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ABSTRACT

In this article, we address the problem of multiple target
tracking. Particle filter solutions must mainly cope with two
problems: a high-dimensional problem and a data associa-
tion problem. We propose to solve both problems simulta-
neously thanks to a particle filter based on a Gibbs sampler
that simulates both state space and association variables.We
present two possible implementations of this solution that
differ in their inner structure: the first one samples the condi-
tional densities with a Hastings-Metropolis algorithm while
the second one uses importance sampling. These algorithms
are shown to be as efficient as JPDA particle filters, with a
dramatic reduction of the computational cost.

1. INTRODUCTION

Multi-target tracking is a well-known problem that consists
of sequentially estimating the states of several targets from
noisy data. It is encountered in many applications, for in-
stance aircraft tracking from radar measurements [5] or foot-
ball player tracking in a video sequence [9]. Solutions of this
problem using particle filters have been proposed in the past
ten years [5, 10, 6]. Two problems are generally faced:
• a dimensional problem: the state vector gathers all target

states and its size increases with the number of targets. In
this high-dimensional state space, particle filters tend to
become inefficient.

• a data association problem: data consist of a set of mea-
surements resulting from a thresholding procedure. Each
measurement may correspond either to a target or to a
false alarm. Conversely, a target may have been either
detected or missed. How to determine which targets have
been detected, and which measurement corresponds to
each detected target?

Although this second problem may not be faced in some
multitarget tracking applications, we will consider here sit-
uations where both dimensional and data association issues
arise. The Joint Probabilistic Data Association (JPDA) filter
is a classical approach to tackle the data association problem
[2]. It considers all possible associations between targets and
measurements, and solves the tracking problem by estimat-
ing the marginal posterior density of each target state. Inter-
estingly, this approach also solves the dimensional problem
since it effectively resorts to one filter per target [10]. Sev-
eral JPDA particle filters have been proposed in the literature
[3, 10, 1]. For a small number of targets and measurements,
this approach is very efficient. However, the number of pos-
sible associations combinatorially grows with the number of
targets and measurements. For target tracking at low SNR
and a fixed detection probability, many false alarms occur
and the JPDA particle filter becomes intractable.

Other alternative particle filters have been proposed to
solve the multi-target tracking problem. A particle filter
based on Probabilistic Multiple Hypothesis Tracker (PMHT)
strategy has been proposed in [5]. It requires the estimation
of false alarm and association probabilities. The problem is
solved via a Gibbs sampler that estimates these densities,
prior to the computation of the particle weights. However
the PMHT approach which is based on an independence hy-
pothesis generally leads to degraded performance compared
to JPDA filters [11]. In [10], a new particle filter strategy has
been proposed to solve the association problem at a tractable
cost. In this solution, association variables are sampled as
well as target states by means of a proposal distribution that
permits to factorize the importance weights over the individ-
ual target associations and thus solve the dimensional prob-
lem. However this procedure involves additional resampling
steps for the cumulative weights, and must be repeated sev-
eral times to avoid depletion problems in the final Monte
Carlo representation of the posterior density, thus leading
again to important computational costs. Another solution for
the dimensional problem, described in [6], consists in replac-
ing the importance sampling approach in the classical parti-
cle filter by a Monte Carlo Markov Chain (MCMC) method
[7]. However this interesting solution does not deal with the
combinatorial problem.

We propose in this article two filters that can solve both
dimensional and association problems at a computational
cost linear in the number of targets and observations. These
two solutions resort to a Gibbs sampler [4] to break the high-
dimensional structure of the state space by sampling each
target conditionally to the othersThe first solution estimates
these conditional densities via a Hastings-Metropolis algo-
rithm within the Gibbs sampler; it therefore presents a full
MCMC structure. On the contrary, the second solution per-
forms an importance sampling step within the Gibbs sampler
in order to estimate the conditional densities. This hybrid
structure permits to keep advantages of both MCMC and im-
portance sampling algorithms.

This article is organised as follows: the multi-target
model is presented in section 2. The two proposed algorithms
are derived in section 3. Finally we present simulations and
conclusions in section 4.

2. THE MULTI-TARGET MODEL

In this section, we describe the multi-target model. Note that
we will assume throughout this article that the number of
targetsMT is known and constant over time.

Let us denote byxk,n the vector describing the state of
the nth target (n ∈ {1,MT}) at time instantk. Similarly, at
this time instant, the observations are provided by a set of
Mk measurements(zk, j) j∈{1,Mk}. A variableθk,n can be in-
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troduced to associate targetn to the observation it generated;
this association variable is defined as

θk,n =







j ⇒

{

if the observationzk, j is generated
by targetn with state vectorxk,n;

0 ⇒ if targetn has not been detected.

State vectors (xk,n)n∈{1,MT }, measurement vectors
(zk, j) j∈{1,Mk} and association variables(θk,n)n∈{1,MT }
can be concatenated into vectorsxk, zk andθk respectively.

With these notations, thenth target statexk,n can be mod-
elled by the general state equation:

xk,n = fk(xk−1,n,vk−1,n), (1)

where fk(·, ·) represents the target dynamics at time instant
k, andvk,n is a (possibly non gaussian) noise vector. Since
measurements can be generated either by a real target or by
a false alarm, the observation model is two-fold:
• If the measurement is generated by a target, it is modelled

by a standard measurement equation;
• If the measurement corresponds to a false alarm, it is

modelled by a uniform random variable [2, 10].
This can be summarized as follows:

zk, j =

{

hk(xk,n,nk,n) if ∃n ∈ {1,MT} s.t. θk,n = j
uk, j otherwise,

wherehk(·, ·) models the relationship between the target state
and the observation,nk,n is a (possibly non gaussian) noise
vector, anduk, j is a uniform variable of probability density
p(uk, j) = 1/V over the observation window of volumeV .

3. GIBBS SAMPLER BASED PARTICLE FILTERS

The classical particle filter aims at estimating the objective
densityp(xk|z1:k) via a set of particles. In multitarget track-
ing, this leads to the two aforementioned issues of high di-
mension and association. The JPDA particle filter solves the
high dimensional problem by sampling the marginal densi-
ties p(xk,n|z1:k) instead of the objective densityp(xk|z1:k),
and solves the association problem by considering all possi-
ble associationsθk. However it faces a combinatorial growth
of the number of possible associations with the number of
targets and measurements. In this article, we consider instead
a particle filter that estimates the posterior densityp(yk|z1:k)

of the completed variableyk , [xT
k , θk]

T . For clarity in the
calculations, we will decompose this variable in the form

yk = [yT
k,1,y

T
k,2, . . . ,y

T
k,MT

]T with yk,n = [xT
k,n, θk,n]

T .

Sampling the completed variableyk with importance sam-
pling as in standard particle filter leads to degraded perfor-
mance compared to JPDA particle filter [10]. We propose
here to use a Gibbs sampler [7] in order to draw samples ac-
cording to the posterior distributionp(yk|z1:k). More pre-
cisely, our Gibbs sampler works by sampling the entries
yk,n according to the conditional densitiesp(yk,n|yk,−n,z1:k),
where yk,−n = [yT

k,1, . . . ,y
T
k,n−1,y

T
k,n+1, . . . ,y

T
k,MT

]T . This
one-target-at-a-time feature permits to break the high
dimensionality of the problem. However, the conditional
densitiesp(yk,n|yk,−n,z1:k) are themselves difficult to sam-
ple directly and we must resort to simulation techniques. We
propose two solutions for the simulation of these conditional
densities. The first one is based on a Hastings-Metropolis
algorithm, and the second one on importance sampling.

3.1 Hastings-Metropolis-within-Gibbs particle filter

The Hastings-Metropolis algorithm (HMA) [7] is based on
a simple acceptation-reject principle. At each iteration,a
proposed sample ˆyk,n is drawn according to an instrumental
law q(yk,n|yk,−n,yk−1,z1:k) and is accepted with a probabil-
ity defined by the Hastings-Metropolis (HM) ratio, given by

α =
p(ŷk,n|yk,−n,z1:k)q(y

i−1
k,n |yk,−n,yk−1,z1:k)

p(yi−1
k,n |yk,−n,z1:k)q(ŷk,n|yk,−n,yk−1,z1:k)

,

whereyi−1
k,n denotes the last accepted sample.

3.1.1 Computation of p(yk,n|yk,−n,z1:k)

Using Bayes law, we can write

p(yk,n|yk,−n,z1:k) ∝ p(zk|yk,z1:k−1)p(yk,n|yk,−n,z1:k−1),

where the proportionality factor, equal top(zk|yk,−n,z1:k−1),
disappears in the HM ratio since it doesn’t depend on target
n. Conditionally toyk, the target contributions can be sepa-
rated from false alarms inp(zk|yk,z1:k−1):

p(zk|yk,z1:k−1) =
1

V max(0,Mk−MT )

MT

∏
q=1

p(zk,θk,q |xk,q), (2)

where we assumed thatp(zk,θk,q |xk,q) =V −1 if θk,q = 0. The

term V max(0,Mk−MT ) accounts for the case where there are
more measurements than targets: these measurements in ex-
cess are false alarms. Of course additional false alarms arise
for associationsθk,q = 0.

The densityp(yk,n|yk,−n,z1:k−1) can be factorized as

p(yk,n|yk,−n,z1:k−1) = p(xk,n|z1:k−1)p(θk,n|θk,−n). (3)

Here the predictive densityp(xk,n|z1:k−1) can be computed
from the set ofNp particlesxi

k−1 obtained at timek−1. In-
deed, as particlesxi

k−1,n are distributed according to the pos-
terior densityp(xk−1,n|z1:k−1),

p(xk,n|z1:k−1) =
∫

p(xk,n|xk−1,n)p(xk−1,n|z1:k−1)dxk−1,n

≈
1

Np
∑

i
p(xk,n|x

i
k−1,n).

Finally, p(θk,n|θk,−n) in (3) must be assigned a prior density.
We propose to use the following prior, inspired from [10]:

p(θk,n = j|θk,−n) =



















1−PD if j = 0
0 if ∃q ∈ {1,MT}−n :

θk,q = j 6= 0
PD

Mu,−n
otherwise

(4)

with Mu,−n the number of remaining measurements not as-
signed by variablesθk,−n, andPD the detection probability.

3.1.2 Choice of the instrumental law

We choose here an instrumental law that factorizes between
the state and the association variable:

q(yk,n|yk,−n,yk−1,z1:k) = q(xk,n|yk,−n,yk−1,z1:k)
×q(θk,n|xk,n,yk,−n,yk−1,z1:k).

(5)
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For the target state, we choose an instrumental distribution
derived from the target dynamics, expressed as:

q(xk,n|yk,−n,yk−1,z1:k) =
1

Np
∑
q

p(xk,n|x
q
k−1,n).

This choice consists in choosing randomly one particle in the
set(xi

k−1,n)i∈{1,Np} and propagating it according to the state
equation. It is the equivalent for the HMA to the instrumental
law used in standard particle filter when the instrumental law
is provided by the state equation. Besides it presents the great
advantage of simplifying with the densityp(xk|z1:k−1) in the
HM ratio, thus lightening the ratio calculation. Note finally
that this choice leads to an independent HMA; this particular
class of HMA has strong convergence properties [8].

As for the association variable, we choose an instrumen-
tal distribution that takes into account the current observa-
tion, so that most probable associations will be favored in the
sampling. Using Bayes, we can write

q(θk,n|xk,n,yk,−n,yk−1,z1:k) ∝ p(zk|yk,z1:k−1)
×p(θk,n|xk,n,yk,−n,yk−1,z1:k−1).

In this expression,p(zk|yk,z1:k−1) is given by (2), whereas
p(θk,n|xk,n,yk,−n,yk−1,z1:k−1) = p(θk,n|θk,−n) is provided
by (4). The instrumental distribution for the association vari-
able can then straightforwardly be computed as:

q(θk,n = j|xk,n,yk,−n,yk−1,z1:k) =


























1
V

(1−PD)

Qk,n(xk,θk,−n)
if j = 0

0 if ∃q ∈ {1,MT}−n :
θk,q = j 6= 0

PD

Mu,−n

p(zk, j|xk)

Qk,n(xk,θk,−n)
otherwise,

(6)

with the normalization coefficientQk,n(xk,θk,−n) given by:

Qk,n(xk,θk,−n) =
1−PD

V
+

PD

Mu,−n

Mk

∑
j=1

j/∈θk,−n

p(zk, j|xk). (7)

3.1.3 HM-within-Gibbs algorithm (HMWG)

We can now derive the HM ratio. The previous choices make
the computation very easy since quantities independent of
targetn get simplified, as well as terms induced by the target
dynamics. The final expression of the ratio is simply:

α =
Qk,n(x̂k, θ̂k,−n)

Qk,n(x
i−1
k ,θ i−1

k,−n)
, (8)

where ŷk = [x̂k, θ̂k] is the candidate sample. The first
method we propose is summarized by Algorithm 1 and called
HMWG. Note that in this algorithm, targets are considered in
a random orderλ over the target set{1,MT}. This common
strategy insures certain convergence properties.

The HMWG algorithm presents some interesting fea-
tures: the inner HM structure requires no importance weights
and therefore no intermediate resampling steps, unlike the
multi-target particle filter presented in [10]. The outer Gibbs
sampler structure solves the association problem by MCMC

Algorithm 1 Metropolis-within-Gibbs algorithm (HMWG)
1: for i = 1 to Np do
2: draw a random permutationλ of the target set{1,MT}
3: for n = 1 to MT do
4: Propagation: draw a candidate particle ˆyk,λn ∼

1
Np

∑
q

pn(ŷ
i
λn
|xq

k−1,λn
);

5: Draw a candidate associationθk,λn according to the
distributionq(θk,λn |θk,−λn ,xk);

6: ComputeQk,λn(y
i
k,θk,λ−n) from (7) ;

7: Compute the HM ratioα as expressed in (8);
8: Draw a uniform variable on[0,1]: u ∼ U[0,1];
9: if u <= α then

10: Accept:xi
k,λn

= ŷ
i
λn

;
11: else
12: Reject:xi

k,λn
= x

i−1
k,λn

;
13: end if
14: end for
15: end for

sampling instead of considering all possible associations.
The computation cost becomes linear in the number of tar-
gets (targets are sampled individually) and in the number of
measurements (from the computation ofQk,n). On the dark
side, it looses the variance reduction feature of the impor-
tance sampling, and requires a burn-in period before the gen-
erated Markov chain converges to its stationary distribution.

3.2 Hybrid Importance-Sampling-Gibbs particle filter

We now present a hybrid algorithm that combines advantages
of both MCMC and importance sampling (IS). Recall that the
HMA was previously used to draw particles according to the
conditional densitiesp(yk,n|yk,−n,z1:k). This HMA step can
be replaced by an IS step in order to draw weighted particles
representing the conditional densitiesp(yk,n|yk,−n,z1:k).

IS can be used in two ways. We can use independent sets
of particles at each time step to estimate the objective den-
sity; then particles are generated using the same instrumen-
tal distribution as the HMA, and weights are not propagated
through time. Or we can use sequential IS as in standard par-
ticle filter: particles are propagated through time, and their
weights computed recursively. Then the instrumental law
must be chosen accordingly, and a resampling step must be
added to deal with the possible degeneracy of the particle set.
Note that if systematic resampling is used, these two strate-
gies are equivalent. We will detail now the second strategy.

3.2.1 Weight propagation

Similarly to the classical sequential IS particle filter, weights
for particlesyi

k,n can be recursively computed as:

wi
k,n ∝ wi

k−1,n

p(zk|y
i
k,z1:k−1)p(yi

k,n|y
i
k,−n,y

i
k−1,z1:k−1)

q(yi
k,n|y

i
k,−n,y

i
k−1,z1:k)

.

In this expression, the densityp(zk|y
i
k,z1:k−1) has already

been provided by (2). Besides we have:

p(yi
k,n|y

i
k,−n,y

i
k−1,z1:k−1)

= p(xi
k,n|θ

i
k,n,y

i
k,−n,y

i
k−1,z1:k−1)p(θ i

k,n|yk,−n,y
i
k−1,z1:k−1)

= p(xi
k,n|x

i
k−1,n)p(θ i

k,n|θ
i
k,−n).
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Algorithm 2 Hybrid algorithm
1: for i = 1 to Np do
2: draw a random permutationλ of the set of targets

{1,MT}
3: for n = 1 to MT do
4: Prediction: draw particlexi

k,n according to

pn(x
i
k,n|x

i
k−1,n);

5: Draw associationθk,λn according to the distribution
q(θk,λn |θk,−λn ,xk);

6: ComputeQk,λn(y
i
k,θk,λ−n) from (7) ;

7: Update weightswi
k,n according to (9);

8: end for
9: end for

10: Normalize weights: ˜w
i
k,n =

wi
k,n

∑q
j=1 w j

k,n

;

11: Resample if necessary.

Here p(xi
k,n|x

i
k−1,n) is easily obtained from the state equa-

tion, while p(θ i
k,n|θ

i
k,−n) can be expressed by prior (4).

3.2.2 Choice of the instrumental law

As previously, we choose an instrumental law that verifies
the factorization property (5). For the state of targetn, the
instrumental distribution is provided by the state equation:

q(xi
k,n|y

i
k,−n,y

i
k−1,z1:k) = p(xi

k,n|x
i
k−1,n).

This choice implies that each particle is propagated accord-
ing to the corresponding target dynamics. It is formally equi-
valent to the distribution used in the HMA. For the associa-
tion variable, we choose the law provided by (6) which per-
mits to draw sequentially samples of associationsθk,n taking
into account the current observation as well as the associa-
tionsθk,−n.

3.2.3 The hybrid algorithm

With these instrumental laws, the update equation for the
weights becomes:

wi
k,n ∝ Qk,n(xk,θk,−n)w

i
k−1,n, (9)

whereQk,n(xk,θk,−n) is given by (7). As the weights are
defined up to a proportionality constant, they must be nor-
malized in order to get an estimate of the objective density.
Moreover, as the particle weights are propagated from time
k-1 to timek, the particle cloud may degenerate, and a resam-
ple step must be added if necessary as in classical particle
filter, which is not the case for the HMA.

This second method is summarized by Algorithm 2. It
gathers advantages of both MCMC and IS approaches. The
Gibbs sampler structure solves both high-dimensional and
association problems at a cost linear in the number of tar-
gets and measurements. The variance of the state estimate is
reduced thanks to the IS step used to sample the target states.

4. SIMULATIONS, RESULTS AND CONCLUSIONS

For the simulations, we consider a typical ground radar sce-
nario: several targets move in thex-y plane at unknown con-
stant velocity. Each target state is determined by a vector

35000

45000

55000

35000 45000 55000

y 
(m

)

x (m)

real tracks

35000

45000

55000

35000 45000 55000

y 
(m

)

x (m)

JPDA PF

35000

45000

55000

35000 45000 55000

y 
(m

)

x (m)

HMWG

35000

45000

55000

35000 45000 55000

y 
(m

)

x (m)

Hybrid algo

Figure 1: Example of a 5-target scenario. Upper left plot:
real tracks. Other plots: tracking estimators.

xk,n = [xk,n,yk,n,vx
k,n,v

y
k,n]

T representing the position and ve-
locity in x andy directions. The state equation is given by

xk,n =

[

1 Ts
0 1

]

⊗

[

1 0
0 1

]

xk−1,n +vk−1,n,

where⊗ denotes a Kronecker product,vk−1,n is an additive
gaussian noise andTs is the interval between two consecutive
samples. Measurements are provided by a predetection step
performed with a quadratic detector. The detection proba-
bility is set toPD = 0.95 and the false alarm probability is
computed at a given SNR assuming a non fluctuant model
(Swerling 0). Each detection provides an observation in the
form of a distance and an angle between the radar and the tar-
get: zk, j = [rk, j,ϕk, j]

T . If measurementj has been produced
by targetn, the observation equation can then be written as

zk, j =

[

√

x2
k,n + y2

k,n, tan−1
(

yk,n

xk,n

)]T

+nk, j = h(xk,n)+nk, j,

whereh(xk,n) is a non linear function of the target state and
nk, j is an additive gaussian noise.

We consider scenarios where targets are very close from
one another and are therefore located in the same cluster.
Benchmark performance is provided by the JPDA particle
filter. A typical scenario with five close targets is presented
in figure 1. Simulations are run for various SNR values, 1000
Monte Carlo simulations per SNR value and number of tar-
gets. For the sake of comparison, the three algorithms are run
with the same number of particles, here 500 particles per tar-
get. The HMWG particle filter uses part of this 500 particles
as a burn-in period, and the remain for estimation.

Performances measured in terms of mean square error
between estimated and real positions and velocities, are pre-
sented in figure 2. We see that performance of the HMWG
method is slightly worse than the JPDA one. This is partly
because less particles are used in HMWG to compute the
state estimator (burn-in period), and partly because the IS
algorithm used in the JPDA particle filter reduces the vari-
ance of the state estimator. However JPDA performance can
be equalized or even outperformed by HMWG algorithm at
a smaller computational cost by using more particles. Con-
versely, the proposed hybrid algorithm matches JPDA per-
formance for the same number of particles.

162



100

150

200

250

300

350

400

450

500

8 9 10 11 12 13

R
M

S
E

 o
n 

ta
rg

et
 p

os
iti

on
 (

in
 m

)

SNR (dB)

2 targets

JPDA PF
HMWG

Hybrid algo

30

40

50

60

70

80

8 9 10 11 12 13

R
M

S
E

 o
n 

ta
rg

et
 v

el
oc

ity
 (

in
 m

/s
)

SNR (dB)

2 targets

JPDA PF
HMWG

Hybrid algo

100

150

200

250

300

350

400

450

500

8 9 10 11 12 13

R
M

S
E

 o
n 

ta
rg

et
 p

os
iti

on
 (

in
 m

)

SNR (dB)

3 targets

JPDA PF
HMWG

Hybrid algo

30

40

50

60

70

80

8 9 10 11 12 13

R
M

S
E

 o
n 

ta
rg

et
 v

el
oc

ity
 (

in
 m

/s
)

SNR (dB)

3 targets

JPDA PF
HMWG

Hybrid algo

100

150

200

250

300

350

400

450

500

8 9 10 11 12 13

R
M

S
E

 o
n 

ta
rg

et
 p

os
iti

on
 (

in
 m

)

SNR (dB)

4 targets

JPDA PF
HMWG

Hybrid algo

30

40

50

60

70

80

8 9 10 11 12 13

R
M

S
E

 o
n 

ta
rg

et
 v

el
oc

ity
 (

in
 m

/s
)

SNR (dB)

4 targets

JPDA PF
HMWG

Hybrid algo

100

150

200

250

300

350

400

450

500

8 9 10 11 12 13

R
M

S
E

 o
n 

ta
rg

et
 p

os
iti

on
 (

in
 m

)

SNR (dB)

5 targets

JPDA PF
HMWG

Hybrid algo

30

40

50

60

70

80

8 9 10 11 12 13

R
M

S
E

 o
n 

ta
rg

et
 v

el
oc

ity
 (

in
 m

/s
)

SNR (dB)

5 targets

JPDA PF
HMWG

Hybrid algo

Figure 2: Root Mean Square Error for the position (left) and
the velocity (right) for different numbers of targets.

A comparison of the three algorithms in terms of compu-
tational time versus SNR is presented in figure 3 for different
numbers of targets. In this regard, it is clear that the Gibbs
sampling dramatically improves the computational cost, par-
ticularly in two situations which both lead to a very large
number of associations: at low SNR, the two proposed algo-
rithms present only a small increase in their computational
costs, due to the increase in the number of false alarms,
while the JPDA particle filter computational cost grows very
rapidly due to the combinatorial growth of the number of
possible associations; similarly, for large numbers of targets,
we notice only a slight increase in the computational cost of
the two proposed algorithms, while the JPDA computational
cost increases rapidly, once again because of the combinato-
rial growth in the number of possible associations. Note that
the smallest SNR values have not been considered for the
scenarios with more targets because the JPDA particle filter
becomes too costly for those SNR values.

As a conclusion, we have proposed two MCMC-based
particle filters that solve the association problem in multitar-
get tracking with a computational cost linear in the number
of targets and measurements. In particular, performance of
the proposed hybrid algorithm matches JPDA performance
at a much smaller cost. Finally, note that we assumed in this
article that the number of targets is known. In a forthcoming
work, we will therefore focus on more complex scenarios
where targets may enter or leave the observation area.
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Figure 3: Run time vs SNR for different numbers of targets.
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