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ABSTRACT
This paper formulates a spatially-limited signal energy con-
centration problem on the 2-sphere using a generalized mo-
ment criterion in the spectral domain. The set of optimal sig-
nals with maximum concentration for general positive spher-
ical harmonic coefficient frequency weightings is obtained.
Numerically solving the resulting integral equation optimiza-
tion shows that this set of functions not only decays slower
but also has higher sidelobes than the set of spherical Slepian
functions. This result on the 2-sphere contrasts with the
findings from the time-frequency analogy which compares
the classical Slepian eigenfunctions with the minimum band-
width basis functions for the fourth-moment bandwidth mea-
sure.

1. INTRODUCTION

According to the spherical harmonic transform, a spectrally-
limited signal occupies the whole sphere, that is, consid-
ered as a function, the support of a signal is the whole 2-
sphere. However, in practice, only part of the signal re-
stricted to some portion of the 2-sphere is available, that is,
a spatially-limited signal is often of interest. In this second
case a spatially-limited signal will have infinite spectral con-
tent, that is, the spherical harmonic coefficients will be non-
zero for arbitrarily high orders corresponding to arbitrarily
high frequencies (decaying to zero).

How best to achieve or approximate a signal on the 2-
sphere of simultaneous limited spectrum and limited spatial
extend is a problem of interest. In time and frequency, for
signals on R, this has been extensively studied. Of partic-
ularly interest is the formulation of by Slepian, Landau and
Pollak [1,2] based on criteria of engineering interest. For the
2-sphere, analogous results have been obtained leading two
natural cases: 1) spectrally-limited spherical Slepian func-
tions, and 2) spatially-limited spherical Slepian functions.
It has proved to be a useful tool to analyze and represent
a signal on the 2-sphere [3–6], though the spatially-limited
Slepian signal case was emphasized less.

Our recent research [7] shows that the optimal spectrally-
limited function with minimum globally (support is the
whole 2-sphere) kth azimuthal moment weighting not only
achieves good spatial concentration, but also has faster de-
caying tails than the spherical Slepian spectrally-limited
function, which is a good alternative for the spherical fil-
ter design. Therefore, it is a natural question whether such
an optimally spatially-limited function (complementary to

This work was supported by the Australian Research Council Discovery
Grant DP1094350.

but not equivalent to the spectrally-limited function case)
with spectral moment weighting exists, and whether this set
of functions is a good option to represent and analyze a
spatially-limited signals on the unit sphere.

In this paper, we formulate a spatially-limited signal en-
ergy concentration with a more general form of weighting
based on a harmonic multiplication operation [8], but re-
stricted to positive weights, in the spectral domain. A set of
optimal spatially-limited functions is obtained and the char-
acteristics of these functions are studied.

2. PRELIMINARIES

2.1 Notation
Let S2 = {xxx∈R3 : ‖xxx‖= 1} denote the unit sphere in R3. xxx≡
(θ ,φ) , (sinθ cosφ ,sinθ sinφ ,cosθ) ∈ R3 denotes a point
on the sphere where θ denotes the colatitude with 0 ≤ θ ≤
π and φ denotes the longitude with 0 ≤ φ < 2π . Denote
ds(xxx) = sinθ dθ dφ .

Let L2(S2, ds) be a complex Hilbert space containing all
the square-integrable functions defined on the unit sphere S2,
such that for f ,g∈ L2(S2, ds), the inner product is defined by

〈 f ,g〉 =
∫

S2
f (xxx)g(xxx)ds(xxx)

=
∫ π

0

∫ 2π

0
f (θ ,φ)g(θ ,φ)sinθ dφ dθ . (1)

2.2 Spherical Harmonic Representation
The spherical harmonics Y m

n (xxx) =Y m
n (θ ,φ) are defined as [9]

Y m
n (θ ,φ) =

√
2n+1

4π
(n−|m|)!
(n+ |m|)!

P|m|
n (cosθ)eimφ ,

n = 0,1, · · · ,m = −n, · · · ,n,

Pm
n (·) are the associated Legendre functions, n is the angular

(spectral) degree and m (−n ≤ m ≤ n) is the angular order.
Any finite energy signal f ∈ L2(S2, ds) can be repre-

sented, in the sense of convergence in the mean with the norm
induced by (1), by

f (xxx) =
∞

∑
n=0

n

∑
m=−n

f m
n Y m

n (xxx), (2)

where the spherical harmonic coefficients f m
n are given by

f m
n =

∫
S2

f (xxx)Y m
n (xxx)ds(xxx). (3)
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3. PROBLEM STATEMENT

In this paper, we study a spatially-limited signal energy
concentration with positive spectral modes weighting in the
spectral domain. The problem is stated that: for a spatially-
limited signal f with support Γ ⊂ S2 and a spectrally-limited
signal v with positive spherical harmonic coefficients, the ob-
jective function to be extremized (generally maximized) is

λ =
〈v� f ,v� f 〉

〈 f , f 〉
= maximum, (4)

where “�” is the harmonic multiplication operation defined
as [8],

(v� f )(xxx) =
N

∑
n=0

n

∑
m=−n

vm
n f m

n Y m
n (xxx), (5)

vm
n ≥ 0 for all n and m, and N is the maximum spectral de-

gree of v. Our aim is to find an optimal spatially-limited
signal which achieves maximum spectral moment weighting
measure.

4. FORMULATION

Substituting (5) and (3) into the objective function (4) and
changing the summation and the integration, we have (6).

λ =

N

∑
n=0

n

∑
m=−n

|vm
n f m

n |2

∞

∑
n=0

n

∑
m=−n

| f m
n |2

=

∫∫
S2×S2

f (xxx) f (yyy)
[ N

∑
n=0

n

∑
m=−n

|vm
n |2Y m

n (yyy)Y m
n (xxx)

]
ds(xxx)ds(yyy)∫

S2
| f (xxx)|2 ds(xxx)

. (6)

It is well known that to render the Rayleigh quotient (6)
stationary, f (xxx) is the solution of the Fredholm integral
equation, (technically representing an integral operator on
L2(Γ, ds)),

∫
Γ

[ N

∑
n=0

n

∑
m=−n

|vm
n |2Y m

n (xxx)Y m
n (yyy)

]
f (yyy)ds(yyy) = λ f (xxx), xxx ∈ Γ.

(7)
Denote the integral kernel as

D(xxx,yyy) =
N

∑
n=0

n

∑
m=−n

|vm
n |2Y m

n (xxx)Y m
n (yyy).

In this paper, for concrete illustration, we restrict the region Γ
to be the polar cap [0,Θ], where Θ is the maximum colatitude
of the region.

According to the separability of the spherical harmonics,
we have

f (θ ,φ) =
N

∑
m=−N

eimφ
N

∑
n=|m|

f m
n Sm

n (θ) =
N

∑
m=−N

eimφ fm(θ), (8)

where

Sm
n (θ) =

√
2n+1

4π
(n−|m|)!
(n+ |m|)!

P|m|
n (cosθ),

fm(θ) =
N

∑
n=|m|

f m
n Sm

n (θ).

Similarly, for the kernel function, we have

D(xxx,yyy) = D(θ ,φ ,θ ′,φ ′)

=
N

∑
n=0

n

∑
m=−n

|vm
n |2Sm

n (θ)eimφ Sm
n (θ ′)eimφ ′

=
N

∑
n=0

n

∑
m=−n

|vm
n |2Sm

n (θ)Sm
n (θ ′)eimφ e−imφ ′

=
N

∑
m=−N

N

∑
n=|m|

|vm
n |2Sm

n (θ)Sm
n (θ ′)eimφ e−imφ ′

. (9)

Substituting (8) and (9) into (7), we have

N

∑
m=−N

eimφ
∫ Θ

0
2π

N

∑
n=|m|

|vm
n |2Sm

n (θ)Sm
n (θ ′) fm(θ ′)sinθ ′ dθ ′

= λ
N

∑
m=−N

eimφ fm(θ), 0 ≤ θ ≤ Θ.

That is, (7) can be decomposed into a series of fixed-order,
one-dimensional Fredholm eigenvalue equations [10],∫ Θ

0
D(θ ,θ ′) fm(θ ′)sinθ ′ dθ ′ = λ fm(θ), 0 ≤ θ ≤ Θ,

(10)
where −N ≤ m ≤ N and the kernel

D(θ ,θ ′) = 2π
N

∑
n=|m|

|vm
n |2Sm

n (θ)Sm
n (θ ′).

Solving the integral equation (10), the optimally associated
spatially-limited function fm(θ) for fixed m is obtained,

fm(θ ,φ) = fm(θ)eimφ . (11)

From here, we can conclude that the optimally spatially-
limited function that maximizes the concentration ratio (4)
is only related to the spectral degree n for fixed m, therefore,
only the n variable in the weighting function vm

n has some
effect to the optimal eigenfunction fm(θ).

5. SIMULATIONS

In the section, we formulate the spectrum moment weighting
on the unit sphere. We take some special values of vm

n as
examples to solve the corresponding optimal functions and
discuss their properties.

5.1 vm
n = 1 for all 0 ≤ n ≤ N and −n ≤ m ≤ n

This is the spherical Slepian concentration problem on the
unit sphere, which has been well studied in [10]. The mea-
sure λ is the maximum energy concentrated in the spectral
interval [0,N] for a spatially-limited function f . The obtained
optimal signals are called the spherical prolate spheroidal
wave functions (PSWFs), or the spherical Slepian functions.
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Figure 1: The normalized eigenfunctions f0(θ) with the
maximum concentration ratio λk = 0.9999,0.7155,0.5802
under different weighting vm

n = ( n+1
N+1 )k for varied k = 0,1,2.

5.2 vm
n = ( n+1

N+1 )k for all 0 ≤ n ≤ N and −n ≤ m ≤ n

Take
vm

n = (
n+1
N +1

)k, k = 1,2, . . . (12)

to emulate the moment weighting in the analogy given
in [11]. It should be noted that k = 0 is the special case with
vm

n = 1 and its function corresponds to the spherical Slepian
function. The objective function is changed into

λ =
∑N

n=0 ∑n
m=−n

( n+1
N+1

)2k| f m
n |2

∑∞
n=0 ∑n

m=−n | f m
n |2

= maximum.

As we have proved before that it is equivalent to solve

∫ Θ

0

(
2π

N

∑
n=|m|

( n+1
N +1

)2kSm
n (θ)Sm

n (θ ′)
)

fm(θ ′)sinθ ′ dθ ′

= λ fm(θ), 0 ≤ θ ≤ Θ, (13)

We use Gaussian-legendre quadrature method [12] to numer-
ically solve the above integral equation (13) and find the as-
sociated eigenfunctions.

5.3 Numerical Examples
Take N = 18 and Θ = 40◦ for comparison with spheri-
cal Slepian functions presented in [10]. And we also take
k = 0,1,2 as examples to study the properties of the optimal
functions.

Fig. 1 shows the normalized eigenfunctions fm(θ) with
maximum concentration ratio λ for m = 0 and its cor-
responding squared spherical harmonic coefficients ( f 0

n )2.
Fig. 1 shows that: 1) the optimal waveform of f0(θ) does
not vary much as k increases; 2) the peak value of the optimal
functions moves to the right as k increases; 3) most of the en-
ergy of the optimal function concentrated in the first spectral
degree [0,18] for all k; 4) the spherical harmonic spectrum
decays faster as k increases, but the decaying rate is much
slower than that of the spherical Slepian function, which dif-
fers from the time-frequency analogy [11]. The non-zero
value for f0(θ) to k ≥ 1 at the boundary Θ = 40 also shows
the limitation of Gaussian-legendre quadrature method to the
inverse problems.

A similar situation is shown in Fig. 2 for m = 1. However,
the calculation error at this time is quite larger, for f1(40◦) =
−0.0495 for k = 1 and f1(40◦) = −0.0615 for k = 2.

Fig. 3 shows the normalized optimally associated
spatially-limited functions fm(θ ,φ) with the first four max-
imum concentration ratios λ for m = 0 and m = 1. Obvi-
ously, these figures show that the functions obtained from the
vm

n weighting have more sidelobes than the spherical Slepian
function and the increasing k has little effect to the spatially-
limited signals.

6. CONCLUSIONS

This paper formulated a spatially-limited signal energy con-
centration problem on the 2-sphere using a generalized mo-
ment criterion in the spectral domain based on a harmonic
multiplication operation. The set of optimal signals with
maximum concentration for general positive spherical har-
monic coefficient frequency weightings was obtained. Nu-
merically solving the resulting integral equation optimization
shows that this set of functions not only decays slower but
also has higher sidelobes than the set of spherical Slepian
functions.

The given formulation is very general and the moment
weighting is a special case. To emulate the moment weight-
ing analogous to [11], but for the 2-sphere, we adopted the
weighting (12). It remains an open question whether this is
the true analogy for the moment weighting given the finite
extent and the curvature on the 2-sphere. If the analogy does
differ from (12) our formulation using harmonic multiplica-
tion is general enough to deal with this case.
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