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ABSTRACT
In the context of passive sources localization using an an-
tenna array, estimation performance in terms of elevation and
azimuth is related to the kind of estimator used, and also
to the geometry of the considered antenna array. Although
there are several available results in the literature aboutlin-
ear and circular arrays, other possible geometries have been
less studied. In this paper, we study the impact of the array
geometry for two kinds of antenna arrays: the so called V-
shaped antenna array (2D) and its 3D extension. The Cramér
Rao lower Bound (CRB) will be used in this context as a use-
ful tool to find the optimal configuration. The performance of
the proposed antenna arrays is verified by comparing its CRB
to the one of the standard uniform circular antenna from both
analytical and simulation results.

1. INTRODUCTION

Direction of arrival (DOA) estimation of sources by an array
of sensors has been widely studied in the array signal pro-
cessing literature. The geometry of the array is one way to
improve the parameters estimation performance and to avoid
the ambiguities. A huge amount of results is available for
linear and circular arrays (uniform or not) [1, 2]. More gen-
erally, planar (or 2D) arrays have also been studied. But the
case of 3D arrays has surprisingly been less studied. How-
ever, there are several applications where the sensors are scat-
tered in the 3D space. Consequently, the antenna has an ar-
bitrary shapee.g. telescopes networks on the Earth’s sur-
face, electrodes networks on the skull of a patient, network
of buoys on the sea’s surface, etc.

Particularly, in [3] (chapter 4), the analysis of the antenna
arrays through their diagrams of radiation pattern was pre-
sented. In a recent work [4], the ambiguity of the antenna
arrays was studied by using differential geometry as a use-
ful tool. There are also some works concerning the study of
CRB in case of planar antenna arrays with non-standard ge-
ometry. We can cite here, for example, [5] and [6] , where,
contrary to our study, the sources are assumed random, hence
leading to different expressions of the CRB and where the
study is limited to the 2D antenna arrays. In this paper, we
are interested to the impact of the array geometry in terms of
estimation performance. Consequently, we use the CRB [7]
as a benchmark to optimize the sensors position.

The antenna array structure proposed here is a first step
for studying the 3D antenna. This allows us to compare our
results with the works done in [5] and [8], on the so-called V-
shaped antenna by measuring the contribution of the third di-
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mension. Besides the fact that this type of network has been
less studied in the literature, we adopt an approach where the
two considered geometries have a degree of freedom, which
is formed by the opening angle∆ between the two branches
located on the plane of each array. This explains why the
studied antenna array is called V-shaped antenna in opposi-
tion to the more classical L-shaped antenna array (i.e., ∆ = π

2 )
[9]. As a result, the obtained CRB depends on this open-
ing angle through the steering vector and allows us to study
the optimization of the sensors positions. Several analytical
and simulation results are given to prove that the 3D antenna
overcomes the ambiguity problem of the 2D antenna. More-
over we show that there are some circumstances in which the
3D antenna has better estimation performance than the 2D
antenna even for a weaker aperture.

The notational convention adopted in this paper is listed
as follows: italic indicates a scalar quantity, bold minuscule
indicates a vector, bold majuscule indicates a matrix.

The paper is organized as follows. In Sec. 2, the problem
and the observation model are introduced. The analytic ex-
pressions of CRB for the V-shaped antenna arrays, and for its
3D extension are derived in Sec. 3. Finally, an analysis and
some simulations concerning the analytic CRB are presented
in Sec. 4.

2. MODEL SETUP

We here consider the localization of a source emitting a de-
terministic and narrow band signals(t) using an antenna ar-
ray consisting of identical and omni-directional sensors.The
positions in space of the source and theith sensors of the
antenna array are given by their spherical coordinates,i.e.,
the couple(θ ,φ ) for the source (assumed to be in the far
field area) and the triplet(ρ i ,ϕ i ,ξ i) for the ith sensor (see
Fig. 1(a)). In this study, we consider two geometries of an-
tenna arrays. The first one concerns a planar V-shaped an-
tenna array where its two branches, separated by an opening
angle noted∆, consist of two linear not necessarily uniform
antenna arrays. Note that the same analysis can be found in
[5] for a Gaussian (unconditional) source. The second one is
an extension of this planar array where a branch (also consist-
ing of a linear array not necessarily uniform) orthogonal to
the plane is added (see Fig. 1(b)). From the aforementioned
assumptions, an analysis of the inter-sensors delay leads to
the following observation model at the output of the antenna
array [10]:

y(t) = [y1(t) . . .yM(t)]T = a(θ ,φ )s(t)+n(t), (1)

wheret = 1, . . . ,T, in whichT denotes the number of snap-
shots,λ denotes the wavelength anda(θ ,φ ) is the steering
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(a) The coordinates system of the source and the array
sensors

(b) Geometry of the 3D antenna (In case of the 2D
antenna, only the sensors located on the x0y plane are
presented)

Figure 1: The geometry of the problem

vector given by:

a(θ ,φ ) =









e
2 jπρ1

λ (sinθ sinξ 1 cos(φ−ϕ1)+cosξ 1 cosθ)

...

e
2 jπρM

λ (sinθ sinξ M cos(φ−ϕM)+cosξ M cosθ)









. (2)

The number of sensors located on the plane is denoted
by N1, and the number of sensors located on the orthogo-
nal branch in the case of a 3D antenna array is denoted by
N2. The total number of sensorsM = N1 + N2 will be con-
stant for the comparison of these two arrays. The noise vec-
tor n(t) ∈ CM is assumed to be Gaussian, circular, indepen-
dent and identically distributed with zero-mean and covari-
ance matrixσ2I.

3. CRAMÉR-RAO BOUND

The analysis of the ultimate performance, in terms of vari-
ance, that an unbiased estimator might achieve is generally
conducted by using the CRB. In the case of the observation
model (1), it is clear thaty(t) is distributed according to
a multivariate Gaussian distribution with meana(θ ,φ)s(t),
and varianceσ2I. The parameters of interest in this study
are the azimuth and the elevation,i.e., φ andθ (since these
parameters are decoupled from the noise variance, this latter

is omitted). We can notice that only the mean ofy(t) is pa-
rameterized. In this case, after the concatenation of all the
observation vectors (t = 1, . . . ,T), the CRB, notedC, can be
deduced from [11] and [12]:

C =

[

Cθ θ Cθφ
Cφθ Cφφ

]

= σ2

2sHs





Re
(

∂a
H (θ ,φ)
∂θ

∂a(θ ,φ)
∂θ

)

Re
(

∂a
H(θ ,φ)
∂θ

∂a(θ ,φ)
∂φ

)

Re
(

∂a
H (θ ,φ)
∂φ

∂a(θ ,φ)
∂θ

)

Re
(

∂a
H(θ ,φ)
∂φ

∂a(θ ,φ)
∂φ

)





−1

,

(3)
wheres =[s(1) . . .s(T)]T and, whereCθθ andCφφ denote the
CRB concerning the elevation and the azimuth, respectively,
andCθφ = Cφθ represent the coupling between the parame-
tersθ andφ .

Thanks to the structure of the steering vector given by the
observation model (1) and after some computational efforts
detailed in the appendix, we obtain an analytic expression of
the CRB for the 3D antenna array:



















C3D
θθ = 2

CSNR

1−cos∆cos2φ
S1 sin2∆cos2 θ+2S2sin2 θ(1−cos∆cos2φ)

,

C3D
φφ = 4

CSNRsin2 θ

1
2S1cos2 θ(1+cos∆cos2φ)+S2sin2 θ

S2
1 sin2∆cos2 θ+2S1S2 sin2 θ(1−cos∆cos2φ)

,

C3D
θφ = 1

CSNRtanθ
S1cos∆sin2φ

S2
1 sin2 ∆cos2 θ+2S1S2 sin2θ (1−cos∆cos2φ)

,

(4)
where, the following notations are adopted:‖s‖2 = sHs,

CSNR= 8π2‖s‖2

σ2λ 2 , S1 = ∑N1
i=1 ρ2

i , andS2 = ∑N1+N2
i=N1+1 ρ2

i for N2 ≥

1.
Since the 2D array is only a particular case of the 3D

array (N2 = 0), the CRB are obtained by lettingS2 = 0 in the
above equations, leading to:















C2D
θθ = 2

CSNR

1−cos∆cos2φ
S1 sin2 ∆cos2 θ ,

C2D
φφ = 2

CSNR

1+cos∆cos2φ
S1 sin2 ∆sin2 θ ,

C2D
θφ = 1

CSNR

cos∆sin2φ
S1 sin2 ∆cosθ sinθ .

(5)

Moreover, in the particular case where∆ = π
2 , i.e., when

the 2D and 3D arrays represent the canonical basis ofR2 and
of R3, respectively, we obtain the following more compact
expressions:











C3D⊥
θθ = 1

CSNR

2
S1cos2 θ+2S2sin2 θ ,

C3D⊥
φφ = 2

CSNRS1 sin2 θ ,

C3D⊥
θφ = 0,

(6)

and










C2D⊥
θθ = 2

CSNRS1cos2 θ ,

C2D⊥
φφ = 2

CSNRS1sin2 θ
,

C2D⊥
θφ = 0.

(7)

From these expressions, two important remarks can be
done:

• When the source is located in the planex0y, i.e., θ =π
2 ,

C2D
θθ tends to infinity, whileC3D

θθ remains finite. Conse-
quently, the 3D array overcomes the ambiguity problem
of the 2D array.
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(a) Cφφ /CUCA
φφ versusφ with respect toα for ∆ = 60◦ andθ = 45◦
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Figure 2: Comparison of performance between V-shaped an-
tenna and UCA

• In the case where∆ = π
2 , φ and θ become decoupled,

which confirms the intuition. Moreover,C3D⊥
φφ andC2D⊥

φφ
no longer depend onφ (isotropic property with respect
to φ ). Furthermore, ifS1 = 2S2, i.e., the three branches
of the 3D array are made of a uniform linear array with
the same number of sensors, the estimation concerning
θ no longer depends on the source’s position (isotropic
property with respect to bothθ andφ ) in the case of the
3D array.

4. ANALYSIS AND SIMULATIONS

In this section, the behavior of the CRB calculated in the pre-
vious section with respect to the degree of freedom∆ is ana-
lyzed. We assume that, all branches,i.e. two branches for the
2D antenna, and three branches for the 3D antenna, are made
from uniform linear arrays (ULA) with a half-wavelength
inter-sensors spacing. All simulations are realized with asig-
nal to noise ratio of 10dBandT = 50 snapshots.

It is interesting to compare the performance of the V-
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Figure 3:K(M) with respect to the number of sensorsM

shaped array with a classical isotropic planar array such that
the uniform circular array (UCA). These arrays have the
same number of sensors. The UCA having its sensors sepa-
rated equidistantly with a half-wavelength spacing, its radius
is given by [13]: r = λ

4sin π
M

. By letting α = N1
M , it is clear

that the value ofα associated to the planar array is equal to
1, while the one associated to the 3D array is strictly lower
than 1. The Fig. 2(a) and (b) represent, respectively, the CRB
concerning the azimuth and elevation versus azimuthφ , w.r.t
α, for the opening angle∆ = 60◦, and the elevationθ = 45◦.
In order to compare the V-shaped antenna with the UCA, the
bounds are normalized by the CRB of the UCA. One can
observe that the estimation performance concerning eleva-
tion with a V-shaped array is always better than with a UCA,
while the one concerning azimuth depends on the number of
sensors located on the orthogonal branch,i.e., on the coef-
ficient α. For a value ofα close to 1, the estimation con-
cerning elevation with a V-shaped array is better than with
an UCA.

In particular, we are interested to detail the performance
comparison in the case where the V-shaped array and its 3D
extension are isotropic (∆ = π

2 ). In this case, we just consider
a comparison concerning the CRB of azimuth of these arrays.
Let us consider

K(M) = 3
α(α2M2−1)sin2 π

M
, (8)

whereK(M) =
C2D⊥

φφ
CUCA

φφ
if α = 1 andK(M) =

C3D⊥
φφ

CUCA
φφ

if α < 1. It is

clear thatK(M) = 3
π2 if α = 1 andM >> 1 orK(M) = 3

π2α3

if α < 1 andαM >> 1. We can say that the V-shaped array
leads to better performance in terms of azimuth estimation
than the UCA if and only if the ratioK(M) is lower than
1. Fig. 3 shows the behavior ofK(M) with respect to the
number of sensorsM and to the coefficientα.

Tab. 1 shows the value of 1−K(M) w.r.t. α for a large
number of sensors. This value represents the gain, concern-
ing the azimuth estimation, of the V-shaped isotropic antenna
array compared to the UCA antenna. We here want to find
the value ofα, with which 1−K(M) > 0 i.e., the V-shaped
antenna array has the better azimuth estimation accuracy than
the UCA antenna. It is clear that, for allα > 0.69, the 3D V-
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Table 1: ’The azimuth estimation performance gain of 3D
V-shaped isotropic antenna according to UCA’

α 1 0.9 0.8 0.7 0.6
1−K(M) 0.6959 0.5829 0.4060 0.1133 -0.4081

shaped isotropic array is always better than the UCA. More-
over, if α = 1 then the azimuth estimation accuracy of the
2D V-shaped isotropic planar array is nearly 70% better than
the UCA antenna.

In the following, we compare the estimation performance
between the 2D and 3D array. In this simulation, the 2D
array is made fromM = 7 sensors (one at origin and three
on each of the two branches). The 3D array is also made
with M = 7 sensors (one at the origin, and two on each of the
three branches). It should be noted that taking some sensors
from the planar array of the 2D antenna array to make the 3D
antenna array will decrease the aperture and hence, reduce its
performance. Therefore, using non ULA such as minimum
redundancy [14], D-optimal [15], etc. instead of using ULA
can maintain the aperture and also, the performance.

Fig. 4(a) shows the behavior ofC3D
θθ , C2D

θθ , C3D
φφ andC2D

φφ
with respect to the opening angle∆ varying from 0 toπ

2 . For
this simulation, the values ofφ andθ are respectively 20◦

and 70◦. In this scenario, the source is low according to the
plane of the array. We observe that for the estimation of the
elevationθ , the 3D array always attains better performance
than the 2D array. In this case, this is always true if the value
of elevation satisfiedθ ≥ 62.2◦, because, we can easily prove
that

C3D
θθ

C2D
θθ

< 1⇔ θ > arctan
√

max
∆,φ

{Γ}. (9)

where Γ =
sin2 ∆((M2−1)−α(α2M2−1))

(1−cos∆cos2φ)4(1−α)((1−α)M+1)(2(1−α)M+1)
, α =

N1
M = 5

7, M = 7, θ ∈ [0◦,90◦], ∆ ∈ (0◦,180◦), φ ∈ [0◦,360◦].
On the contrary, there exists a value of∆ (around 23◦ in
this case), below which, the 3D array has better performance
than the 2D array for the azimuth estimation. This critical
value can be obtained by solving numerically the equation
C3D

φφ = C2D
φφ with respect to∆.

Fig. 4(b) shows the same curves, but for the value ofφ
andθ respectively equal to 50◦ and 30◦. In this scenario,
the source is high according to the plane of the array. In this
case, we should, contrary to intuition, choose the 2D array
over a certain limited of opening angle obtained by solving

numerically max
(

C3D
φφ = C2D

φφ ,C3D
θθ = C2D

θθ

)

.

5. CONCLUSION

In this paper the analytic expressions of CRB concerning az-
imuth and elevation of a single source under conditional ob-
servation model for both V-shaped array and its 3D exten-
sion is derived. Thanks to these results, an analysis of the
two geometries is provided. We found that the 2D isotropic
V-shaped array is always better than UCA in terms of estima-
tion performance concerning azimuth. We also conclude that
according to the source position in the space, below a certain
value of the opening angle of the array, the V-shaped 3D ex-
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Figure 4: Normalized CRB with respect to the opening angle
∆.

tension array is always better than the V-shaped array for the
same number of sensors with respect to estimation concern-
ing azimuth or elevation. In contrast to this result, we show
that there are values of∆ such that the V-shaped array has
better performance in terms of azimuth, while its 3D exten-
sion array obtains better performance in terms of elevation.

6. APPENDIX: PROOF OF (4)

The derivatives of theith element of the steering vector are
given by:

∂ai(θ ,φ)
∂θ =

2 jπρ i
λ (cosθ sinξ i cos(φ −ϕ i)−cosξ i sinθ )

×e

(

2 jπρ i
λ sinθ sinξ i cos(φ−ϕ i)+cosξ i cosθ

)

,
∂ai(θ ,φ)

∂φ = −
2 jπρ i

λ sinθ sinξ i sin(φ −ϕ i)

×e

(

2 jπρ i
λ sinθ sinξ i cos(φ−ϕ i)+cosξ i cosθ

)

.
(10)
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Let us assume thatN1 is an odd number. Since the two
branches of the V-shaped antenna are symmetric, then we
have:

N1

∑
i=1

ρ2
i e−2 jϕ i =

N1−1
2

∑
i=1

ρ2
i e−2 j ∆

2 +

N1−1
2

∑
i=1

ρ2
i e2 j ∆

2

=

N1−1
2

∑
i=1

ρ2
i

(

e− j∆ +ej∆)

= 2cos∆
N1−1

2

∑
i=1

ρ2
i = S1cos∆.

(11)

It is clear that the parameterξ i = π
2 for the sensors located

on the planexOywhile ξ i = 0 for the sensors located on the
orthogonal axis. Finally, applying (10) on (3) by using (11),
the numerators of the CRB are given by:

[C−1]11
CSNR

=
M
∑

i=1
ρ2

i (cosθ sinξ i cos(φ −ϕ i)−cosξ i sinθ )2

=
N1

∑
i=1

ρ2
i cos2 θ cos2 (φ −ϕ i)+

M
∑

i=N1+1
ρ2

i sin2 θ

= cos2θ
4

(

e2 jφ
N1

∑
i=1

ρ2
i e−2 jϕ i +e−2 jφ

N1

∑
i=1

ρ2
i e2 jϕ i

+2
N1

∑
i=1

ρ2
i

)

+sin2 θ
M
∑

i=N1+1
ρ2

i

= 1
4 cos2 θ

(

S1cos∆(e2 jφ +e−2 jφ)+2S1
)

+sin2 θS2

= 1
2S1cos2 θ (cos∆cos2φ +1)+S2sin2 θ ,

(12)
[C−1]22

CSNR
=

M
∑

i=1
ρ2

i (sinθ sinξ i sin(φ −ϕ i))
2

= sin2 θ
N1

∑
i=1

ρ2
i sin2 (φ −ϕ i)

= − 1
4 sin2 θ

(

e2 jφ
N1

∑
i=1

ρ2
i e−2 jϕ i +e−2 jφ

N1

∑
i=1

ρ2
i e2 jϕ i −2

N1

∑
i=1

ρ2
i

)

= − 1
4 sin2 θ

(

S1cos∆(e2 jφ +e−2 jφ)−2S1
)

= − 1
2S1sin2 θ (cos∆cos2φ −1) ,

(13)
and

[C−1]12
CSNR

= −
M
∑

i=1

(

ρ2
i sinθ sinξ i sin(φ −ϕ i)

× (cosθ sinξ i cos(φ −ϕ i)−cosξ i sinθ ))

= −sinθ cosθ
N1

∑
i=1

ρ2
i sin(φ −ϕ i)cos(φ −ϕ i)

= − 1
8 j sin2θ

(

e2 jφ
N1

∑
i=1

ρ2
i e−2 jϕ i −e−2 jφ

N1

∑
i=1

ρ2
i e2 jϕ i

)

= − 1
8 j S1sin2θ cos∆(e2 jφ −e−2 jφ)

= − 1
4S1sin2θ cos∆sin2φ .

(14)
The denominator of CRB is given by:

det[C−1]

C2
SNR

= [C−1]11[C
−1]22−[C−1]12[C

−1]21
C2

SNR

=
(1

2S1cos2 θ (cos∆cos2φ +1)+S2sin2 θ
)

×
(

− 1
2S1sin2 θ (cos∆cos2φ −1)

)

−
(

1
2S1sinθ cosθ cos∆sin2φ

)2

= − 1
4S2

1sin2 θ cos2 θ cos2 ∆cos22φ
+ 1

4S2
1 sin2 θ cos2 θ − 1

2S1S2sin4 θ (cos∆cos2φ −1)
− 1

4S2
1 sin2 θ cos2 θ cos2 ∆sin22φ

= sin2 θ
4

(

S2
1cos2 θ sin2 ∆ +2S1S2sin2 θ (1−cos∆cos2φ)

)

.
(15)
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