Reconstructed image using the largest 60 estmrnaté ]
Fourier-Bessel coefficients at a SNR = 20dB.

(@

[3]
to
1 Q
m Zz|f(w)|2 (V(w) —y(w—-1)). (33)

Psignal £
(4]

In (33), there ar€ non-uniform, discrete samples in the fre-
guency range of interesf,w) is the signal recorded at the 5]
w'h frequency sample angw) is the frequency at sample
w, arranged in ascending order. The SNR in dB can then be
defined in the normal way as 10lg@Psignai/ 07) Whereo?
is the noise power. Further, the noise is AWGN. For the sim{6]
ulations a SNR of 20 dB was used, with 20 measurements
available at each required frequency to average out the nois
We applied our proposed method to the frequency sanf7]
ples in order to estimat8,,. The values of the Fourier-
Bessel coefficients of the input source distribution is sthow
in Fig. 2. We can observe that the magnitude of most coeffi-
cients are negligible. A reconstruction using only the éestg 8]
estimated 60 Fourier-Bessel coefficients is illustrate & igy
3 and using 120 Fourier-Bessel coefficients is illustrated b
Fig. 4. Itis observed that a better reconstruction with im-
proved resolution results if more coefficierlg, are used.
However, this increases the computational expense. [9]
8. SUMMARY AND CONCLUSIONS

In this paper, we have proposed a novel method for photoa-
coustic image reconstruction which is faster than Fourier-
Domain methods and does not assume infinite bandwidth.
This method can be easily discretized and a relationship be-
tween the number of sensors and upper frequency limit was
provided in order to avoid spatial aliasing. In this method,

we expand the source distribution in the Fourier-Bessel do-
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1 main. Therefore, the source can be reconstructed by estimat
ing the Fourier-Bessel coefficients from frequency samples
corresponding to the Bessel zeros.
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