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ABSTRACT

In this paper two extensions to the well known Cell-ID lo-
calization technique for handsets in mobile cellular networks
are presented: It is firstly shown how the combination of
multiple cross-provider Cell-IDs, which may become avail-
able from cooperation of one-hop neighbours in mobile ad-
hoc networks (MANETs) or from Dual SIM mobiles phones,
can be used to improve the positioning accuracy. Secondly,
a robust map matching algorithm for Cell-ID localization is
presented. The proposed map matching algorithm is termed
robust, as it is capable of dealing with the - compared to GPS
- more coarse Cell-ID based position estimates. An imple-
mentation of a localization system based on these methods
shows, that the positioning accuracy can be significantly im-
proved compared to the simple single Cell-ID technique.

1. INTRODUCTION

There is a rapid development in the area of personal mobile
communications: Mobile phones are becoming smart phones,
in that they are integrated with features like high-resolution
displays, wireless connectivity (802.11x, bluetooth,...), differ-
ent kinds of sensors and localization technology. The inte-
gration of these features will enable the broader evolution of
already established and of new location based services (LBS)
based on mobile handsets. The key to LBS is the location
awareness of the mobile device; and the obvious technology
for this purpose seems to be the GPS technology.

A closer look however reveals that GPS is not necessar-
ily the best choice for every kind of LBS. A major drawback
of GPS in context of LBS is that GPS usually requires a
line-of-sight (LOS) to the satellites. This LOS requirement,
however, may be contradicted by the typical use case of a
LBS, where the user shall get notified about the occurrence
of a certain location triggered event (“pushed LBS”) and
where the user therefore typically does not carry his device
to maintain LOS conditions, but carries it in her/his pocket,
backpack or in some case in a car. Thus, for these kinds
of services, the user-time coverage is the critical point. In
fact it has been shown that a typical user-time coverage of
GPS can be below 5% in worst case [1]. In this use case
the adoption of GPS would therefore not be preferred, be-
cause it makes the usage of the LBS inconvenient or even
impossible for the user. A second critical point is the power
consumption of the GPS receiver. Using it to constantly
track the mobile’s position will reduce the battery life time
of the mobile device. Finally it should be noticed, that the
high positioning accuracy that GPS provides – and which
is indeed inevitable for e.g. navigation and routing applica-
tions – is not required for every kind of LBS. There are LBS
which can be adopted with much lower accuracy. Examples
[2, 3] include social and infotainment applications (for exam-
ple “notification about nearby friends”), service applications

(show points of interest on a local map) or commercial ap-
plications (location based advertising, traffic analysis).

The conclusion from these considerations is, that for
LBS, where GPS-like accuracy is not absolutely required and
where user-time coverage is more important, GPS should be
replaced by a localization technology which is not dependent
on LOS conditions and which is less power consuming. In or-
der to make the adoption of the technology straightforward
it is also desirable to avoid intrusive software or hardware
changes on the mobile phone platform. These considerations
suggest cellular based localization. Cellular based localiza-
tion includes geometric approaches [4] based on received sig-
nal strength (RSS), time-of-arrival (TOA), time-difference-
of-arrival (TDOA) or angle-of-arrival (AOA), as well as fin-
gerprint methods [5], which use location dependent finger-
prints. While these methods can achieve reasonable accu-
racy, they all require the access to baseband measurements,
which, however, is usually not available to the application
developer on most smartphone platforms. An information
that can usually be obtained easily is the Cell-ID, the infor-
mation about the base transceiver station (BTS), the phone
is currently connected to.

Cell-ID localization means in the simplest case to esti-
mate the position of the mobile phone as the position of the
connected BTS [6]. Its accuracy therefore directly correlates
to the cell size of the current BTS and makes it the most
inaccurate among the cellular based localization approaches,
while being the only approach which is easy to implement
across different mobile platforms.

In this paper we analyze two approaches to increase the
accuracy of Cell-ID localization. The first approach is the
usage of multiple cross-provider Cell-IDs instead of only one
Cell-ID. As an example, additional Cell-IDs can become
available by means of cooperation effects in already estab-
lished MANETs, where a mobile phone collects the Cell-
IDs from those one-hop neighbours, that are connected to
different service providers[7]. Only one-hop neighbours are
considered, because the distance between those is limited
by the physical communication range and can be assumed
to be smaller than or in the order of the expected localiza-
tion accuracy. Another example would be dual-SIM mobile
phones, which are equipped with two simultaneously active
SIM cards, so that the mobile phone can be registered to
two different service providers at the same time. The second
approach is the inclusion of map matching into the localiza-
tion algorithm. The map matching algorithm is based on
matching a set of possible position candidates for each raw
position estimate. In order to select the best candidate from
each set, metrics, which depend on topological and geomet-
ric evaluation of previous and current position estimates, are
assigned to each candidate. Using these metrics, sequences
of “on street“ positions can be constructed, which show an
increased positioning accuracy. The developed map match-
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ing algorithm differs from traditional approaches, in that it is
capable of dealing with less accurate raw position estimates
and it is therefore considered as a robust map matching al-
gorithm.

This paper is organized as follows: In section 2.1 back-
ground on Cell-ID localization is presented followed by the
proposed cross-provider Cell-ID algorithm in Section 2.2.
Section 3 starts with a brief introduction to map matching
and then presents the developed map matching algorithm.
Results from field tests are presented in Section 4 and con-
clusions are drawn in Section 5.

2. CROSS-PROVIDER CELL-ID
LOCALIZATION

2.1 Cell-ID localization

The simplest method among cellular based localization
methods is the Cell-ID method: The position of the mobile
terminal is estimated as the position of its currently serving
BTS. As it only requires the extraction of the Cell-ID and the
knowledge about the location of the BTS, it is easy to imple-
ment on common smartphone platforms and does not require
any intrusive software changes. Its drawback however is the
accuracy, which is lower than that of range-, direction- or
fingerprint-based methods. The accuracy directly depends
on the cell size, which may vary depending on the environ-
ment from a few hundred meters up to 20−25km. It should
be noted that in context of localization for LBS, which typ-
ically takes place in urban, suburban or highway scenarios,
the cell size is at most in range of a few kilometers, usually
much smaller. Another point that degrades the performance
is the fact that the mobile phone is not necessarily always
connected to its closest BTS [6].

It is well-known that incorporation of multiple connec-
tivity informations can increase positioning accuracy. In the
following section we thus analyze how cross-provider con-
nectivity information, i.e. multiple Cell-IDs from different
providers, can be used to improve the positioning perfor-
mance. The resulting range-free, handset-based algorithm is
formulated in terms of a Kalman filter.

2.2 Cross-provider Cell-ID localization

Assume a mobile terminal at position (x(i), y(i)) with ve-
locity (vx(i), vy(i)), which has access to N Cell-IDs from
different BTS at locations (xBTS,j , yBTS,j), j = 1 . . . N . A
state space model is then formulated as

x(i) = Φx(i− 1) +Θw(i), (1)

y(i) = Hx(i) + n(i), (2)

where the vectors x(i) = [x(i), y(i), vx(i), vy(i)]
T and

y(i) = [xBTS,1(i), . . . xBTS,N (i), yBTS,1(i), . . . yBTS,N (i)]T

denote position and velocity of the terminal and positions of
the BTS at time instant i. The transition matrix Φ and the
measurement matrix H are given as

Φ =





1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



 , H =
[

eN 0N×1 0N×2

0N×1 eN 0N×2

]

,

where ∆t is the sampling time and eN is the column vec-
tor consisting of N ones. The scrambler matrix Θ incor-
porates the sampling time into the velocity noise w(i) =

[wx(i)wy(i)]
T ,

Θ =

[

02×2

∆t 0
0 ∆t

]

,

so that the process covariance is given as Q =
ΘE{w(i)wT (i)}ΘT . The measurement covariance is taken
as R(i) = E{n(i)nT (i)}. Given this state-space model it
is straightforward to apply a Kalman filter to estimate the
position and velocity of the terminal. As usually there is a
prediction step for the state x(i) and the covariance P(i),

P
−(i) = ΦP

+(i− 1)ΦT +Q, (3)

x
−(i) = Φx

+(i− 1), (4)

and a correction step,

K(i) = P
−(i)HT

(

HP
−(i)HT +R(i)

)

−1
(5)

P
+(i) = P

−(i)−K(i)HP
−(i) (6)

x
+(i) = x

−(i) +K(i)
(

y(i)−Hx
−(i)

)

, (7)

where K(i) is the Kalman gain. Estimated position and
velocity are given as the a posteriori state estimate x+(i).

The process and measurement covariances are written as

Q = ∆t2σ2
[

02×2 02×2

02×2 I2×2

]

, R(i) =

[

R′(i) 02×2

02×2 R′(i)

]

,

where R′(i) = diag(r21(i), . . . , r
2
j (i), . . . r

2
N (i)). The pro-

cess variance σ2 is a design parameter, which controls the
smoothing of the state estimation; for the measurement vari-
ances the squared cell size is used, where the cells are as-
sumed to have circular shape around the BTS. As we only
know the positions of the BTS and the sizes are generally
unknown, we approximate the rj(i) as half of the distance
between the current and the previously connected BTS. Al-
though both this approximation and the circular cell size as-
sumption are certainly quite coarse, our experiments showed
that they improve the filter’s performance in case of small
cells (urban scenario) compared to choosing all rj(i) identi-
cally. For larger cell sizes (suburban and highway scenarios)
the improvement is only marginal.

To justify that the choice of state space model and
Kalman filter are reasonable, it is instructive to analyze how
the filter behaves in case the modeling of the mobile’s dy-
namics is dropped. Thus setting σ2 → ∞ and starting with
an arbitrary P+(0) = I, at time instant i = 1, the predicted
state covariance becomes P−(1) = Q. Putting this into (5)
and (6) results in

K(1) =
(

H
T
R

−1(1)H
)

−1
H

T
R

−1(1) and

P
+(1) = (I−K(1)H)P−(1)

=
(

I−
(

H
T
R

−1(1)H
)

−1
H

T
R

−1(1)H
)

P
−(1)

= 0,

where the identity

K(i) = P
−(i)HT

(

HP
−(i)HT +R(i)

)

−1

=
(

H
T
R

−1(i)H+ (P−(i))−1
)

−1
H

T
R

−1(i)

has been used. For all consecutive steps, i → ∞, it holds
K(∞) = K(1) and (7) becomes

x
+(i) = x

−(i) +K(∞)
(

y(i)−Hx
−(i)

)

=
(

H
T
R

−1(i)H
)

−1
H

T
R

−1(i)y(i). (8)

It is now easy to see that (8) is the generalized least squares
estimator with weighting matrix R−1(i), thus it is also the
best linear unbiased estimator.
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The structure of H allows further simplification of (8) to

x
+(i) =





















1
N
∑

j=1

r
−2

j
(i)

N
∑

j=1

r−2
j (i) xBTS,j(i)

1
N
∑

j=1

r
−2

j
(i)

N
∑

j=1

r−2
j (i) yBTS,j(i)

02×1





















and it can be seen that the filter reduces to a weighted cen-
troid algorithm in case of unmodelled dynamics. We finally
note that for unknown cell radii, i.e. setting all r2j (i) identi-
cal, it further simplifies to the well known centroid algorithm
([8, 9]):

x
+(i) =

[

1

N

N
∑

j=1

xBTS,j(i),
1

N

N
∑

j=1

yBTS,j(i), 0
T
2×1

]T

Thus the proposed algorithm is essentially a weighted cen-
troid algorithm, but extended by a motion prediction model.

3. ROBUST MAP MATCHING

3.1 Overview

The Kalman filter delivers raw position estimates based on
the available Cell-IDs. As it usually can be assumed, that
the user moves on streets, whether be it in a vehicle or by
foot, we can use street map data to introduce a constraint on
the raw positions and to improve the positioning accuracy.
This task is called map matching.

In general, map matching[10] is the problem of finding
the best path on street for a given series of position estimates.
It is limited by the inaccuracy of the raw position estimates
and street map data. In a map matching algorithm usually
three steps are involved: In the first step a candidate set of
possible street segments or street trajectories is identified us-
ing the data delivered by the position estimator; these data
include the raw position itself and optionally confidence, di-
rection or velocity informations. The second step consists in
finding the best of the candidates. This can be accomplished
for example by using geometric, topological or probabilistic
[10, 11, 12] measures. The final position estimate is found by
projecting the raw position to the selected street segment.
For a more detailed overview on map matching techniques,
the reader is referred to [13].

When considering the application of map matching to
Cell-ID localization, it is first of all important to realize that
most work in the field of map matching is tailored to GPS
localization and that there are major differences between
the quality of GPS and Cell-ID-based position estimation:
Firstly the positioning accuracy of Cell-ID localization is
lower. Secondly, the GPS error is known to be correlated
in time [14], i.e. it is possible to construct reasonable trajec-
tories from series of position estimates even if the positions
themself are less accurate. For the Cell-ID algorithm used
in this work, the position estimates are only slightly corre-
lated, depending on the choice of the Kalman filter’s process
variance σ2. That means, similarity metrics based on esti-
mated trajectories can hardly be used and, additionally, the
estimated headings and velocities are coarse. Therefore, the
map matching algorithm presented in this paper puts less
focus on the distance of the map matched position estimates
to the raw estimates. Instead, the objective is to construct
a reasonable, shortest route with respect to estimated po-
sitions and topological measures. Estimated velocity and
heading are only used for a very coarse prefiltering in some
cases. The following section describes the proposed algo-
rithm.

3.2 Algorithm

Given the a posteriori state estimate of the Kalman filter as
input data, the map matching algorithm at each time instant
i consists of the following three steps:

1. Identify a candidate set of size L with possible matched
points on street.

2. Assign a metric Mj(i) to each candidate j = 1 . . . L.
3. Find the candidate with minimum metric and select its

predecessor at time instant i− τ as final matched point.

The steps are described in detail in the following:

3.2.1 Candidate set

The candidate set C(i) is formed by generating L perpendic-
ular projections of the raw position estimate to segments of
the street network. The candidate points have to meet two
conditions:

• The distance measured on street between each pair of
candidates is greater than a design parameter ∆s, which
should be selected smaller for a more dense street net-
work.

• The direction of the corresponding street segment is
∈ [φ(i)−∆φ(i), φ(i)+∆φ(i)], where φ(i) is the estimated
direction computed from the estimated velocity compo-
nents vx(i) and vy(i). The tolerance ∆φ(i) is adaptively
assigned at each time instant as

∆φ(i) =

{

∆φ if
√

v2x(i) + v2y(i) > vT
π else,

(9)

where the correlation of higher velocity and more reli-
able estimated heading is used (cf. [15]): the filtering is
only effective if the estimated absolute velocity is greater
than a threshold vT . As mentioned in the previous sec-
tion, the velocity estimate and therefore the estimated
heading φ(i) is quite coarse, because it is only based on
cell transitions. So ∆φ is set very conservatively to pi/2
in this work in urban environments. This means that the
main effect of this prefiltering is to remove oneway streets
and to match on the correct side of two-lane roads. In
suburban and highway environment, where the accuracy
of φ(i) is lower due to larger cells and less cell transi-
tions, it is not used as it tends to remove correct street
segments.

3.2.2 Metric

A metric Mj(i) is assigned to each candidate point j at time
instant i as follows:

a) The set of predecessors P j(i) of j is formed by those
elements p ∈ C(i − 1) that can be reached from j with

on-street distance d
(j,p)
s < ∆d.

b) For each p ∈ P j(i) a branch metric is computed as

µ(j,p) = (1 + α r(p)) d(j,p)s , (10)

where α is a design parameter and r(p) ∈ [0, 1] is the
distance of p to its corresponding raw position estimate
relative to the other candidates in C(i−1). This relative
distance is computed as

r(p) =
d(p) − dmin

dmax − dmin

, (11)

with dmin and dmax being the minimum and maximum
distances of candidate points in C(i − 1) to the raw es-

timate (x(i− 1), y(i− 1)) and d(p) the distance of p to
(x(i− 1), y(i− 1)).
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c) The metric Mj(i) is computed as

Mj(i) = min
p

λMp(i− 1) + (1− λ)µ(j,p), (12)

where λ ∈ [0, 1) is a design parameter. Additionally the
best predecessor pBest is stored for the traceback step.
Thus the metric Mj(i) depends on the on-street-distance
between the candidate j and its best predecessor and on
the relative distance of the predecessor to its raw posi-
tion estimate. The parameter α ≥ 0 is used to weight
between both measures; if the accuracy of the raw posi-
tion estimate is expected to be lower, then a smaller value
α should be used to reduce to influence of the raw po-
sition estimates in favor of constructing a shortest route
through the street network. The forgetting factor λ re-
sults in an exponential window, which controls how many
previous metrics have impact on the current metric. In
this work λ = 0.9 has been used, which corresponds to
an effective influence of about the past 9 estimates.
We note that for the special case α = 0 and λ = 1, the
algorithm would result in finding a shortest path through
a graph, where the nodes and vertices are defined by the
candidate points and on-street connections between can-
didate points of consecutive time instants, respectively.

d) Besides the metric Mj(i) the number of predecessors
Nj(i) is used as an additional measure. For a candidate
j it is computed as

Nj(i) = NpBest
(i− 1) + 1, (13)

where

pBest = argmin
p

λMp(i− 1) + (1− λ)µ(j,p). (14)

It can intuitively be seen, that a candidate with small
Nj(i) is not likely a correct point. On the other hand,
in the ideal case, where the candidate set covers the true
street in every time step and the parameter ∆s is chosen
large enough, it should hold that Nj(i) = i.

If P j(i) is found to be empty in step a), the steps b)-d) are
skipped and

Mj(i) = ∞ and Nj(i) = 0. (15)

3.2.3 Select and Traceback

From all L candidates at time instant i the best one jBest(i)
is selected as

jBest(i) = argmin
j

{Mj(i) | Nj(i) > ∆p} . (16)

If no candidate satisfies Nj(i) > ∆p, jBest is selected as

jBest = argmax
j

Nj(i). (17)

Finally in the case where Nj(i) = 0 ∀ j and thus no previ-
ous information can be used, jBest is selected as the point
with shortest distance to the raw estimate. This case should
however only occur if the algorithm is (re-)initalized.

The final position estimate is given by tracing τ steps
back from the jBest using the best predecessor in each step,
which causes a delay in the position estimate of ∆t · τ . The
selection of τ is thus a trade-off between robustness (larger
τ) and real-time requirements.

Table 1: Summary of algorithm parameters.

Settings

Description Urban Suburban Highway

Kalman filter parameters:

σ Kalman process cov. 1e-10 deg/s2

R
′(i) Measurement cov. adaptive

∆t Sampling time 4s

Map matching parameters:

L Number of Candidates 10

∆φ Dir. prefilter tolerance π/2 - -

vT Velocity threshold for 30km/h - -

direction prefilter

∆s Minimum distance-on- 100m 200m 500m

street betw. candidates

∆d Maximum on-street- 1000m

distance to predecessor

∆p Required number of 9

predecessors

λ Forgetting factor 0.9

α Weighting factor 2.0 1.1 1.1

τ Traceback depth 15 7 7

4. RESULTS FROM FIELD TESTS

To assess the performance of the algorithm, field measure-
ments using four handsets forming a WLAN-based MANET
have been carried out. All four nodes were registered to dif-
ferent GSM network providers. During the tests, all nodes
were in one vehicle which covered a distance of about 300km
in urban, suburban and highway environments. This re-
sulted in about 14k Cell ID samples. A GPS device con-
nected to the head-node has been used to provide reference
measurements. Vectorized street map data has been taken
from the OpenStreetMap project; the completeness of these
data has been visually verified for the considered terrain.
The parameters of the algorithm are summarized in Table
1. An adaption of the terrain dependent parameters is done
based on observed cell sizes.

The results are presented in Table 2, where the mean
error and the 90%-error (”In 90% of the cases, the error is
smaller than x.“) are given in meters for urban, suburban
and highway terrain. For the cases where 2 and 4 cross-
provider Cell-IDs are used, the mean error of the raw posi-
tion estimate, of a simple point-to-point matching (marked
as ”Smpl.“), which just matches the raw position to the clos-
est point on a street, and of the proposed robust matching
algorithm (”Rob.“) are given; additionally the result of the
localization based on one single Cell-ID at a time is given.

From these figures, we get the following important re-
sults:

• The positioning accuracy is improved, if the number of
used cross-provider Cell-IDs is increased. It is interest-
ing to compare this result to the results from [1], where
the authors point out that the usage of multiple neigh-
bour Cell-IDs (i.e. single-provider) does not necessarily
increase the performance in all cases.

• Simple point-to-point matching does not help to improve
the accuracy, as it leads to too many wrong matches.

• The proposed robust map matching algorithm, which
puts more focus on finding matches on a continuous ap-
proximated shortest path, can however improve the po-
sitioning accuracy for both the 2 and 4 Cell-ID case even

1711



Table 2: Results in terms of mean error and 90%-error in meters.
Mean error 90% error

No. Cells 1 2 4 1 2 4

Algor. Raw Raw Smpl. Rob. Raw Smpl. Rob. Raw Raw Smpl. Rob. Raw Smpl. Rob.

Urban 209 158 157 145 135 132 106 495 369 354 309 340 232 207

Suburban 682 458 456 444 428 428 386 1429 870 874 931 881 875 835

Highway 734 597 600 551 556 555 487 1508 1150 1157 1109 1044 1040 1002

for these relatively coarse position estimates.
• The obvious fact, that the cell sizes correlate with the

positioning error, is clearly also reflected in these results,
where urban environment, with smallest cell size, shows
the highest accuracy.

To give a visual impression of these results, Fig. 1 shows
a part of the test route for the highway case. The reference
GPS path is plotted along with the raw position estimates,
the point-to-point matched positions and the positions re-
sulting from the robust map matching algorithm. It can be
seen, that for this part, the proposed algorithm matches all
raw positions to the true path. It however also becomes
clear that this does not necessarily mean, that the position-
ing error goes to zero: Although the right street segment is
obtained, there is still ”temporal shift” between these esti-
mates and the true positions, which results in the remaining
error. The reason for this is the principle of the proposed
Kalman filter based algorithm, whose position estimates tend
towards the centroids of the connected cells and are therefore
not equally distributed.

5. CONCLUSIONS

The key to LBS is the position estimation of the user. That
the GPS technology is not necessarily a feasible choice for
this task and that cellular based approaches can be a suit-
able alternative, if user-time coverage is critical and location
accuracy is less important, has been argued in this paper.
For the simplest among these approaches, the Cell-ID local-
ization, it has been shown, that significant improvements in
terms of accuracy can be achieved by using multiple cross-
provider connectivity data and robust map matching. Even
though its lower accuracy compared to GPS, a continuous
usertime coverage qualifies it for LBS in the field of e.g. so-
cial or infotainment applications.
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