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ABSTRACT
Detection algorithm based on widely linear filtering is pro-
posed for the QAM modulated MIMO system. Unlike the
existing works which focus on non circular signals (e.g.
BPSK, PAM), this paper extends the widely linear detec-
tion to MIMO system transmitting circular signals (e.g.
QAM, QPSK) by eliminating the I (or Q ) component of
the transmitted signals. The proposed algorithm has a ML-
approaching performance with a computational complexity
independent of the modulation order, whose upper bounder
is O(2NT ) (for QPSK) or O(3NT ) (for M-QAM, M > 4), lower
than the complexity (O(M

√
NT ) ) of FSD (Fixed-complexity

Sphere Decoding) for a practical interval of NT , the number
of transmitting antennas. Simulation results show that the
proposed algorithm can achieve quasi-ML performance with
complexity comparable with FSD(1, · · ·, M) for QPSK sig-
nal, and much lower complexity than FSD(1, · · ·, M) when
the system is 16-QAM (64-QAM) modulated.

1. INTRODUCTION

Widely linear filtering has drawn an increasing interest in es-
timation [1], beamforming [2], DoA finding [3], and com-
munications [4]. For example, [1] has provided a general
scheme for widely linear estimation. Beamformers for the
extraction of an unknown signal from non circular interfer-
ences are investigated in [2]. [5] gives a new insight into
widely linear receivers for the BPSK, MSK, GMSK sig-
nals. Blind widely linear structures for multiuser detection
of code-division multiple-access signals are proposed in [4].
However, the existing works dealing with widely linear fil-
tering are mainly restricted in the cases where either the sig-
nal of interest is non-circular (e.g. BPSK, PAM, OQPSK,
OQAM, GMSK MSK) [3]-[4], [5] [6] or the interference is
non circular [2] [7]. An important and practical case, where
circular signal (e.g. QPSK, QAM, PSK) being desired and
interference being circular (e.g. QPSK or QAM modulated
MIMO system) or combination of circular and non circu-
lar ones, has not been considered by these works. In such
cases, widely linear filtering for PAM signal can not be ap-
plied directly. In this paper, we introduce a widely linear
MIMO (Multiple Input Multiple Output [8]) detector for cir-
cular signals in the case of frequency-flat fading channels.
The detection of circular signal corrupted by circular noise
is discussed. It is shown that the proposed algorithm can
achieve quasi-ML performance with an attractive compu-
tational complexity compared with FSD (Fixed-complexity
Sphere Decoding [9], [10]) which efficiently “fixes” the or-
der of complexity of SD (Sphere Decoding [11]). This pa-

This work is supported by China scholarship council, National natural
science foundation of China (No. 60802004) and Guangdong natural sci-
ence foundation (No. 9151064101000090).

per is distinct from previous works in the following aspects:
firstly: widely linear detection of circular signal in the con-
text of circularity is considered, which is different from the
previous work; secondly, widely linear filtering is applied by
eliminating the I (or Q ) component of the transmitted data.
The final decision is made by joint detection of the transmit-
ted vector including both I and Q components.
Notation: Upper case letters in boldface are used for matri-
ces. Lower case letters in boldface denote the column vec-
tors. (·)Hdenotes Hermitian (conjugate transpose), (·)T is the
operation of transpose. The operation of complex conjugate
is denoted by (·)∗. E[·] denotes the expectation. A(:,k) rep-
resents the k th column of matrix A. IN is the N×N identity
matrix. 0 represents zero matrix or vector. ℜ(·) and ℑ(·)
represent the real part and imaginary part of (·) respectively.

2. MIMO COMMUNICATION SYSTEM MODEL

The MIMO system model considered here is a V-BLAST
[12] system with NR antennas at the receiver and NT antennas
at the transmitter, which can be described in equation (1):

y =Hx+w (1)

where y = [y1,y2, · · · ,yNR ]
T is the received vector.

x = [x1,x2, · · · ,xNT ]
T is the transmitted vector, w =

[w1,w2,w3, · · · ,wNR ]
T is the additive white Gaussian noise

vector, H = [h1,h2, . . . ,hNT ] represents the frequency-flat
channel. The original signal x is transmitted, and then dis-
torted by the fading channel and noise, and detected by the
receiver. The most famous receiver is the ZF (Zero Forcing)
[12] detector which has a low computational complexity but
with a limited performance. It is improved by MMSE (Min-
imum Mean Square Error) [13] [14] receiver which mini-
mizes the mean square error distance between the estimated
signal and its original counterpart. Compared to the ML
(Maximum likelihood) algorithm which is theoretically op-
timal but with an unaffordable computational complexity,
there is still a huge gap between MMSE and ML.

3. PROPOSED ALGORITHM: WIDELY LINEAR
DETECTOR FOR COMPLEX SIGNALS

3.1 Second order statistics of the signal and proposed al-
gorithm
The second order statistical characteristics of signal y are
contained in its correlation matrix Ry and conjugate corre-
lation matrix Ryc, which are respectively defined by: Ry =
E[yyH ], Ryc = E[yyT ].
In the following sections, the following assumptions are
used:
1. E[xxH ] = PINT , where P is the average transmitting
power of each transmitting antenna;
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2. E[wwH ] = σ2INR , where σ2 is the power of noise at each
receiving antenna;
3. E[wxH ] = 0, which means that signal and noise are inde-
pendent.

In case of circular signal, conjugate correlation matrix
Ryc = 0, WL-MMSE discussed for SAIC (Single Antenna
Interference Cancelation) in [5] is reduced to the conven-
tional MMSE detector. Unfortunately, the circular signals
such as QPSK and M-QAM (M is the total number of
the constellation points which depends on the modulation
scheme, M > 4.) signals are widely used in communica-
tion systems because of their higher spectral efficiency. For
such circular signals, we propose a technique to make them
non-circular by eliminating the I (or Q) component of the
transmitted signal. One notes that the true signal x can be
estimated by x̂M−SIC using MMSE-OSIC [15] as follows:

x= Q[x̂M−SIC] (2)

where Q[·] denotes the operation of quantization appropriate
to the constellation in use. We assume

x= x+∆ (3)

where ∆ is the error vector of estimation. We define

x= xR + jxI xR = ℜ(x) xI = ℑ(x)
x= xR + jxI xR = ℜ(x) xI = ℑ(x)
∆=∆R + j∆I ∆R = ℜ(∆) ∆I = ℑ(∆)

(4)

In system (1), xI can be eliminated from y as follows:

z= y− jHxI (5)

According to equation (3) and (4), xI = xI −∆I , a non cir-
cular system is given by:

z= y− jHxI + jH∆I =HxR +w (6)

The real part xR can be considered as a PAM signal, and
similarly, the following matrix is constructed based on the
equation (6):

z̃= H̃xR + w̃ (7)

where z̃= [zT zH ]T . Therefore xR is estimated as:

x̂R−E =CEMMSE z̃ (8)

where
CEMMSE =

1
2

PH̃HR−1 (9)

where

R= E[z̃z̃H ] =

[
Rz Rzc
R∗

zc R∗
z

]
(10)

Rz = E[zzH ] = 1
2 PHHH +σ2INR

Rzc = E[zzT ] = 1
2 PHHT (11)

The signal vector x can be estimated as

x̆= x̂R−E + jx̆I (12)

where x̆I is estimate of xI by xI = xI −∆I . The candidate
vector s is obtained by quantization s= Q[x̆] if ∆I is known.

3.2 Evaluation of ∆I

To get an exact expression of equation (6), the main task is
the evaluation of z, which requires to estimate the error vec-
tor ∆I . For the evaluation of ∆I , we should consider the
following NT +1 cases theoretically:
Case 1: The totally correct detection of the imaginary part
xI , then ∆I = 0.
Case 2: Only one element, xI(k1), of xI is wrongly esti-
mated, we assume xI(k1)−xI(k1) = m1d, d is the distance
between two nearest neighbor points in the plane of the con-
stellation.
Case3, · · · , case NT + 1 are corresponding to the situations
where 2, · · · , NT elements are wrongly estimated, respec-
tively. According to different cases, ∆I can be expressed
mathematically as follows:

1 : ∆I = 0 with probability p0
2 : ∆I =Pk1−1[m1d,0, · · · ,0]T with probability

p1, k1 ∈ {1, 2, · · · , NT}, k1 denotes
the position index of the error, m1 is non
zero integer.

3 : ∆I =Pk1−1[m1d,0, · · ·0]T +Pk2−1[m2d,0, · · ·0]T
with probability p2, m1,m2 are non zero
integers , k1,k2 ∈ {1, 2, · · · , NT},
k1 ̸= k2, denote the position indexes of the
two errors

· · · · · · · · · · · ·

NT +1 : ∆I = (
NT
∑

i=1
Pki−1[mid,0, · · · ,0]T ),

with probability pNT
k1, ...,kNT ∈ {1, 2, · · · , NT}
k1 ̸= k2 ̸= · · · ≠ kNT , mi is non zero integer,
denote the position indexes of the NT errors

(13)

where p0 ≫ p1 > p2 > · · · > pNT and
NT
∑

i=0
pi = 1 hold in

a wide interval of SNR value. We define P0 = I, P is a
NT ×NT matrix given by

P=


0 0 · · · 0 0
1 0 · · · 0 0
... 1

. . .
...

...

0 0
. . . 0 0

0 0 · · · 1 0


Candidate vectors corresponding to cases stated above can
be calculated by (12). Finally, likelihood test is performed
among the obtained candidate vectors to determine the one
which minimizes ∥y−Hs∥2. In practical implementation,
we just need to consider the first L (L ≤ NT +1) cases which
occur with much greater probabilities. For a specific mod-
ulation scheme, the number of the candidate vectors can be
sharply reduced by the simplification of ∆I .

3.3 M-QAM signals
Theoretically, mi has multiple choices to determine ∆I if x is
M-QAM modulated (M > 4) signal, however, the wrong de-
cision occurs with the greatest probability between two near-
est neighbor points in the plane of constellation. As a result,
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in equation (13), we choose mi =±1 to simplify the consid-
eration, mi has only one value 1 or -1 for the marginal point
of the constellation plane. Equation (13) can be simplified as
follows:

1 : ∆I = 0
2 : ∆I = [l1d, l2d, · · · , lNT d]T

li ∈ {−1, 0, 1},∑NT
i=1 |li|= 1

3 : ∆I = [l1d, l2d, · · · , lNT d]T

li ∈ {−1, 0, 1},∑NT
i=1 |li|= 2

· · · · · · · · · · · ·
NT +1 : ∆I = [l1d, l2d, · · · , lNT d]T

li ∈ {−1, 0, 1},∑NT
i=1 |li|= NT

(14)

There are at most 2n−1Cn−1
NT

candidate vectors for case n,
where Cl

k denotes the number of l-combinations of an k-
element set. We have at most ∑L

n=1(2
n−1Cn−1

NT
) candidate

vectors if the first L cases in equation (14) are considered.

3.4 QPSK signal (4-QAM)

Every element of xI has only two possible values ( d
2 and −d

2 )
if x is QPSK modulated signal since every point in QPSK
constellation is marginal. We can turn to its contrary po-
larity if the estimate xI(k) is not correct. Therefore, ∆I is
expressed as follows:

1 : ∆I = 0
2 : ∆I = 2[l1xI(1), l2xI(2), · · · , lNT xI(NT )]

T

li ∈ {0, 1},∑NT
i=1 li = 1

3 : ∆I = 2[l1xI(1), l2xI(2), · · · , lNT xI(NT )]
T

li ∈ {0, 1},∑NT
i=1 li = 2

· · · · · · · · · · · ·
NT +1 : ∆I = 2[l1xI(1), l2xI(2), · · · , lNT xI(NT )]

T

li ∈ {0, 1},∑NT
i=1 li = NT

(15)
One should note that there are Cn−1

NT
candidate vectors for

case n. Since p0 ≫ p1 > p2 > · · · > pNT , significant im-
provement can be achieved by considering only the first
two (L = 2) or three (L = 3) cases, which correspond to
C0

NT
+C1

NT
candidate vectors or C0

NT
+C1

NT
+C2

NT
candidate

vectors. We have ∑L
n=1(C

n−1
NT

) candidate vectors if the first L
cases in equation (15) are considered.

3.5 Computation of candidate vectors

The candidate vectors are given by formula (12), however, it
is time consuming to repeat the matrix multiplication in for-
mula (8). It is necessary to optimize the structure of formula
(8). Combining formula (8) and (6), we have:

x̂R−E =m+M∆I (16)

where M =CEMMSE [ jHT − jHH ]T , m =CEMMSE [(y−
jHxI)

T (y∗+ jH∗xI)
T ]T . For the M-QAM (M > 4) sig-

nals, ∆I has the general form:

∆I = [l1d, l2d, · · · , lNT d]T (17)
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Figure 1: Comparison of complexity order between FSD
(M

√
NT ) and proposed algorithm (2NT )

where li ∈ {1, − 1, 0}. Equation (16) can be written as
follows:

x̂R−E =m+d
NT

∑
i=1

[M(:, i)li] (18)

In case of QPSK signal, ∆I can be expressed as follows:

∆I = [2l1xI(1), 2l2xI(2), · · · , 2lNT xI(NT )]
T (19)

x̂R−E =m+
NT

∑
i=1

2[M(:, i)lixI(i)] (20)

where li ∈ {1, 0}. The candidate vectors can be calculated
according to equation (12). Thus time-consuming matrix
multiplication in formula (8) is replaced by simple addition.
Efficiency of computation is improved.

4. COMPLEXITY ANALYSIS

The complexity of the proposed algorithm mainly lies in the
computation of matrix inverse at each layer and the likeli-
hood test among the candidate vectors. To compare its com-
plexity with FSD, we can only consider the number of can-
didate vectors. Because FSD should also calculate the ma-
trix inverse at each level to determine its detection order.
As discussed in section 3.3 and 3.4, L = NT + 1 if all cases
are considered. We have ∑NT+1

n=1 (2n−1Cn−1
NT

) = 3NT candi-
date vectors for the detection of M-QAM signal (M>4), and
∑NT+1

n=1 (Cn−1
NT

) = 2NT for the detection of QPSK signal. The
upper bound of the complexity order is O(3NT ) and O(2NT ),
for the detector of M-QAM signal and QPSK signal, respec-
tively. It is independent of the scheme of modulation, and
is totally determined by transmitting antenna number NT .
One notes that lower bound on the average complexity of
sphere decoding has been shown to be exponential [16]. The-
oretically, FSD algorithm should maintain at the order of
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Figure 2: Comparison of complexity between FSD
(1, · · · ,M) and proposed algorithm (L = 2)

O(M
√

NT ) to achieve near ML detection [10]. Fig. 1 com-
pares the complexity between FSD and the proposed algo-
rithm with L = NT + 1. Fig. 1 shows that the complexity of
the proposed algorithm is lower than FSD when the number
of transmitting antennas NT is located in quite an applicable
interval, more accurately, NT ∈ [1,4] for QPSK signal and
NT ∈ [1,6] for 16-QAM signal. For 64-QAM signal, the pro-
posed algorithm always has much lower complexity in the
whole applicable interval of transmitting antenna number.

Practically, FSD is implemented as FSD(1, · · ·, M) for
simplicity, which means FSD(1, · · ·, M) has M candidates
vectors. The proposed algorithm (L = 2) has 1+NT candi-
date vectors for QPSK, and 1+2NT for M-QAM. It is easy to
verify that the proposed algorithm (L = 2) still has less can-
didate vectors than FSD(1, · · ·, M) when NT ≤ 7 (or NT ≤ 31,
respectively) for 16-QAM signal (or 64-QAM, respectively),
as shown in Fig. 2.

5. SIMULATION RESULTS

The SER (Symbol Error Rate) performance of the proposed
algorithm has been examined by means of the Monte-Carlo
simulation. The simulated MIMO systems are V-Blast sys-
tems. In addition, SNR is defined as SNR = PNT/σ2 and, in
the figures of this paper, SNR is represented by dB. Fig. 3 is
obtained based on a QPSK 3×3 system. It shows that there
are little distinctions among the performance curves includ-
ing ML, FSD(1, · · ·, M) and the proposed algorithm (L = 2,
L = 3 and L = 4). Fig. 4 simulates a 3×4 16-QAM system,
we can observe that the SER curves are almost overlapped
by one another. Although the better SER performance can
be achieved with larger L theoretically, different values of L
make only a little difference in performance, especially be-
tween L = NT + 1 and L = NT . However, one should note
that L = NT has 2NT less candidates vectors than L = NT +1
for 16-QAM or 64-QAM. Similar situation is showed by Fig.
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Figure 3: Performance comparison (QPSK, NT = NR = 3)

5 which is simulated based on a 64-QAM 4×5 system. For
L ∈ [1,NT + 1], L = 2 (or 3) is a preferred choice, because
the proposed algorithm with L = 2 (or L = 3 for 64QAM)
can achieve much less complexity than FSD(1, · · · , M) with
a little performance degradation.

6. CONCLUSION

Efficient detection algorithm of flexible computational com-
plexity for QAM MIMO system is proposed. The pro-
posed algorithm extends widely linear filtering to the cir-
cular signals (e.g. QAM, QPSK). It is shown that the pro-
posed algorithm (L = 2 or L = 3) has a ML-approaching
performance, and that its complexity is comparable with
FSD(1, · · · ,M) for QPSK signal, and lower than the corre-
sponding FSD(1, · · · ,M) algorithm for 16-QAM or 64-QAM
signal in quite an applicable interval of transmitting antenna
number. The application of the proposed algorithm is not
confined to QPSK or QAM signals, it is also effective in
the situation where other circular signals (e.g. PSK) are em-
ployed.
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