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ABSTRACT
In the context of acoustic source localization, knowing the
actual propagation speed is crucial especially in uncontrolled
environments where the temperature is subject to significant
changes that influence the sound speed. In a recent paper we
showed the effects of the assumed propagation speed on the
localization performance of two closed-form localizational-
gorithms based on TDOA measurements. It has been shown
that the so-called unconstrained least squares method is not
significantly influenced by a wrongly assumed propagation
speed, whereas the constrained method, the one statistically
more attractive, is impaired even by small speed deviations.
In this article we study in more depth the causes of this
disparity and we propose a novel technique to estimate the
propagation speed and improve the localization performance
when the environment conditions, i.e. the air temperature,
are not known exactly.

1. INTRODUCTION

For the problem of localizing an acoustic source from Time-
Differences-of-Arrival (TDOAs) there are a number of dif-
ferent solution approaches. Of certain interest are the meth-
ods capable of providing closed-form solutions in a linear
fashion. Because of their efficiency, they are well suited
for real time implementation on embedded systems using
cheap, small and lightweight acoustic instrumentation avail-
able today. A valuable review of these methods can be found
in [7], it focuses on methods which provide closed-form solu-
tions given the so-calledspherical or non redundant TDOA
set [8]. This means that given a set ofN + 1 microphones
N TDOAs are calculated with respect to the same reference
microphone.

Most of these methods assume known propagation speed,
which is a reliable assumption only under laboratory and
controlled indoor conditions where the air temperature, in-
fluencing the sound speed, can be monitored. In all other
cases it is meaningful to understand the effects of a wrongly
assumed propagation speed as surveyed in [1].

Starting from these results we propose in this paper a
novel technique to robustly estimate the actual sound speed
from TDOAs. Such an estimate can be used to enhance the
localization by making it aware of the environment condi-
tions, i.e the actual air temperature. Environment awareness
is the vision of the ongoing EU-funded project SCENIC1.
In the next section a brief overview of the two-dimensional
source localization problem is given and some previous work
is reviewed.

1The project SCENIC acknowledges the financial support of theFuture
and Emerging Technologies (FET) programme within the Seventh Frame-
work Programme for Research of the European Commission, under FET-
Open grant number 226007.

2. SOURCE LOCALIZATION METHODS

2.1 Acoustic Source Localization from TDOAs

We consider the Euclidean space ofD = 2 dimensions where

• the acoustic source is located in an unknown positionxxx =
[x y]T,

• N +1 acoustic sensors are distributed at the known posi-
tionsaaan = [xn yn]

T for n = 0, · · · ,N,
• the reference sensoraaa0 is located in the origin[0 0]T and

N microphone pairs(aaa0,aaan) are considered,
• the TDOA valuesτn, n = 1, · · · ,N are estimated for each

pair by suitable correlation between the two microphone
signals.

The localization problem consists of findingxxx given the sen-
sor positionsaaan and the TDOAsτn. Each TDOA can be ex-
pressed in terms of the travelled range difference as

τn =
1
c

dn , n = 1, · · · ,N , (1)

wheredn denotes the source’s range difference between the
sensoraaan and the referenceaaa0, as depicted in Fig. 1.

xxx

aaa0

aaa1

aaanaaaN

||xxx||

||aaan − xxx||

dn

y

x

Figure 1: Geometry of the two-dimensional acoustic source
localization problem using a microphone array. The exten-
sion of the array is sufficiently large to infer the source dis-
tance from the circular wave front.

In the literature the sound speed is typically assumed to
be a known valuec. However, as explained in Sec. 3, such
a value might differ due to temperature variations from the
actual sound speedcs.

From geometrical reasoning follows that

dn = ||aaan − xxx||− ||xxx|| , n = 1, · · · ,N , (2)

where|| · || denotes the Euclidean vector norm, thus the can-
didate positionxxx must fulfill the aboveN equations.
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2.2 Previous Works

It is well known, e.g. from [3], that by squaring Eq. (2) the
following simpler set of equations can be obtained

dn||xxx||+aaaT
n xxx =

||aaa2
n||−d2

n

2
, n = 1, · · · ,N .

The corresponding system of equations is described in matrix
form as follows

ΦΦΦyyy(xxx) = bbb , (3)

yyy(xxx) =

[

||xxx||
xxx

]

, ΦΦΦ = [ddd AAA] , (4)

bbb =





b1
...

bN





, ddd =





d1
...

dN





, AAA =







aaaT
1
...

aaaT
N






, (5)

bn =
1
2

(

||aaan||
2−d2

n

)

. (6)

Solving the system in (3) with respect toxxx is an esti-
mation problem since the elements ofAAA and ddd are subject
to uncertainties and the system does not hold exactly, i.e.
ΦΦΦyyy(xxx) ≈ bbb. Typically the sensor positionsaaan of a well con-
structed sensor array are considered to be exactly known,
whereas the valuesdn are derived from (1) where the values
τn are correlation results, impaired by other acoustic sources
and by room reverberation. The statistical analysis of the
problem is far from the scope of this paper, therefore the
reader is referred to [3, 5, 8], we restrict ourself to consider
in Sec. 3 a deterministic error∆c = cs− c in the propagation
speedc assumed by the localization methods.

In practice the direct solution of such a nonlinear estima-
tion problem is not attractive under real-time and low com-
putational complexity constraints, therefore closed-form lo-
calization methods have been devised which provide approx-
imate solutions in a linear fashion.

2.2.1 Unconstrained Least Squares Method

Several authors, e.g. [3, 5], showed that introducing a new
scalar variabler independent ofxxx in place of the norm||xxx||
enables to address the problem as a linear least squares es-
timation of the unknown vectoryyy = [r xxx]T. Provided that
N ≥ D+1, such a least squares estimate is given in terms of
the pseudo-inverseΦΦΦ+

ŷyy =

[

r̂
x̂xx

]

= ΦΦΦ+bbb = (ΦΦΦTΦΦΦ)−1ΦΦΦTbbb . (7)

This estimate should be considered an approximate solution
of (3) since in generalyyy(x̂xx) 6= ŷyy or quite simply ˆr 6= ||x̂xx||,
hence it is called unconstrained least squares method. In fact
r̂ is usually considered a byproduct and onlyx̂xx is used as an
estimate of the source position.

In [1] an alternative expression for the unconstrained
least squares estimate has been derived. It shows 1) the de-
pendency on the assumed speedc and 2) how this depen-
dency influences the estimated range ˆr and the estimated po-
sition x̂xx, respectively,

r̂(c) =
1
c

ΘΘΘbbb(c) , x̂xx(c) = ΓΓΓbbb(c) , (8)

where

ΘΘΘ = (PPP⊥
AAA τττ)+ , ΓΓΓ = (PPP⊥

τττ AAA)+ , (9)

with the orthogonal projection matrices as shown in [1],

PPP⊥
AAA = I−AAA(AAATAAA)−1AAAT

, PPP⊥
τττ = I−

1
||τ ||2

ττττττT
, (10)

bbb(c) =





b1(c)
...

bN(c)





, τττ =





τ1
...

τN





, (11)

bn(c) =
1
2

(

||aaan||
2− c2τ2

n

)

. (12)

It shall be noted that in ideal conditions Eqns. (8) provide
exact and compatible values of range and position if and only
if the sound speedc is correctly assumed, i.e.c = cs and
∆c = 0.

2.2.2 Constrained Least Squares Method

Constrained methods aim at a more robust localization by
finding an estimatẽyyy = [r̃ x̃xx]T which obeys the constraint be-
tween range and position, i.e ˜r = ||x̃xx||. A constrained least
squares solution of (3) may be obtained employing the La-
grange multipliers technique and an iterative procedure as
shown in [4, 5]. More attractive is its linear approximation
which benefits from the closed-form estimate given in [7]. A
short derivation is given below, since some of its elements
are needed in Sec 3.2.

The residual function corresponding to (3) may be writ-
ten in terms of̂yyy as

εεε(xxx) = ΦΦΦ(yyy(xxx)− ŷyy) , (13)

and then linearized at the estimatex̂xx from (7)

εεε(xxx) ≈ εεε(x̂xx)+ εεε ′(x̂xx)(xxx− x̂xx) . (14)

The termεεε(x̂xx) and the Jacobian matrixJJJ = εεε ′(x̂xx) follow
with (4) as

εεε(x̂xx) = ΦΦΦδδδ , JJJ = εεε ′(x̂xx) = ΦΦΦGGG , (15)

with

δδδ =

[

||x̂xx||− r̂
000

]

, GGG =

[

x̂xxT

||x̂xx||
I

]

. (16)

Now an improved estimatẽxxx = x̂xx+∆xxx can be found for which
the residualεεε(x̃xx) becomes a minimum in the least squares
sense, i.e.

εεε(x̃xx) ≈ εεε(x̂xx)+ εεε ′(x̂xx)∆xxx = ΦΦΦδδδ + JJJ∆xxx , (17)

with

x̃xx = x̂xx− JJJ+ΦΦΦδδδ . (18)

Hereεεε(x̂xx) = ΦΦΦδδδ and the pseudo-inverseJJJ+ may be inter-
preted as the intensity and the direction, respectively, ofone
iteration of the Gauss-Newton algorithm initialized atx̂xx [7].
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2.2.3 Speed Estimation Methods

Some authors [6,9] form from Eq. (2) a linear system inD+2
unknowns, from which a propagation speed estimate along
with the position estimate can be obtained from an uncon-
strained least squares estimation ofD +2 unknowns. These
methods avoid making initial assumptions on the sound
speedc, but unfortunately the corresponding system matrix
might be easily ill-conditioned and moreover the so-obtained
speed estimate is not robust to noise. Thus they are not fur-
ther investigated here.

3. ACOUSTIC SOURCE LOCALIZATION UNDER
TEMPERATURE VARIATIONS

3.1 Speed of Sound under Temperature Variations

It is well known that the actual speed of sound depends on
the air temperature through the following relation [2]

cs(T ) =
√

γRT , (19)

where R is the gas constant,γ = 1.4 and T the absolute
temperature. Linearizing yields the customary expression
cs(θ) ≈ 331m

s + 0,6 m
s◦C θ , whereθ is the air temperature

in degrees Celsius. A popular value results from the air tem-
peratureθ0 = 20◦C as

c0 = cs(θ0) = 343
m
s

. (20)

The actual sound speed for other temperatures can be written
as

cs = c0 +∆c . (21)

In practice, temperature variations are not recorded and nei-
ther the speed deviation∆c nor the actual sound speedcs are
known.

The contribution of this paper is to present a novel tech-
nique to estimate the actual sound speed avoiding the prob-
lems mentioned in Sec. 2.2.3. This estimate is further applied
to enhance the localization performance of the unconstrained
and constrained methods that are differently impaired by a
wrongly assumed sound speed as shown in [1]. The follow-
ing sections investigate the cause of this disparity and show
how to exploit it to achieve a robust sound speed estimate
and to ensure reliable localization also in case of tempera-
ture variations.

3.2 Sound Speed Estimation

In ideal conditions and knowing the actual sound speed, the
vectorεεε(x̂xx) = ΦΦΦδδδ from (15) vanishes since ˆr = ||x̂xx||. On the
other hand whenc 6= cs such a vector engenders the disparity
between the unconstrained solution and the constrained solu-
tion. Using Eqns. (8) it may be expressed as function of the
assumed speedc, i.e.

εεε(c) = ΦΦΦ(c)

[

δ (c)
000

]

= cδ (c)τττ , (22)

with

δ (c) = ||x̂xx(c)||− r̂(c) = ||ΓΓΓbbb(c)||−
1
c

ΘΘΘbbb(c) . (23)

Then the value ˆc which annihilates the vector in (22) has to be
the actual sound speedcs since Eqns. (8) provide compatible
estimates ˆr and x̂xx. Indeed the searched speed value has to
be a zero of the scalar functionδ (c) (obviously the trivial
solutionĉ = 0 is not of interest). In the following an efficient
way for finding such a sound speed value is given.

3.2.1 Linear Approximation

The functionδ (c) involving the Euclidean norm of̂xxx is non-
linear, nonetheless near the actual sound speedcs it can be
shown that it has a fairly linear behavior, see Fig 2.
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Figure 2: Behavior of the functionδ (c) and its linearized
versionδlin(c) assuming an initial temperature guess ofθ0 =
20◦C. The actual air temperature ofθ = 35◦C can be in-
ferred from the zero-crossing of both functions.

This means that given a reliable initial guessc0, e.g. the
nominal value from (20), the following first order Taylor ex-
pansionδlin(c) is a useful approximation ofδ (c)

δlin(c) = δ0 +δ ′
0(c− c0) , (24)

with

δ0 = δ (c0) and δ ′
0 =

dδ (c)
dc

∣

∣

∣

∣

c=c0

. (25)

Thus the desired speed value corresponding to the zero-
crossingδlin(ĉ) = 0 is given by

ĉ =
δ0−δ ′

0c0

δ ′
0

. (26)

The value of the first order derivative atc0 can be calculated
with simple derivation rules from (23)

δ ′
0 =

x̂xxT
0

||x̂xx0||
ΓΓΓbbb′0 +

r̂0

c0
−ΘΘΘ

bbb′0
c0

, (27)
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where ˆr0 andx̂xx0 are the unconstrained estimates of range and
position calculated with the initial guessc0 while bbb′0 is a vec-
tor containing the derivatives of (12) evaluated atc = c0, i.e

bbb′0 = −c0τττ2
. (28)

3.2.2 Further Enhancement

We suggest a further enhancement which makes the speed-
temperature estimation more robust in noisy conditions. So
far the employed TDOA setτττ has been computed merely
regarding the reference microphoneaaa0 positioned at the ori-
gin. Actually apart from a translation of the coordinate sys-
tem the localization can be carried out regarding arbitrarily
positioned references. This means that given an array of
M = N + 1 microphones,M different spherical TDOA sets
τττ j, j = 0. · · · ,N may be calculated from the recorded signals.
If there is no speed deviation unconstrained and constrained
solutions provide in ideal conditions the same location re-
gardless which microphone is chosen as reference, thus nor-
mally only one spherical TDOA set is used and the others are
considered redundant.

However if a speed deviation∆c occurs, it can be shown
that both localization methods give different solutions with
respect to different reference microphones, this effect is
prominent for the constrained method (see the range distor-
tion map in Fig. 3).
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Figure 3: Simulation results which show how the constrained
localization depends on the chosen reference microphone
given a speed deviation∆c corresponding to a temperature
variation of∆T = 25 K. It turns out that the central micro-
phoneaaa0 of the array produces the smallest range distortion.

In brief, the idea is to exploit this dependency in order
to enhance the obtained sound speed value, which has to be
the one minimizing the difference between solutions corre-
sponding to different reference microphones. This is possible
by minimizing the function in (23) in the least squares sense
regarding all reference microphones, i.e. the corresponding

least squares criterion is

N

∑
j=0

δ j(c)
2 =

N

∑
j=0

(

||x̂xx j(c)||− r̂ j(c)
)2

, (29)

wherex̂xx j andr̂ j are the unconstrained estimates for position
and range obtained with the TDOA setτττ j.

An efficient way for solving the above estimation prob-
lem is to use the linear approximation in (24), which leads to
the following least squares estimate for the sound speed

ĉ = (δδδ ′
0)

+(δδδ 0−δδδ ′
0c0) , (30)

where

δδδ 0 =





δ01
...

δ0N





, δδδ ′
0 =







δ ′
01
...

δ ′
0N






. (31)

As long as a reliable value ˆc of the sound speed is avail-
able, it can be used instead of the initial guessc0 and much
better localization results are expected from both estimators,
especially from the constrained one. The following sectionis
devoted to experimental results which confirm the theoretical
reasoning described so far.

4. EXPERIMENTAL RESULTS

We used the same cross-array (N = 4) from [1] and we
performed the localization of 48 different source positions
(loudspeakers emitting white noise) distributed on a circle of
1,5 m radius in a laboratory environment withT60 ≈ 0,25 s.
The TDOA valuesτττ are obtained with GCC-PHAT [4] pro-
cessing signal windows of 1024 samples acquired at 48 kHz.

We calculated initially unconstrained and constrained es-
timates from Eqns. (7) and (18), respectively, assuming a
wrong propagation speedc0 corresponding to a variation
∆T = 25 K from the actual air temperature of 24,1◦C (mea-
sured with an electronic thermometer). The localization re-
sults are depicted in Fig. 4, the range distortion produced by
the temperature variation is clearly visible especially for the
constrained method.

For each position the corresponding TDOAs and the ini-
tial guessc0 are also used to calculate the speed estimate
in (30) which is then applied to perform an enhanced local-
ization. The corresponding results are shown in Fig. 5. It
is clear that the range distortion is compensated through this
enhancement, the constrained method benefits the most from
this and becomes reliable again.

Tab. 1 shows the mean value and standard deviation of
the range error. The enhanced localization with the estimated
speed value ˆc according to Eqns. (26) and (30) yields a sig-
nificant improvement in terms of bias reduction, both for the
unconstrained and the constrained localization. The results
using least squares estimation of the sound speed according
to Eq. (30) are slightly superior to the simpler estimate from
Eq. (26).

Since the localizations of each position have been carried
out sequentially in a short period of time, the corresponding
temperature estimates derived from Eqns. (26) and (30) have
been averaged leading to a mean temperature of 23,2◦C and
24,2◦C respectively, where the latter is very close to the air
temperature of 24,1◦C measured during the experiment.
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Figure 4: Experimental results with a speed deviation∆c cor-
responding to a temperature variation of∆T = 25 K. The tri-
angles are the positions estimated with the conventional con-
strained least squares method (CLS), the circles are the po-
sitions estimated with the conventional unconstrained least
squares method (ULS).

c0 ĉ (26) ĉ (30)
CLS ULS CLS ULS CLS ULS

mean -23.59 5.43 -0.52 0.55 -0.41 0.14
std 9.47 9.66 8.66 9.09 8.40 8.71

Table 1: Mean value and standard deviation in cm of the
range error for conventional and enhanced localization using
the speed estimates from Eqns. (26) and (30).

5. CONCLUSION

In this paper we described a novel technique to obtain a ro-
bust sound speed estimate from TDOA measurements, i.e
in an unsynchronized source-sensors scenario, where the air
temperature is unknown or subject to significant changes. It
is based on the so called unconstrained and constrained least
squares methods for source localization. The obtained sound
speed estimate can be used to infer the actual air tempera-
ture and to enhance the performance of localization meth-
ods which require accurate knowledge about the propagation
speed. Experimental results confirmed the effectiveness of
the proposed technique.
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