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Abstract — In this paper we consider two-way relaying with

a MIMO amplify and forward (AF) relay. Assuming that the

terminals have perfect channel knowledge, the bidirectional

two-way relaying channel is decoupled into two parallel effec-

tive single-user channels by subtracting the self-interference at

the terminals.

We derive the relay amplification matrix which maximizes

the (weighted) sum rate in the case where the terminals have a

single antenna. By algebraic manipulation of the rate expres-

sions we can rewrite the optimization problem as a generalized

eigenvalue expression which depends on two real-valued param-

eters. The optimum is then found by a 2-D exhaustive search,

which can be efficiently implemented via the bisection method.

The resulting method is called RAGES (RAte-maximization via

Generalized Eigenvectors for Single-antenna terminals).

Moreover, both parameters have a physical interpretation

which allows to find sub-optimal heuristics to reduce the com-

plexity of the search even further. As shown in simulations, a

corresponding suboptimal 1-D search is very close to the opti-

mum sum rate.

Index Terms— Two-Way Relaying, Amplify and Forward,

Beamforming

1. INTRODUCTION

Future mobile communication systems target not only significantly

higher data rates but should also provide a certain quality of service.

Relaying is considered as a promising candidate technology to en-

able this vision. Among the numerous relaying schemes, two-way

relaying [2] is known as a technique which uses the radio resources

in a particularly efficient manner.

In two-way relaying, a bidirectional transmission between two

terminals is achieved in two subsequent transmission phases: First

both terminals transmit to the relay, then the relay transmits back to

both terminals. This compensates the spectral efficiency loss in one-

way relaying due to the half duplex constraint of the relay [3, 1].

Note that unlike in the one-way relaying case [7], the rate-optimal

strategy for two-way relaying is in general not known yet.

In contrast to decode and forward (DF) relays, which decode the

transmission from the terminals and reencode them in the second

phase, we focus our attention on amplify and forward (AF) relays

which just amplify the received signal to transmit it back to the ter-

minals. This causes less delay in the transmissions and lowers the

hardware complexity of the relay stations. Moreover, we consider

the case that the terminals are equipped with a single antenna but the

relay may have multiple antennas. It is desirable to find the relay

transmit strategy which maximizes the (weighted) sum rate of both
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Fig. 1. Two-way relaying system model.

users. In [8], the capacity region for this scenario is discussed, and

an iterative scheme to compute the relay amplification matrix is pro-

posed. The search space is reduced to four complex numbers with

further simplifications only in some special cases, e.g., parallel or

orthogonal channels.

In this paper we reduce the complexity further by rewriting the

optimization problem in terms of a generalized eigenvalue equation

which depends only on two real-valued parameters. These param-

eters have a physical interpretation which allows to compute sim-

ple bounds and find suboptimal heuristics to reduce the complexity

even more. The resulting method is called RAte-maximization via

Generalized Eigenvectors for Single-antenna terminals (RAGES).

At the end of the paper, the sum rate performance is compared to

existing solutions via numerical computer simulations.

To distinguish between scalars, vectors, and matrices, the fol-

lowing notation is used throughout the paper: Scalars are denoted

as italic letters (a, b, A,B), vectors as lower-case bold-faced letters

(a, b), and matrices are represented by upper-case bold-faced letters

(A,B). The superscripts T and H represent matrix transposition and

Hermitian transposition, respectively. Moreover, ∗ denotes complex

conjugation. The Kronecker product between two matrices A and

B is represented by A ⊗ B. Furthermore, vec {A} aligns the el-

ements of the matrix A ∈ C
M×N into a column vector of length

M ·N ×1. The two-norm of a vector a and the Frobenius norm of a

matrix A are represented by ‖a‖2 and ‖A‖F, respectively. Finally,

the statistical expectation operator is symbolized by E {·}.

2. SYSTEM DESCRIPTION

Figure 1 shows the system we study in this paper. We consider the

communication between two user terminals UT1 and UT2 with the

help of an intermediate relay station RS. The terminals UT1 and

UT2 are equipped with a single antenna; the number of antennas at

the relay station is denoted by MR.

In two-way relaying, the communication takes place in two
subsequent transmission phases. In the first phase, both terminals
transmit to the relay, where their transmissions interfere. Assum-
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ing frequency-flat fading1, the received signal at the relay can be
expressed as

r = h
(f)
1 · x1 + h

(f)
2 · x2 + nR ∈ C

MR×1, (1)

where h
(f)
1 ∈ C

MR×1 and h
(f)
2 ∈ C

MR×1 denote the forward chan-

nel vectors between the terminals and the relay, x1 and x2 represent

the transmitted signals from the terminals, and nR models the ad-

ditive noise component at the relay with noise covariance given by

RN,R = E
{

nR · nH
R

}

. We can define the noise power of the relay

according to PN,R = trace {RN,R} /MR.
In the second time slot, the amplify and forward relay transmits

an amplified version of its received signal which can be expressed as

r̄ = γ ·G · r. (2)

Here, G ∈ C
MR×MR is the relay amplification matrix which is

normalized such that ‖G‖F = 1 and γ ∈ R
+ represents a scalar

amplification factor that guarantees that the relay transmit power

constraint of PT,R is satisfied. For instance, to guarantee that

E
{

‖r̄‖22
}

= PT,R we choose γ according to

γ2 =
PT,R

PT,1 ·MR · α2
1 + PT,2 ·MR · α2

2 + PN,R ·MR
(3)

where the channel amplitudes α1 and α2 are defined according to

α2
n =

∥

∥

∥
h

(f)
n

∥

∥

∥

2

2

MR
, n = 1, 2 (4)

and PT,n = E
{

|xn|
2}

denotes the transmit power of terminal n.

The terminals receive the amplified signal r̄ from the relay via

their reverse channels h
(b)
i ∈ C

MR×1. We can write the received
signals as

y1 = γ · h
(e)
1,1 · x1 + γ · h

(e)
1,2 · x2 + ñ1 (5)

y2 = γ · h
(e)
2,2 · x2 + γ · h

(e)
2,1 · x1 + ñ2, (6)

where we have introduced the short hand notations h
(e)
i,j = h

(b)T

i ·G·

h
(f)
j for the effective channels between terminal i and j. Moreover,

ñi = γ · h
(b)T

i · G · nR + ni denotes the effective noise term at

terminal i consisting of the terminal’s own noise and the forwarded

relay noise, which are assumed to be independent. The noise powers

at both terminals are defined as

PN,i = E
{

|ni|
2} , i = 1, 2. (7)

As it is evident from (5) and (6), each terminal receives the trans-

mission from the other terminal via one of the effective channels

h
(e)
i,j which is superimposed by the effective noise terms ñi as well

as the self-interference from its own transmission. However, if the

terminal possesses channel knowledge, the self-interference can be

subtracted since its own transmitted symbols are known. We assume

that the self-interference is perfectly canceled and only consider the

power of the desired signal component and the effective noise terms.

For a discussion on the acquisition of channel knowledge in two-

way relaying scenarios with time division duplex (TDD), the reader

is referred to [6], [5], and [4].

1 In presence of frequency-selective fading, OFDM can be applied to
transform the frequency-selective channel into a set of parallel flat fading
channels. The RAGES scheme can then be applied on each subcarrier indi-
vidually (or on a chunk of adjacent subcarriers jointly to further reduce the
complexity).
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Fig. 2. Achievable rate pairs via RAGES if ρsig is varied from the

lower bound to the upper bound (provided below (24)) for different

ρnoi (cf. eqn. (22)). Scenario: MR = 5, α1 = α2 = 1, PN,R =
PN,1 = PN,2 = 0.001.

3. SUM-RATE MAXIMIZATION VIA RAGES

In this section we derive the relay amplification matrix G which

maximizes the sum rate in the system. Under the conditions men-

tioned in the previous section, the sum rate can be expressed as

r = r1 + r2 =
1

2
log2

(

1 +
PR,1

P̃N,1

)

+
1

2
log2

(

1 +
PR,2

P̃N,2

)

, (8)

where PR,1, PR,2 denote the power of the received signals given by

PR,1 = E

{

∣

∣

∣
γ · h

(e)
1,2 · x2

∣

∣

∣

2
}

= γ2 · PT,2 ·
∣

∣

∣
h

(b)T

1 ·G · h
(f)
2

∣

∣

∣

2

,

PR,2 = E

{

∣

∣

∣
γ · h

(e)
2,1 · x2

∣

∣

∣

2
}

= γ2 · PT,1 ·
∣

∣

∣
h

(b)T

2 ·G · h
(f)
1

∣

∣

∣

2

,

and P̃N,1, P̃N,2 represent the effective noise powers

P̃N,i = E

{

∣

∣

∣
γ · h

(b)T

i ·G · nR + ni

∣

∣

∣

2
}

= γ2 · h
(b)T

i ·G ·RN,R ·GH · h
(b)∗

i + PN,i, i = 1, 2.

The maximization of the sum rate is performed with respect to

the normalized relay amplification matrix G

Gopt = argmax
G,‖G‖

F
=1

[

1

2
log2

(

1 +
PR,1

P̃N,1

)

+
1

2
log2

(

1 +
PR,2

P̃N,2

)]

= argmax
G,‖G‖

F
=1

1

2
log2

(

(P̃N,1 + PR,1)

P̃N,1

·
(P̃N,2 + PR,2)

P̃N,2

)

= argmax
G,‖G‖

F
=1

(P̃N,1 + PR,1) · (P̃N,2 + PR,2)

P̃N,1 · P̃N,2

, (9)

where we have dropped the logarithm in the last step since it is a

monotonous function. To solve the optimization problem in (9) we

first notice that the received signal power and the effective noise
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Fig. 3. Achievable rate pairs via RAGES with fixed ρnoi if ρsig is

varied (cf. eqn. (22)). Scenario: MR = 3, α1 = 1, α2 = 0.1,

PN,R = 0.01, PN,1 = 0.0001, PN,2 = 0.001.
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RAGES, 1-D search ρnoi = 1
Approach from [8]
DFT

Fig. 4. Sum-rate vs. SNR for MR = 4 antennas, α1 = 1, and

α2 = 0.1.

powers can conveniently be expressed in terms of the vector g =

vec {G} ∈ C
M2

R in the following manner

PR,1 = γ2 · PT,2 · g
H ·K2,1 · g (10)

PR,2 = γ2 · PT,1 · g
H ·K1,2 · g (11)

P̃N,1 = γ2 · gH · J1 · g + PN,1 (12)

P̃N,2 = γ2 · gH · J2 · g + PN,2, (13)

where for i, j = 1, 2 the matrices Ki,j and Ji are given by

Ki,j =
(

h
(f)
i · h

(f)H

i ⊗ h
(b)
j · h

(b)H

j

)T

(14)

Ji =
(

RN,R ⊗ h
(b)
i · h

(b)H

i

)T

. (15)

With these definitions, the optimization problem in (9) can be rewrit-
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Fig. 5. Number of evaluations of the cost function (i.e., generalized

eigenvalue decompositions) for RAGES via the 1-D search.

ten in the following way

gopt = argmax
g,‖g‖

2
=1

gH · K̃1 · g · gH · K̃2 · g

gH · J̃1 · g · gH · J̃2 · g
, (16)

where we have introduced the new matrices K̃i and J̃i given by

K̃1 = γ2 · PT,2 ·K2,1 + J̃1 (17)

K̃2 = γ2 · PT,1 ·K1,2 + J̃2 (18)

J̃i = γ2 · Ji + PN,i · IM2

R

(19)

and have exploited the fact that ‖g‖2 = 1. Here, Ip represents the

p × p identity matrix. Examining (16) we observe that the norm of

g does not influence the cost function at all since if we replace g by

α · g for an arbitrary scalar α ∈ C\{0}, the scalar α cancels. In

other words, if we computed the optimal gopt then α · gopt is also

optimal ∀α ∈ C\{0}. Consequently, we can ignore the constraint

‖g‖2 = 1 for the optimization if we normalize the resulting gopt

properly. This transforms (16) into an unconstrained optimization

problem. A necessary condition for the optimum is that the gradient

of the cost function becomes zero. Equating the complex gradient

of (16) with respect to g∗ to zero we obtain

P̃R,2

P̃N,1P̃N,2

· K̃1 · g +
P̃R,1

P̃N,1P̃N,2

· K̃2 · g

=
P̃R,1P̃R,2

P̃ 2
N,1P̃N,2

· J̃1 · g +
P̃R,1P̃R,2

P̃N,1P̃ 2
N,2

· J̃2 · g, (20)

where P̃R,i = gH · K̃i · g and P̃N,i = gH · J̃i · g for i = 1, 2.

Rearranging the terms in (20) we obtain the equivalent condition

(

K̃1 + ρsig · K̃2

)

· g =
P̃R,1

P̃N,1

·
(

J̃1 + ρnoi · J̃2

)

· g, (21)

where we have introduced two parameters ρsig and ρnoi defined via

ρsig =
P̃R,1

P̃R,2

and ρnoi =
P̃N,1

P̃N,2

. (22)
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RAGES, 2-D search, pCSI

RAGES, 1-D search ρnoi = 1, pCSI
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RAGES, 2-D search, iCSI
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Fig. 6. Sum-rate vs. SNR for MR = 4 antennas, α1 = α2 = 1,

comparing the case of perfectly known channels (pCSI) and channels

estimated via two pilot symbols (iCSI).

Equation (21) shows that the optimal g must be a generalized eigen-

vector of the two matrices K̃1 +ρsig · K̃2 and J̃1 +ρnoi · J̃2, which

for a given ρsig and ρnoi is very simple to compute. However, the

parameters ρsig and ρnoi depend on g as well. Therefore, to find

the optimum, a two-dimensional search over ρsig and ρnoi must be

performed. Compared to the approach from [8] this is a significant

advantage since there, a matrix containing four complex parameters

has to be found via numerical optimization schemes. Only in special

cases or via suboptimal approximations, the number of parameters

could be reduced. For RAGES, we have two real-valued parameters

with a physical interpretation: ρnoi represents the ratio of the effec-

tive noise powers and ρsig is equal to the ratio of the effective signal

plus effective noise powers (which for high SNRs converges to the

ratio of the effective signal powers) experienced at both terminals.

Both parameters can be bounded in the following way

ρnoi ≤
PN,1

PN,2
+

PN,R

PN,2
· γ2 ·MR · α2

1 (23)

ρnoi ≥

(

PN,2

PN,1
+

PN,R

PN,1
· γ2 ·MR · α2

2

)−1

(24)

ρsig ≤
PN,1

PN,2
+

PT,2

PN,2
· γ2 · α2

1 · α
2
2 +

PN,R

PN,2
· γ2 ·MR · α2

1

ρsig ≥

(

PN,2

PN,1
+

PT,1

PN,1
· γ2 · α2

1 · α
2
2 +

PN,R

PN,1
· γ2 ·MR · α2

2

)−1

,

Within this region we compute G for every combination of (ρsig, ρnoi)
by determining the dominant generalized eigenvector g correspond-

ing to the largest generalized eigenvalue according to (21) and then

reshaping it back into a MR × MR matrix. The final RAGES

solution is the G for which the sum rate is maximized.

The derivation can be extended to the optimization of a weighted

sum rate given by

rw = w · r1 + (1− w) · r2, (25)

where w ∈ R[0,1] is the weighting parameter. Following the same

steps of the derivation we obtain the following criterion for the opti-
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Fig. 7. User rates and weighted sum rate vs. weighting coefficient

w comparing the weighted sum rate maximization via RAGES using

the full 2-D search and the suboptimal 1-D search (ρnoi = 1). The

parameters are MR = 4, SNR = 10 dB, α1 = α2 = 1.

mal g

(

K̃1 + ρsig · w̄ · K̃2

)

· g = w2 P̃R,1

P̃N,1

(

J̃1 +
ρnoi
w̄

· J̃2

)

· g,

(26)

where w̄ = w

1−w
. Consequently, the maximization of the weighted

sum rate can be performed in a similar manner by optimizing over

two real-valued parameters.

4. BISECTION SEARCH

So far, we have reduced the search space for the optimal relay ampli-

fication matrix G ∈ C
MR×MR from four complex parameters [8] to

two real-valued and bounded parameters. However, the optimization

problem in [8] is convex which allows for an efficient implemen-

tation. Unfortunately, the optimization problem for the two real-

valued parameters ρsig and ρnoi is not convex so that in general, a

2-D exhaustive search is required.

As we show in this section, the nature of the problem allows to

reduce the complexity of the 2-D exhaustive search further since the

optimum can easily be found via the bisection method.

To this end, let ρ̂sig and ρ̂noi be our current estimates of the

actual ratios ρsig and ρnoi defined in (22). Then we can define the

following auxiliary functions

Asig(ρ̂sig, ρ̂noi) = ρ̂sig − ρsig (ρ̂sig, ρ̂noi) (27)

Anoi(ρ̂sig, ρ̂noi) = ρ̂noi − ρnoi (ρ̂sig, ρ̂noi) , (28)

where ρsig (ρ̂sig, ρ̂noi) and ρnoi (ρ̂sig, ρ̂noi) are computed by insert-

ing ρ̂sig and ρ̂noi into (21), computing the dominant generalized

eigenvector and using it in (22) to compute the actual ratios ρsig
and ρnoi. Then, obviously, Asig(ρ̂sig, ρ̂noi) = Anoi(ρ̂sig, ρ̂noi) = 0
for the values of ρ̂sig and ρ̂noi which maximize the sum rate. More-

over, we have observed that Asig(ρ̂sig, ρ̂noi) is a monotonous func-

tion in ρ̂sig for every value of ρ̂noi. Similarly, Anoi(ρ̂sig, ρ̂noi) is a

monotonous function in ρ̂noi for every value of ρ̂sig. Therefore, the

search for the optimum ρ̂sig and ρ̂noi can be implemented efficiently

via a 2-D bisection search.
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As we show in the simulations, in many cases the parameter

ρnoi can be ignored by simply setting it to the geometric mean of the

lower and upper bounds provided in (24) and (23). In this case, the

optimization we have to perform reduces to a 1-D search over the

parameter ρsig. This search can be implemented via a 1-D bisection

search on the function Asig(ρ̂sig, ρ̂noi) for fixed ρ̂noi.

5. SIMULATION RESULTS

In this section we present results of numerical computer simulations

to evaluate the achievable rate using RAGES to compute the relay

amplification matrix. If not stated otherwise, we set PT,1 = PT,2 =
PT,R = 1 and PN,R = PN,1 = PN,2 = σ2 so that the SNR can

be defined as σ−2. Moreover, we consider uncorrelated Rayleigh

fading channels and assume that reciprocity is valid so that h
(f)
i =

h
(b)
i for i = 1, 2.

Figure 2 shows the rate pairs (r1, r2) we obtain by varying ρsig
for three different choices of ρnoi, corresponding the the lower bound

from (24), the upper bound from (23), and the mid point (i.e., the

geometric mean of lower and upper bounds). We set the effective

channel norms α1 and α2 to 1, the SNR to 30 dB, and MR to 5. It

can be seen that in this scenario, the parameter ρnoi has almost no

impact on the rates and the parameter ρsig can be used to achieve

different rate pairs. Therefore, in this scenario, the 2-D search for

the sum rate maximum can be replaced by a 1-D search over ρsig,

leaving ρnoi constant. The heuristic behind this approximation is

that adjusting the ratio of signal plus noise powers via ρsig offers

enough degrees of freedom for sum rate optimization and therefore

it is not required to additionally adjust the noise ratios via ρnoi.
While a similar picture is obtained in many scenarios, for Fig-

ure 3 we choose the parameters in such a way that the impact of ρnoi
becomes visible. Here we consider MR = 3, α1 = 1, α2 = 0.1,

PN,R = 0.01, PN,1 = 0.0001, and PN,2 = 0.001. Obviously, none

of the ρnoi values provides a rate curve that is always on the bound-

ary of the rate region. Still, if we compute the maximum sum rate

over ρsig for different values of ρnoi, we obtain 3.24 Bits/s/Hz for

ρnoi = 0.09, 3.25 Bits/s/Hz for ρnoi = 1.14, and 3.04 Bits/s/Hz for

ρnoi = 15.03, which is only a difference of 7 %. Consequently, if

our goal is to maximize the sum rate, the loss incurred by ignoring

the impact of ρnoi is not very severe.

In Figure 4 we display the sum rate r (which is normalized to the

bandwidth) achieved via different choices of G. We choose MR = 4
and set the channel norms to α1 = 1 and α2 = 0.1. We compare

RAGES via a full 2-D search over ρsig and ρnoi with RAGES via a

suboptimal approximation where ρnoi is fixed to 1 and a 1-D search

over ρsig is used to optimize G. According to Figure 4, the 1-D

search and the full 2-D search perform identically well. If we com-

pute the loss in rate we find that it is around 1 % for low SNRs and

it converges to zero for high SNRs (for 25 dB it has already declined

below 0.1 %). As a comparison, we also depict the sum-rate optimal

approach presented in [8]. As it is evident from the simulation result,

RAGES achieves the same sum rate at a significantly reduced com-

plexity. Finally, the curve labeled “DFT” represents the case where

we choose the relay amplification matrix G as a DFT matrix to show

the loss incurred by the absence of channel state information at the

relay. For the same scenario, Figure 5 depicts the average number of

times the cost function had to be evaluated for the low-complexity

1-D search. Since we use a bisection approach this number is only a

function of the initial size of the search interval as well as the desired

accuracy. We observe a slight increase of this number with the SNR

which is due to the fact that the lower bound on ρsig decreases and

the upper bound on ρsig increases with the SNR.

In Figure 6 we investigate the robustness with respect to chan-

nel estimation errors. Since the robustness of the different relaying

schemes should be compared we depict the maximum mutual infor-

mation over the two-way relaying channel for the case where the

relay has to estimate the channel vectors h1 and h2 and the ter-

minals know the effective channel taps h
(e)
i,j perfectly. Estimation

errors in h
(e)
i,j would affect all schemes in a similar fashion. The

curves labeled “pCSI” represent the case of perfectly known chan-

nels, whereas “iCSI” represents the case where the channel vectors

are estimated at the relay from the transmission of two known pilot

symbols. We observe that the channel estimation error affects all

schemes in a similar fashion, slightly reducing the sum rate for low

SNRs.

The result of weighted sum rate maximization is displayed in

Figure 7. Here we set MR = 4, α1 = α2 = 1 and the SNR to

10 dB. The weighted sum rate is maximized via RAGES for different

choices of the weighting coefficient w. We display the rates for each

user r1, r2 as well as the weighted sum rate rw (cf. equation (25)).

Along with the full 2-D search we also depict the results of using

the suboptimal 1-D search for ρnoi = 1 (the range for ρnoi in this

example is [0.34, 2.90] according to (24) and (23)). As before, the

loss in rate is negligibly small (around 0.2 %).

6. CONCLUSIONS

In this paper we derive a sum-rate optimal relaying strategy for two-

way relaying with a MIMO AF relay in the case where the ter-

minals are equipped with a single antenna called RAGES (RAte-

maximization via Generalized Eigenvectors for Single-antenna ter-

minals). We transform the optimization problem into a generalized

eigenvalue equation which depends only on two parameters. There-

fore, to maximize the sum rate, a 2-D exhaustive search is required.

Another advantage of RAGES compared to previous approaches is

that both parameters have a physical interpretation which allows to

state their bounds and develop heuristics to lower the complexity

even further.

As we show in simulations, in many cases the impact of one

of the two parameters can be ignored and the other parameter can

be used to achieve different rate pairs (r1, r2) in the rate region.

RAGES achieves the same sum rate as a previous proposal at a sig-

nificantly lower complexity. Even with the suboptimal 1-D search

the sum rate is very close to the optimum.
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