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ABSTRACT

A multitude of applications contain signals that can be
well described as being formed as a sum of sinusoidal com-
ponents corrupted by noise, and, as a result, the literature
contains a large variety of estimation algorithms tailored for
this problem. Many of these estimators assume a complex-
valued signal model, typically formed using the discrete-time
Hilbert transform. For a large number of observations, or
with frequencies being neither too high nor too low, this ap-
proach works well, whereas it might well cause considerable
problems otherwise. One way to handle these situations is to
instead form the frequency estimation algorithm assuming a
real-valued signal. In this paper, we show how the principle
of angles between subspaces can be applied to this problem
to alleviate some of the shortcomings of subspace-based fre-
quency estimation using the MUSIC algorithm and demon-
strate the resulting attractive properties via computer simula-
tions.

1. INTRODUCTION

When dealing with the problem of estimating the parame-
ters of sinusoidal components from noisy observations, one
often employ a complex-valued model of the observed sig-
nal, typically converting the measured real-valued signal to
its discrete-time analytic counterpart using the Hilbert trans-
form [1, 2]. There are several reasons for doing this. Firstly,
it is generally more convenient from a mathematical point of
view to manipulate the complex-valued model. Secondly, it
can lead to a reduction of the computational complexity of
the estimator as only half the number of complex exponen-
tials have to be considered, as well as only half the number of
samples, although these now being complex-valued. Thirdly,
the estimated parameters are identical to those obtained us-
ing a real model under certain conditions, namely that the fre-
quencies of the sinusoids are neither too low nor too high rel-
ative to the number of observed samples. However, if this is
not the case, there will be significant interaction between the
positive and negative sides of the spectrum, which may lead
to biased estimates, and for applications where this may hap-
pen, one should consider using real signal models instead.
The specific problem considered here can be stated as
follows: a signal consisting of real-valued sinusoids having
frequencies { @, } is corrupted by additive, real-valued, white
noise, £(n), having variance 62, forn=0,...,N—1, i.e.,

L

x(n) = ZAlcos(a)ln+¢z)+£(n), (1)
=1
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where A; > 0 and ¢; are the amplitude and the phase of
the I’th sinusoid, respectively. The problem of interest is
thus how one should appropriately estimate the frequencies
{a} from {x(n)}, taking into account the fact that the sig-
nal is real-valued. Obviously, many methods have been pro-
posed for doing exactly this, with some being more straight-
forward than others. More specifically, several adaptations of
well-known estimators have been proposed, for example for
the MUSIC [3], subspace fitting [4], ESPRIT [5], Capon’s
[6], Pisarenko’s [7], and the linear prediction [8] methods.
Recently, it has been shown that the underlying principle of
MUSIC, i.e., the subspace orthogonality, can be reformulated
and interpreted using the principal angles between the signal
and noise subspaces, and that this concept can also be suc-
cessfully applied to order estimation [9] (see also [10] for
another application). Moreover, it has been shown that the
original MUSIC cost function can be obtained as a special
case of this framework, more specifically as an asymptoti-
cally valid approximation. The aim of this paper is to explore
whether the angles between subspaces can also be applied to
the problem of estimating the frequencies of real-valued si-
nusoids from real-valued measurements.

The remainder of this paper is organized as follows. First,
we review the covariance matrix model along with some ba-
sic results in Section 2. Then, in Section 3, we introduce the
concept of angles between subspaces and its application to
estimation. Finally, we then apply it to the problem at hand
in Section 4, before presenting some results in Section 5, and
concluding on our work in Section 6.

2. COVARIANCE MATRIX MODEL

Before proceeding to address the stated problem, we will first
introduce some basic notation and results. We define x(n) as

x(n) = [x(n) x(n4+1) - x(n+M—1)]", 2)

with (-)7 denoting the transpose. Assuming that the phases
of the sinusoids are independent and uniformly distributed
on the interval (—, 7], the covariance matrix R € CM*™ of
the signal in (1) can be written as [11]

R =E{x(n)x"(n)} = APA" + 6’1, 3)

where E{-}, (-)¥, and T denote the statistical expectation,
the conjugate transpose, and the identity matrix, respectively.
The diagonal matrix P contains the squared amplitudes on
the diagonal, i.e.,

P —diag ([A] A} --- A2 A2)), ©)



and A € CM*2L i5 3 Vandermonde matrix defined as

A=[a(o) a'(m) a(o) a'(o) ], (S
with

a(a)):[lej“’

Assuming that the frequencies { @y, } are distinct, the columns
of A are linearly independent, and A and APA" have rank
2L. It should be noted that it is assumed that 2L < M < N.
Let R = QAQ be the eigenvalue decomposition (EVD) of
the covariance matrix. Then, Q contains the M orthonormal
eigenvectors of R, i.e.,

Q= ai aum | @)

and A is a diagonal matrix containing the corresponding
eigenvalues, Ay, with A; > ... > Ay;. Let S be formed from
the eigenvectors corresponding to the 2L most significant
eigenvalues, i.e.,

eja)(Mfl) ]T. (6)

S=[a QL . ®)

We denote the signal subspace, i.e., the space spanned by the
columns of S, as # (S). Similarly, let G be formed from the
eigenvectors corresponding to the M — 2L least significant
eigenvalues, i.e.,

aw |, ©))

and, as a consequence, Z (G) is referred to as the noise sub-
space. It can then easily be shown that the columns of A, the
sinusoids, span the same space as the columns of S, and that
A therefore also must be orthogonal to G, i.e.,

G=[ QL

AfG =0, (10)

which is the basic result used in the MUSIC algorithm [12,
13, 14]. The MUSIC frequency estimate is formed by finding
the parameters for which the candidate model A is the closest
to being orthogonal to G.

3. ANGLES BETWEEN SUBSPACES

As seen above, the orthogonality property states that for the
true parameters, the matrix A is orthogonal to the noise sub-
space eigenvectors in G. However, due to finite sample ef-
fects, one cannot expect that the vectors will be exactly or-
thogonal, implying that one needs a measure for determin-
ing the extent to which the orthogonality holds. In the orig-
inal MUSIC algorithm, this measure was formed using the
Frobenius norm. As an alternative, one may instead note that
the concept of orthogonality is, of course, closely related to
the concept of angles, in this case the (principal) angles be-
tween the signal and noise subspaces. We will now briefly
introduce the theory behind angles between subspaces and
its application to estimation. Let I1; be the projection ma-
trix for the subspace Z(G) and I14 the projection matrix for
the subspace Z(A). The principal, and non-trivial, angles
{6} between the two subspaces are defined recursively, for
k=1,...,K, as (see, e.g., [15])

HY1,T1
cos (6;) = max max Y lAGE (11)
yech zecM [yl2(z[2
éy][;]HAHGZk = Oy, (12)
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where K is the minimal dimension of the two subspaces, i.e.,
K = min{L,M — L}, (13)

which is also the number of non-trivial angles between the
two subspaces. Moreover, the vectors y and z are restricted
to being orthogonal in the sense that yy; = 0 and z"z; = 0
fori=1,...,k— L. It then follows that {c} } are the singular
values of the matrix product IT4I1;. The singular values can
be related to the Frobenius norm of the product IT4I1; as
|MaTlG||% = Y& | 67 and, thus, also to the angles between
the subspaces, i.e.,

K
Y cos?(6r) = [MuTIg |7 (14)
k=1

Additionally, the Frobenius norm of the product IT4I1; can
be expressed as

TG |2 = Tr{A (A7A)! AHGGH}. (15)

This expression, being somewhat complicated, can be sim-
plified in the following way: the columns of A consist of
complex sinusoids, and for any distinct set of frequencies,
these are asymptotically orthogonal, i.e.,

1

. o HA\ L AH
A}IL‘LMHA = A/l}:anA (A"A) A (16)
=AA". 17

Based on this approximation, we may now write (15) into a
form similar to that of MUSIC i.e.,

1 1
IWIG|7 ~ — Tr{A"GG"A} = — |A"G|;, (18)
M M
which only differs from the classical MUSIC estimator in the
scaling. From this, we note that

1 K
17 IATGlE~ Y cos®(81), (19)

k=1

which, interestingly, shows that the original MUSIC cost
function can be explained as an approximation to the angles
between the subspaces. Here, it must be emphasized that
this interpretation only holds for signal models consisting of
vectors that are orthogonal or asymptotically orthogonal; the
result will thus hold for sinusoids, but not for damped sinu-
soids. In the MUSIC algorithm, the set of frequencies {a;}
are found by minimizing the cost function

{@y} = argmin || AHG|%. (20)
{or}

As the squared Frobenius norm is additive over the columns
of A, it facilitates finding the individual frequencies as

0y =argrrg]n|\aH(wz)GII%, @n

with the requirements that the frequencies are distinct and
fulfill the two following conditions:

dJa(@)GIE _, . Pl (@Gl

0. (22
dwy el o (22)



4. APPLICATION TO REAL-VALUED DATA

The question is now the following: in applying the results
from the previous section to the problem of estimating fre-
quencies from real-valued data, what error are we making,
if any? The answer can be found in the approximation (17).
For sinusoids that are well-separated in frequency (relative to
N and M), the approximation can be expected to be a good
one. However, for low frequencies, the complex exponen-
tials and their conjugate counterparts cannot be expected to
be well-separated. This happens under two circumstances.
Firstly, if for a given N, the frequencies are too low or too
high, or, secondly, if for a given frequency, N is too low. To
take these cases into account, we proceed as follows. Let the
matrix A be partitioned as

A=[A, AL (23)
where ~

A =[ a(e) a*(ay) ] (24)

contains a complex sinusoid and its complex conjugate.
Now, ideally, one would use the exact expression for the pro-
jection matrix and then solve for the unknowns, i.e., {@;}.
However, this generally results in a useless estimator as the
complexity of doing so would be prohibitive—it results in a
multidimensional nonlinear optimization problem. Instead,
we will proceed by assuming that the approximation in (17)
is valid for the sinusoidal components with different frequen-
cies, but not for a complex sinusoids and its complex conju-
gate. To estimate @;, one now has to compute

K
ZCOSz(Bk) = ”HZ/HG”% (25)
k=1

without using the approximation in (17). This expression de-
pends only on one unknown parameter, @;. The projection
matrix is given by
IO SUISUEN
m; = A, (Af’ A,) Al (26)

which can be shown to equal

1
;= }Re {Ma(w)a (o) — Ba*(@)a” (@)}, (27
with
B =a"(w)a* (@), (28)
and
M — B
/e %. (29)

It should be stressed that both  and 7 are frequency depen-
dent, but, in the interest of simplicity, we will here omit this
dependence in the notation. The above quantities can be used
for understanding the problem at hand. What happens when
the frequency @y is far from zero is that § ~ 0 (in which case
the approximation in (17) is accurate), whereas § — M as

@, — 0, in which case the matrix A A, is singular. We re-
mark that similar conclusions apply when @y is near 7. The
cases of interest here are the ones where § # 0. Clearly, the
unknown frequencies can be estimated as

W = argngoi[nHHngGH%. (30)
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Figure 1: The magnitude of the quantity B = a’l(ay)a*(ay),
which determines the accuracy of the complex model, shown
as a function of frequency.

Using (27), we can rewrite the involved expression as

3D
(32)

T el = (Ma" (@) GG ()
—Re {Ba”(wl)GGHa*(wl)} ),

where it is should be noted that a (w,)GG"a(wy) is just
the usual MUSIC cost function. This shows that the pro-
posed methodology leads to a simple modification of the
well-known MUSIC principle; in fact, we can now redefine
the MUSIC pseudo-spectrum as

Y

P(ay) = 33
) Re (o (0) GG (Ma(@) —par(@))]”
which can then be used to estimate frequencies as
= argngle(a)l). (34)
(4

To summarize:

(i) The estimator in (34) takes the interaction between
complex sinusoids and their complex conjugates into
account.

It does not take the interaction between different com-
plex sinusoids into account (doing so leads to an in-
tractable problem). Rather, it is based on the usual as-
sumption regarding these.

Consequently, it is expected to lead to improved esti-
mates for sinusoids having very low or high frequen-
cies, and/or low M and N, but not for closely spaced
sinusoids.

Interestingly, the proposed improvement leads to a sim-
ple augmentation of the original MUSIC cost function,
wherefrom a modified pseudo-spectrum can easily be
defined.

(i)

(iii)

@iv)
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Figure 2: Performance of various estimators, measured in terms of bias and variance, as a function of the covariance matrix
size M, for N = 101 and an SNR of 20 dB. Note that the asymptotic CRLB (solid) is shown in Figure 2(b).

5. EXPERIMENTAL RESULTS

We now proceed to demonstrate the properties of the intro-
duced method using simulated data. First, however, we will
provide an example of how the quantity |f| varies as a func-
tion of the frequency. This is shown in Figure 1, with M = 50.
When f is significantly different from zero, one can expect a
discrepancies between the complex- and real-valued models.
As can be seen,  attains the value M in both extremes, near
0 and 7, which causes a division by zero in (27).

Next, we will examine the accuracy of the proposed
method as compared to the original MUSIC algorithm (we
note that it is equivalent to the adaptation to real-valued data
in [3] with no weighting). We will do this using Monte Carlo
simulations and then measure the bias and variance of the
obtained frequency estimates. Additionally, we also com-
pare to a number of other frequency estimators proposed
for real-valued data, namely some of those of [4, 5, 6], as
well as a real-valued non-linear least-squares (NLS) estima-
tor. The NLS method is simply an estimator based on mini-
mizing the squared error, which is equivalent to maximizing
xH (n)Hng(n), with M = N. As is well-known, under the
assumption of white Gaussian noise, this estimator is equiv-
alent to the maximum likelihood estimator.

The experimental setup is as follows: 100 Monte Carlo
runs are used for each data point and a real sinusoid having
frequency w; = 0.0523, i.e., a fairly low frequency, having
unit amplitude and uniformly distributed phase is generated
using N = 101. The signal is then corrupted by a white Gaus-
sian noise with an SNR of 20 dB. In the following figures,
the proposed method is referred to as AbS, whereas Capon is
the method introduced in [6], WSF-1 is the method from [4],
ESPRIT is the real version proposed in [5], and NLS is the
above mentioned nonlinear least-squares method.

First, we investigate the importance of the covariance ma-
trix size for the various methods. The results are shown in
Figures 2(a) and 2(b) in the form of bias and variance of the
estimated frequencies. Also shown in the figure is the asymp-
totic Cramer-Rao lower bound (CRLB). Note that this bound
is not valid for very low frequencies and/or number of sam-
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ples. As can be seen, the methods exhibit different depen-
dencies on the covariance matrix size. Some of the methods
work poorly for low M, whereas others work poorly when
M is too high. Consequently, for the MUSIC-like methods,
we use a covariance matrix of size 50 x 50 in the experiment
that follow, while for the methods of [4, 5, 6], we use 25 x 25
covariance matrices. We remark that the NLS estimator does
not require any covariance matrices and its performance does
thus not depend on M. In the final experiment, which is the
most important one, we will seek to quantify the improve-
ments that the proposed method offers over the original MU-
SIC algorithm. We do this by varying the number of samples
N. As N gets smaller, § will become larger, meaning the in-
teraction between the positive and negative sides of the spec-
trum gets larger and so, presumably, does the discrepancy
between the estimates obtained using the real and complex
models. The results are shown in Figures 3(a) and 3(b), as
before, in terms of the bias and the variance of the obtained
estimates. As can be seen, the proposed method greatly re-
duces the bias of the MUSIC method for low N, and also
leads to a somewhat lower variance for a high number of ob-
servations. Note that the reason that some of the estimators
exhibit variances lower than the CRLB is that they produce
biased estimates for low N. It can also be observed that the
proposed estimator performs better under these conditions
than the real-valued Capon, ESPRIT and WSF-1 methods.
At this point, it should be stressed that the MUSIC method
is not statistically efficient, so it will not attain the CRLB,
unlike the NLS method. Generally, the experiments demon-
strate the ability of the proposed modifications of MUSIC to
compensate for some of the classical technique’s shortcom-
ings for real signals.

6. CONCLUSION

In this paper, we have considered the problem of estimating
the frequencies of real-valued sinusoidal signals corrupted by
white additive noise. We have proposed to improve the per-
formance of the classical MUSIC algorithm for this problem
using the theory of angles between subspaces. More specifi-
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Figure 3: Performance of various estimators, measured in terms of bias and variance, as a function of the number of samples
N for N =101 and an SNR of 20 dB. Note that the asymptotic CRLB is shown in Figure 3(b).

cally, we have derived a modified pseudo-spectrum that takes
the interaction between negative and positive sides of the
spectrum into account. Our results confirm that the proposed
method does indeed reduce the bias of the MUSIC method
under adverse condition, i.e., for low or high frequencies,
and/or for a low number of samples. In closing, we remark
that it is quite possible that the results reported here can be
improved further by adapting the proposed scheme using the
alternative covariance matrix model proposed in [5]. Simi-
larly, it is also possible that the technique could benefit from
the various weighted approaches used in weighted subspace
fitting [3, 4, 5], but these suggestions improve other aspects
of the subspaces-methods, for which reason they were not
further considered herein.
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