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ABSTRACT 

We present a compact approach to simultaneous modeling of 

non-stochastic time-variant components in audio signals. We 

show that the harmonic energy can be properly described by 

a single polynomial, while short events are well captured by 

a continuous piecewise linear function. The proposed 

method is robust to fundamental frequency estimation errors 

and inharmonicities in the audio signal. The comparative 

results suggest that our method achieves the performance of 

the state-of-the-art by using much less parameters and thus 

yielding higher computational efficiency. 

 

1. INTRODUCTION
1
 

Time-variant harmonic modelling is proven to be a useful 

analysis tool for characterizing audio signals like music and 

speech. It has been widely used in a number of application 

areas like audio synthesis, transformation, coding and en-

hancement. 

The general audio signal model is often conceived as a 

finite sum of harmonically related sinusoids, whose instanta-

neous amplitudes Ai(n) and frequencies iF0(n) vary slowly in 

the analysis window, plus additive noise r(n): 
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A number of different approaches aim at describing the time 

variations of the harmonic parameters. Methods like [1, 2] 

estimate the harmonic parameters by fitting (1) to the original 

signal through maximum likelihood or least-squares method 

(LS). Another approach is based on the analysis of the sig-

nal’s STFT, where the harmonic parameters are typically 

estimated in the spectral peak detection-description-

classification framework [3, 4]. The statistical approach [5] 

implements a Bayesian network with a particular prior struc-

ture, built from the conditional probabilities which establish 

the relationship among the harmonic parameters. 

These methods, however, often fail to correctly charac-

terize short-time events like fast transients, which are com-
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mon in audio signals e.g. sharp attacks at note onset/offset, 

transition between voiced/unvoiced regions in speech signals 

etc [6]. There are two general strategies to capture short-time 

events in audio signals. One is based on extending (1) by 

explicit modelling of transients [7-9]. This yields a simulta-

neous estimation of the harmonic and transient components, 

providing thus a compact audio signal description. A large 

number of parameters and high computational cost are how-

ever principal shortcomings of these methods. Regarding the 

second strategy, each signal component is estimated at a time 

by analyzing the signal’s expansion in local trigonometric 

basis or some other conveniently chosen time-frequency or 

time-scale representation [10, 11]. Serious drawbacks in 

these methods consist in mutual bias produced by separate 

signal component estimation and difficulty to impose a clear 

harmonic/transient separating threshold.  

The method we propose herein addresses the issue of 

joint harmonic and transient signal component modeling. The 

key idea is the expansion of the input signal onto a set of 

harmonically related sinusoids determined by the signal’s 

mean instantaneous fundamental frequency. If the signal 

changes in a slow and continuous manner, the expansion 

coefficients define small-order time polynomials. In order to 

allow for fast energy changes during transient events, the 

expansion coefficients are the parameters of small-order time 

piecewise linear functions (PWL). The cue to using the same 

approximation basis is the fact that the polynomial and PWL 

approximations describe very different variation trends. Ac-

cordingly, a simple linear least-squares (LS) algorithm will 

properly mix the contributions from both approximations as a 

function of the “transientness” and “harmonicity” of the ana-

lyzed signal segment. 

The present paper is organized as follows: in Section 2 

we propose a signal model used to describe harmonic and 

transient components in audio signals. Section 3 explains the 

model behavior. In Section 4 we pose the estimation problem 

as linear LS. In Section 5 we present a comparative study 

among different methods together with an illustrative exam-

ple. The conclusions appear in Section 6. 
 

2. THE SIGNAL MODEL 

Similar to [7-9] we are going to treat a realistic audio signal 

model represented as a sum of harmonic, transient and re-
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sidual term. The residual is typically modelled as a Gaussian 

noise whose power spectral density is modified by a time-

variant filter bank. The models for the harmonic and tran-

sient component respectively are described in the following 

subsections. 

 

2.1 The harmonic model 

 

Below is a brief summary of the harmonic model described 

in [12]. It has been developed based on the assumption that 

the harmonic parameters vary slowly and continuously in the 

analysis window. Starting from expression (1), a linear varia-

tion of the parameters accounts for the continuity constraint: 
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The assumption about the slow variation is formulated 

through the following approximations: 
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By rewriting the harmonic term in (1) as a sum of angles and 

combining it with (2 - 5), we obtain the model h(n) for the 

harmonic component in the audio signal: 
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The last expressions show that both amplitude and frequency 

time-variations are compactly captured by the signal expan-

sion onto the f0 -harmonic basis with polynomial coefficients. 

In addition, (7.a) and (7.b) provide us with the variation 

trends in the signal, as well as a possibility to estimate the 

harmonic model parameters.  

If a short-time event takes place in the analysis window, 

then the initial assumptions no longer hold. As a conse-

quence, the model fails to follow the time-variations in spite 

of incrementing the approximation order. In absence of fre-

quency modulation during the short-time event, the model 

may still be able to operate correctly. In opposite case, the 

coefficients in (7.a) and (7.b) get mutually coupled, not al-

lowing for correct joint modelling of amplitude and fre-

quency variation trends. 

 

2.2 The transient model 

 

It is not an easy task to assign a general model to a transient 

component in an audio signal. Although it can be argued that 

most transients are strongly related to the harmonic compo-

nents (note onset/offset), their overall behaviour can be very 

complex. Continuous PWL approximation, however, turns 

out to be a very good candidate for this task, and the reason 

is twofold. On one hand, it allows fast and abrupt changes in 

the signal’s amplitude. On the other, the modelling can be 

accomplished by using only a few linear segments in the 

analysis window. 

A continuous PWL function can be efficiently repre-

sented by a linear combination of triangular (“hat”) func-

tions, also known as the second-order or linear B-splines. A 

set of hat functions shifted in time forms a basis for a PWL 

approximation of the audio signal. Such basis assures that the 

PWL function is continuous and smooth at the joint points 

i.e. the adjacent linear segments share the same breakpoint. 

As an illustration, a 5-element uniformly distributed basis is 

shown on Figure 1. For an arbitrary number of elements M of 

the basis and length of the analysis window N, we can define 

the k
th
 basis element ψk(n) for the interior breakpoints k ∈ [2, 

M-1]: 
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For the boundary breakpoints (k = 1, M) the expressions are 

slightly different but very similar to (8). According to the 

aforementioned discussion, the model t(n) for the transient 

component will contain the basic harmonic structure modu-

lated by an expansion of the audio signal onto a set of uni-

formly distributed basis functions: 
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where αk and βk are scalars.  

Let us say a couple of words about the choice of decom-

position basis in the context of present work. Higher-order 

basis functions are often used for piecewise polynomial ap-

proximation of smooth functions because of their properties 

of orthogonality and time-shift invariance. However, they are 

not adequate for describing transients because they often 

produce large overshoots between successive breakpoints. 

On the contrary, a PWL approximation follows the variation 

trend of the data without additional inflections, thus preserv-

ing the signal’s shape. Another topic of interest is the choice 

of equidistant (uniform) distribution of the basis functions in 

the analysis window. Although irregular breakpoint spacing 

could yield more optimal signal approximation, the uniform 

distribution proves to be more practical because it is difficult 

to find globally optimal breakpoint spacing without any a 

priori knowledge about the transient energy evolution within 

the analysis window. 
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Figure 1 – Five-element basis for a PWL approximation. 

 

 

3. SIGNAL MODEL BEHAVIOUR 

A superposition of the harmonic and transient model is 

meant to describe the time-variations of the non-stochastic 

energy in an audio signal. In order to get a deeper insight, let 

us examine the joint action of the models within the time 

interval corresponding to a single linear segment of the PWL 

approximation for a single signal harmonic. According to (8) 

and (9) the transient model for the i
th
 harmonic within a k

th
 

linear segment will be determined by the contributions from 

the basis functions ψk-1(n) and ψk(n): 
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Combining (11) and (7) we arrive at the following expres-

sion for the signal’s i
th
 harmonic within a k

th
 linear segment: 

 
( ) ( ) ( )( ) ( ) ( )( ) ) 2cos( 2sin 00 nifnPnifnPns i

c

i

s

i

k ππ +=   (12) 

 
( ) ( ) ( ) ( ) ( ) ( )( )

,  2 2               

 

3

1

)(

1

2

1

)(

0

1100

nfibnfib

ncacanP

ii

iiiii

s

ππ −−

−+++=
       (13.a) 

 
( ) ( ) ( ) ( ) ( ) ( )( )

.  2 2                

 

3

1

)(

1

2

1

)(

0

1100

nfianfia

ndbdbnP

ii

iiiii

c

ππ ++

++++=
     (13.b) 

 

Accordingly, the modified terms will follow coarse changes 

in the signal while the remaining terms will describe fine 

time-variations. Note that we are now capable of capturing 

correctly amplitude and frequency variations thanks to addi-

tional degrees of freedom in (13.a) and (13.b) provided by 

the parameters c and d. Due to the fact that the polynomial 

and PWL approximation describe different time-variation 

trends in the signal, a simple linear fit will do to adjust the 

contributions from the models. However, due to a certain 

linear dependency between the models, the system of equa-

tions is rank-deficient and has no unique solution. Accord-

ingly, we use pseudo-inverse LS to choose the effective rank 

of the decomposition matrix and thus obtain a solution that 

has the minimum possible residual norm. 

4. PARAMETER ESTIMATION 

In order to apply linear LS, we first have to estimate f0 

which is roughly the mean instantaneous fundamental fre-

quency in the analysis window. Correct instantaneous fun-

damental frequency estimation is crucial in many audio ap-

plications in order to avoid subharmonic errors. There are a 

huge number of strategies which allow us to detect and es-

timate the time-varying fundamental frequency in audio 

signals e.g. direct evaluation of signal’s periodicity, fre-

quency domain harmonic matching, spectral period evalua-

tion, psychoacoustic methods etc.  

It turns out, however, that the proposed method has a 

nice property of efficiently mitigating f0 estimation errors. It 

is easily shown that an incorrectly estimated f0 will produce 

a bias in all except the continuous term in (13). As this bias 

is linearly dependent on the f0 estimation error, a simple re-

adjustment of the coefficients will immediately improve the 

fit. Let us mention that this error compensation mechanism 

is also beneficial for properly capturing inharmonicities (de-

viation from theoretic harmonic frequencies) which are of-

ten present in audio signals.  

Accordingly, we have chosen for our application a very 

simple and computationally efficient f0 estimation method 

based on the Interpolated FFT [13]. Briefly, it consists of 

calculating the Discrete-time Fourier Transform of the signal 

around the fundamental frequency by using only two sam-

ples in the corresponding FFT. The main benefits of this 

method are efficient long and short-term leakage suppres-

sion and stability to additive noise and arithmetic roundoff 

errors. This method has been developed for stationary sinu-

soids but it has been proven heuristically to work well for 

most real-world audio signals which are inherently non-

periodic.  

Once f0 has been estimated, the rest of the model pa-

rameters are obtained by solving a set of linear equations 

generated for each harmonic according to (12). The signal 

matrix expression and corresponding LS solution are: 
 

rps +=Φ ,                                 (14) 

 

sp
+= ΦLSˆ .                                 (15) 

 

The vectors s and r contain the measurement data and addi-

tive noise respectively, while ΦΦΦΦ is built out of time-variant 
sine and cosine terms related to the estimated f0. The matrix 

ΦΦΦΦ+ is the pseudo-inverse of  ΦΦΦΦ. 
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Figure 2 – Signal approximation root mean square error (RMSE). 

The SNRp is calculated with reference to the highest harmonic. 
 

5. EXPERIMENTAL RESULTS 

In this section we quantitatively and qualitatively evaluate 

the efficiency of the proposed signal modelling approach, 

through a comparative study and an illustrative example 

respectively.  

For the comparative study we have chosen [7] (from 

now on the Exponential method) and [3] (from now on the 

Peak Selection method). The choice was motivated by the 

fact that both methods perform simultaneous audio signal 

component description by using very different analysis ap-

proaches. The Exponential method models the signal as a 

sum of stationary sinusoids modulated by a set of slowly 

time-varying damped exponentials. The Peak Selection 

method characterizes each peak in the spectrogram of the 

audio signal in terms of stochastic/non-stochastic. 

The test signal sT(n) used for the comparative study has 

been carefully designed in order to best represent different 

real-world scenarios. For n = 0,1, ..., N-1 the signal sT(n) is:  
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The first signal segment (n < nL) is pure Gaussian noise with 

nL = 0.4N. The energy time-evolution of the transient com-

ponent is described by steep linearly-ascending amplitude 

with the following parameter values: AAM = 0.5 and nT = 

0.5N. The harmonic component combines amplitude (AM)  

Figure 3 – Number of harmonic parameters to be estimated. The 

SNRp is calculated with reference to the highest harmonic.  
 

and frequency (FM) modulation through a sinusoidal law.  As 

argued in [12] this kind of modulation allows a wide range of 

real-world AM and FM conditions to be covered. The har-

monic parameters have been adjusted in such a way to assure 

the presence of the dominant mainlobe at the harmonic fre-

quencies in the STFT. Correct operation of the Peak selection 

method depends on this condition, which is satisfied by let-

ting AFM  = 2, fFM = (4N) 
-1 
and fAM = 2FFM.. The phase angles 

γ, δ and φi take arbitrary values in [-π, π]. The remaining 
parameters have been chosen as: N = 1000, NFFT = 2048, fo = 

1kHz, fs = 44.1 kHz. The noise component is controlled 

through the Peak Signal-to-Noise ratio (SNRp) which we 

define as the peak power of the highest harmonic above the 

neighbouring noise floor. 

To evaluate the performance of the methods, we let the 

SNRp vary in range [0, 30]dB and for each value we calcu-

late the Root mean-squared error (RMSE) of the approxima-

tion over 100 realizations:  
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In case of The Exponential and proposed method, the model 

order selection can strongly influence the approximation ac-

curacy. In order to establish a fair comparison, the model 

order that minimizes the RMSE for a given SNRp has been 

determined experimentally for each method.  

By examining the resulting curves on Figure 2 we ob-

serve that the Exponential and proposed method achieve very 

similar behaviour in presence of additive noise. The Peak 

Selection method, however, falls behind the Exponential and 

proposed method in the whole analysis range. For high SNRp 

the difference of about 15dB is due primarily to failing to 

capture correctly the transient event. For middle and low 

SNRp the difference is reduced to approximately 5dB because 

of the increased noise floor. At the same time, we calculate 

the number of harmonic parameters to be estimated as a 

function of the SNRp and show the corresponding curves on 

Figure 3. 
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Figure 4 – (above) Trumpet signal; (middle) Signal spectrogram; 

(below) Residual spectrogram. 
 

The proposed method is clearly the best, especially at low 

SNRp where the gain with respect to the reference methods 

reaches 20dB. Under this condition the reference methods 

are comparable but as the noise impact gets smaller the Ex-

ponential method needs much more harmonic parameters to 

correctly represent the signal. Regarding the Peak Selection 

method, the number of parameters is roughly independent on 

the SNRp because the total number of peaks in the STFT is 

similar from one experiment realization to another.  

As an example of the qualitative behaviour of the pro-

posed algorithm, we have considered a 250ms excerpt from a 

trumpet recording which contains short transients, as well as 

time-varying harmonic component. Figure 4 shows the time 

record, its spectrogram and spectrogram of the residual 

which is obtained by simply subtracting the estimated model 

(12) from the trumpet signal itself. We observe that the resid-

ual spectrogram exhibits the same line pattern as the signal 

spectrogram but in shades of gray, which means that most of 

the non-stochastic energy has been correctly removed. Note 

that the transient event at the beginning of the record is well 

captured by the model, in spite of the fact that it contains 

frequency modulation as well. By listening to the residual, 

we have detected no audible artefacts.  

6. CONCLUSIONS 

We have shown that both harmonic and transient behaviour 

in audio signals can be compactly described through a basic 

harmonic structure modified by the joint action of polyno-

mial and piecewise linear approximation. The proposed 

model exhibits a high flexibility in reducing subharmonic 

errors and capturing inharmonicities in the signal. In addi-

tion, the parameters are easily computed as the model is 

linear-in-parameters. The experimental results show that the 

proposed method achieves a similar accuracy as one refer-

ence method, but using much less parameters and computa-

tional effort. 
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