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ABSTRACT 2. SOURCE LOCALIZATION METHODS
In the context of acoustic source localization, knowing th . N
actual propagation speed is crucial especially in uncdatto 21 Acoustic Source L ocalization from TDOAS
environments where the temperature is subject to signtficaiwVe consider the Euclidean spacelbf 2 dimensions where

changes that influence the sound speed. In a recent paper We ha acoustic source is located in an unknown positien
showed the effects of the assumed propagation speed on the xy]T

localization performance of two closed-form localizatin . s :

gorithms bars)ed on TDOA measurements. It has been showr? ?IJF ! aCi)US'[IC sTensors_are distributed at the known posi-
; : ionsap = [Xnyn]' forn=0,--- N,

that the so-called unconstrained least squares method is no _ _ C T

significantly influenced by a wrongly assumed propagation ® the reference sensey, is located in the origi0 0" and

speed, whereas the constrained method, the one staljstical N microphone pair¢a,, an) are considered,

more attractive, is impaired even by small speed deviations ® the TDOA valuesry, n=1,--- N are estimated for each

In this article we study in more depth the causes of this Pair by suitable correlation between the two microphone

disparity and we propose a novel technique to estimate the Signals.

propagation speed and improve the localization perfor@ancThe localization problem consists of findi®gyiven the sen-

when the environment conditions, i.e. the air temperaturesor positionsa, and the TDOAsr,. Each TDOA can be ex-

are not known exactly. pressed in terms of the travelled range difference as

1. INTRODUCTION

For the problem of localizing an acoustic source from Time-
Differences-of-Arrival (TDOAS) there are a number of dif-
ferent solution approaches. Of certain interest are thémet
ods capable of providing closed-form solutions in a linea
fashion. Because of their efficiency, they are well suited
for real time implementation on embedded systems using y
cheap, small and lightweight acoustic instrumentationl-ava
able today. A valuable review of these methods can be found lan—X|
in[7], itfocuses on methods which provide closed-form solu
tions given the so-callegpherical or non redundant TDOA ®a
set [8]. This means that given a setMf+ 1 microphones
N TDOAs are calculated with respect to the same reference (1] L On
microphone.
Most of these methods assume known propagation speed, ® ® ®
which is a reliable assumption only under laboratory and ay, T a,
controlled indoor conditions where the air temperature, in
fluencing the sound speed, can be monitored. In all other.

cases it is meaningful to understand the effects of a wronglffigure 1: Geometry of the two-dimensional acoustic source
assumed propagation speed as surveyed in [1]. ocalization problem using a microphone array. The exten-

Starting from these results we propose in this paper sion of the array is sufficiently large to infer the source dis
novel technique to robustly estimate the actual sound sped@nce from the circular wave front.
from TDOAs. Such an estimate can be used to enhance the , . .
localization by making it aware of the environment condi- !N the literature the sound speed is typically assumed to
tions, i.e the actual air temperature. Environment awaene P€ @ known value. However, as explained in Sec. 3, such
is the vision of the ongoing EU-funded project SCENIC & value might differ due to temperature variations from the
In the next section a brief overview of the two-dimensionalaCtuaI sound spee_ﬂg. .
source localization problem is given and some previous work ~FTOmM geometrical reasoning follows that
is reviewed.

1
Tn:Edna n:la"'aNa (1)

whered, denotes the source’s range difference between the
Senso@y and the referenca, as depicted in Fig. 1.

an X

= |lan—X]|| — ||x n=1,---,N 2
1The project SCENIC acknowledges the financial support oFthteire " Han || H H’ ’ T @

and Emerging Technologies (FET) programme within the StevErame- .
work Programme for Research of the European Commissiorerur@T- ~ Where|| - || denotes the Euclidean vector norm, thus the can-

Open grant number 226007. didate positiorx must fulfill the aboveN equations.
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2.2 PreviousWorks where

It is well known, e.g. from [3], that by squaring Eqg. (2) the — (pLp)t — (pLAVF
following simpler set of equations can be obtained ©=(Far)", T=FrA", ©)
I|a2|| — d2 with the orthogonal projection matrices as shown in [1],
dn|‘x||+a;‘|rX:Tn7 n:]-v”'vN' 1
11 AATAV-1AT L T
The corresponding system of equations is described inxnatri Pa=I-AAATA, Pr=I ||T\|2" . (10)
form as follows
Py(x)=b, ®3) b, (c) 1
y(X)[x} , ®=[d|A], @) by () Ty
b d al 1
b_[?] N Il O bu() = 5 (lan]12 = 75) . (12
b‘N d.N aL It shall be noted that in ideal conditions Eqns. (8) provide

exact and compatible values of range and position if and only

1 if the sound speed is correctly assumed, i.ec = ¢ and
bn = 5 (I/an][* — ) - ®) Ac=o.

Solving the system in (3) with respect 1ois an esti- 222 Congtrained Least Squares Method
mation problem since the elements Afandd are subject

to uncertainties and the system does not hold exactly, i.&onstrained methods ~ai~mT at a more robust localization by
dy(x) ~ b. Typically the sensor positiore, of a well con- finding an estimat§ = [ X| which obeys the constraint be-
structed sensor array are considered to be exactly knowfveen range and position, ire="[|X||. A constrained least
whereas the valued, are derived from (1) where the values Squares solution of (3) may be obtained employing the La-
T, are correlation results, impaired by other acoustic saurcedrange multipliers technique and an iterative procedure as
and by room reverberation. The statistical analysis of théhown in [4, 5]. More attractive is its linear approximation
problem is far from the scope of this paper, therefore thavhich benefits from the closed-form estimate giveniin [7]. A
reader is referred to [3, 5, 8], we restrict ourself to coesid short derivation is given below, since some of its elements
in Sec. 3 a deterministic erréc = cs — ¢ in the propagation are needed in Sec 3.2. _ _
speed: assumed by the localization methods. The residual function corresponding to (3) may be writ-
In practice the direct solution of such a nonlinear estimaten in terms of as

tion problem is not attractive under real-time and low com- _ o
putational complexity constraints, therefore closedrfdo- EX) =@ (y(x)-9) . (13)
fggﬁgt;%rl‘u?;ﬂ?gzw%":a??;th?oer:"sed which provide approxg then linearized at the estimat&om (7)

_ £(x) ~ £(X) + & (X)(X—X) . (14)
2.2.1 Unconstrained Least Squares Method
Several authors, e.g. [3, 5], showed that introducing a newhe term&(X) and the Jacobian matrid = £'(X) follow
scalar variable independent ok in place of the nornjjx|| ~ With (4) as
enables to address the problem as a linear least squares es-

o ren
timation of the unknown vectoy = [r X]". Provided that EX) =05, J=£(X)=0G, (15)
N > D+ 1, such a least squares estimate is given in terms qf;i,
the pseudo-invers®™
& A ol
7 X||—F X
§= [;] —®'b=(¢T®) 107D @) 5= [' s } . G= lf} : (16)
This estjmatg should be considered an approximate solutioQow an improved estimate= -+ Ax can be found for which
of (3) since in generay(X) # ¥ or quite simplyr’# |[X/|,  the residuale(X) becomes a minimum in the least squares

hence it is called unconstrained least squares methodctin fagepge j.e.

f is usually considered a byproduct and oilis used as an ’

estimate of the source position. £(X) ~ &(X) + & (X)Ax = DS + IAX, (17)
In [1] an alternative expression for the unconstrained

least squares estimate has been derived. It shows 1) the deith

pendency on the assumed speednd 2) how this depen- o o

dency influences the estimated ramgnd the estimated po- X=%-J"®5. (18)

sition X, respectively, ~ . i
P Y Hereg(X) = ®4 and the pseudo-inverse may be inter-

f(c) = —Ob %(c)=Tb 8 preted as the intensity and the direction, respectivelpnef
f(c) c (©), () ©, ®) iteration of the Gauss-Newton algorithm initializedkdf].
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2.2.3 Speed Estimation Methods Then the value Which anrjihilates the vector in (22) has to be
Some authors [6,9] form from Eq. (2) a linear systerDin 2 the actual sound speegdsince Eqns. (8) provide compatible

unknowns, from which a propagation speed estimate alon§Stimates andx. Indeed the searched speed value has to
with the position estimate can be obtained from an uncon2€ & 2€ro of the scalar functias(c) (obviously the trivial
strained least squares estimatiorDof- 2 unknowns. These Sclutionc=0is not of interest). In the following an efficient
methods avoid making initial assumptions on the sound?@ for finding such a sound speed value is given.
speedc, but unfortunately the corresponding system matri
might be easily ill-conditioned and moreover the so-oledin
speed estimate is not robust to noise. Thus they are not fufhe functiond(c) involving the Euclidean norm ot is non-
ther investigated here. linear, nonetheless near the actual sound spedédcan be
shown that it has a fairly linear behavior, see Fig 2.

%321 Linear Approximation

3. ACOUSTIC SOURCE LOCALIZATION UNDER
TEMPERATURE VARIATIONS

3.1 Speed of Sound under Temperature Variations 0.05 S(c) 1
It is well known that the actual speed of sound depends o 0.04{{ _ _ 8 () ne
the air temperature through the following relation [2] e
0.03f 4 1
e(T) = V/YRT, aw . A
whereR is the gas constanty = 1.4 and T the absolute 0oLk /// |
temperature. Linearizing yields the customary expressio ™ 2
cs(0) ~ 3317 + 0,6 ;s 6, where® is the air temperature £ 0 .
in degrees Celsius. A popular value results from the air tem* )
peraturef, = 20°C as —0.01} 7 i
m -0.02} 4 1
Cop=Cs(6y) = 343? : (20)
-0.03f )
The actual sound speed for other temperatures can be writti
as -0.04} 1
Cs=Cy+Ac. (21) 20 25 30 35 0 45

assumed temperature [°C]
In practice, temperature variations are not recorded aird ne

ther the speed deviatiakc nor the actual sound speeglare _ _ . - .
Known. Figure 2: Behavior of the functiod(c) and its linearized

The contribution of this paper is to present a novel techyeros'O”Qin (c) assuming an initial temperature guesHpt=
nique to estimate the actual sound speed avoiding the pro89°C. The actual air temperature 6f= 35°C can be in-
lems mentioned in Sec. 2.2.3. This estimate is further agpli ferred from the zero-crossing of both functions.
to enhance the localization performance of the uncongttain ) ) ) o
and constrained methods that are differently impaired by a This means that given a reliable initial guegse.g. the
wrongly assumed sound speed as shown in [1]. The followominal value from (20), the following first order Taylor ex-
ing sections investigate the cause of this disparity ansvshoPansiond;, (c) is a useful approximation a¥(c)
how to exploit it to achieve a robust sound speed estimate ,
and to ensure reliable localization also in case of tempera- Gin (€) = &+ dp(c—Cp) , (24)
ture variations. .

with
3.2 Sound Speed Estimation da(c)
d=0(cy) and &= I

In ideal conditions and knowing the actual sound speed, the (25)

vectorg(X) = ®4 from (15) vanishes since= ||X||. On the
other hand when 7 ¢s such a vector engenders the disparityTh,s the desired speed value corresponding to the zero-
between the unconstrained solution and the constrained SO'crossingq (6) =0 is given by

tion. Using Eqgns. (8) it may be expressed as function of the n

C=Cy

assumed speet]i.e. 5 _ o
e= 0t (26)
£(c) = ®(c) {58’)} — 3(0)T, (22) °
The value of the first order derivative @ can be calculated
. with simple derivation rules from (23)
with
T N /
] . 1 _ %0 o gho
5(¢) = IK(©)|| ~ F(c) = IFb(©)]| - ZOb(c) . (23) RN RS @7
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whererj andX, are the unconstrained estimates of range anteast squares criterion is
position calculated with the initial guesgwhile by is a vec-

tor containing the derivatives of (12) evaluatedt at ¢, i.e ié' (c)z . ic % (0)]| - F (C))z 29)
] -, i R ’
= i

by = —coT?. (28) B
wheref(j andr]- are the unconstrained estimates for position
3.22 Further Enhancement and range obtained with the TDOA sgt

We suggest a further enhancement which makes the speed- An efficient way for solving the above estimation prob-
temperature estimation more robust in noisy conditions. Stem is to use the linear approximation in (24), which leads to
far the employed TDOA set has been computed merely the following least squares estimate for the sound speed
regarding the reference microphoagpositioned at the ori-

gin. Actually apart from a translation of the coordinate-sys &= (80) " (8y— 80Cy) - (30)
tem the localization can be carried out regarding arblyrari

positioned references. This means that given an array §fnere

M = N + 1 microphonesM different spherical TDOA sets

!
T, j=0.--- N may be calculated from the recorded signals. 5‘_31 , 5(_)1
If there is no speed deviation unconstrained and consttaine o= [:80=1|": |- (31
solutions provide in ideal conditions the same location re- N AN

gardless which microphone is chosen as reference, thus nor-
mally only one spherical TDOA set is used and the others are As long as a reliable valuedf the sound speed is avail-
considered redundant. able, it can be used instead of the initial guggsnd much

However if a speed deviatialc occurs, it can be shown better localization results are expected from both estirsat
that both localization methods give different solutionshwi especially from the constrained one. The following sedcigon
respect to different reference microphones, this effect islevoted to experimental results which confirm the theaaétic
prominent for the constrained method (see the range distoreasoning described so far.
tion map in Fig. 3).

4. EXPERIMENTAL RESULTS

We used the same cross-arrdy £ 4) from [1] and we

2 , , , performed the localization of 48 different source position
(loudspeakers emitting white noise) distributed on a eiafl
15} 1,5 mradius in a laboratory environment witlg, ~ 0,25 s.
The TDOA valuesr are obtained with GCC-PHAT [4] pro-
1b cessing signal windows of 1024 samples acquired at 48 kHz.
We calculated initially unconstrained and constrained es-
osl timates from Eqns. (7) and (18), respectively, assuming a
= wrong propagation speed}, corresponding to a variation
o AT = 25 K from the actual air temperature of 24C (mea-
% 0 sured with an electronic thermometer). The localization re
i sults are depicted in Fig. 4, the range distortion produged b
-05 the temperature variation is clearly visible especiallytfe
actual position constrained method.
1t localization wrt a1 For each position the corresponding TDOAs and the ini-
_ localization wrt a Flal guessc, are also use.d to calculate the speed estimate
-15 1] in (30) which is then applied to perform an enhanced local-
_ _ localization wrt a, ization. The corresponding results are shown in Fig. 5. It
) ‘ ‘ ‘ is clear that the range distortion is compensated through th
-2 -1 0 1 2 enhancement, the constrained method benefits the most from
x=axis [m] this and becomes reliable again.

Tab. 1 shows the mean value and standard deviation of

the range error. The enhanced localization with the estichat
Figure 3: Simulation results which show how the ConStraine%peed value éccording to Eqns_ (26) and (30) y|e|ds a Sig_
localization depends on the chosen reference microphongficant improvement in terms of bias reduction, both for the
given a speed deviatioic corresponding to a temperature ynconstrained and the constrained localization. The tesul
variation of AT = 25 K. It turns out that the central micro- ysing least squares estimation of the sound speed according
phonea, of the array produces the smallest range distortionto Eq. (30) are slightly superior to the simpler estimaterfro

Eq. (26).

In brief, the idea is to exploit this dependency in order  Since the localizations of each position have been carried
to enhance the obtained sound speed value, which has to bat sequentially in a short period of time, the correspogdin
the one minimizing the difference between solutions corretemperature estimates derived from Eqgns. (26) and (30) have
sponding to different reference microphones. This is bssi been averaged leading to a mean temperature @&°Z3and
by minimizing the function in (23) in the least squares sens@4, 2°C respectively, where the latter is very close to the air
regarding all reference microphones, i.e. the correspgndi temperature of 24 °C measured during the experiment.
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Figure 4: Experimental results with a speed deviafiolcor-
responding to a temperature variation’df = 25 K. The tri-
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Figure 5: Experimental results using the speed estimation

technique with a speed deviatidiz corresponding to a tem-

angles are the positions estimated with the conventiorral co perature variation oAT = 25 K. The triangles are the posi-
strained least squares method (CLS), the circles are the ptiens estimated with the enhanced constrained least sgjuare
sitions estimated with the conventional unconstrainedtlea method (CLS), the circles are the positions estimated with

squares method (ULS).

C € (26) ¢ (30)
CLS [ ULS| CLSJULS| CLS | ULS
mean | -23.59| 5.43 | -0.52| 055| -041| 0.14
std 947 [ 966] 866 ] 9.09]| 840 8.71

Table 1: Mean value and standard deviation in cm of th

range error for conventional and enhanced localizatiomgusi
the speed estimates from Eqgns. (26) and (30).

5. CONCLUSION

In this paper we described a novel technique to obtain ar

bust sound speed estimate from TDOA measurements,

2]

[4]

in an unsynchronized source-sensors scenario, whererthe ai

temperature is unknown or subject to significant changes.

It

is based on the so called unconstrained and constraindd leas i o ]
squares methods for source localization. The obtaineddsouri®] A. Mahajan and M. Walworth.  3-D position sensing
speed estimate can be used to infer the actual air tempera-
ture and to enhance the performance of localization meth-

ods which require accurate knowledge about the propagation
speed. Experimental results confirmed the effectiveness ¢7]

the proposed technique.
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