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ABSTRACT
This paper describes a novel method using fractional calcu-
lus to estimate non-integer moments of a random variable
from the measured Laplace transform of its probability den-
sity function. We demonstrate that theω-th moment (ω ∈R)
of the random variable can be directly obtained by a linear
transformation of the data. Whenω > 0, computation of
moments corresponds to fractional integration of the data.
Whenω ≤ 0, computation of moments corresponds to frac-
tional differentiation.

1. INTRODUCTION

Fitting exponentials to measured data is a well-known ill-
conditioned problem in science and engineering. It involves
solving for non-negative amplitudefT from the measured
multi-exponential decay in the time-domainM(t)

M(t) =

∞
∫

0

e−t/T fT (T )dT + ε(t). (1)

Here ε(t) is the measurement error modeled as additive,
white, Gaussian noise with known variance. In eqn. (1),
the measured dataM(t) is a Laplace transform of the ampli-
tudesfs(s)≡ T 2 fT (T ), where we sets = 1/T . Traditionally,
the inverse Laplace transform is used to estimate the ampli-
tudes fT (T ) from the measured data. The time constantsT
are often assumed to be a continuum. Without loss of gen-
erality, the corresponding non-negative amplitudefT (T ) is
considered to be the probability density function of variable
T .

Our study is guided by nuclear magnetic resonance
(NMR) applications in biological systems and porous media
where experimental protocols have been developed to mea-
sure data represented by eqn. (1). In these applications, the
time constantT corresponds to the characteristic relaxation
time for loss of energy by protons in hydrocarbons or water
present in pores of a rock or in the bulk fluid. The amplitude
fT (T ) at any givenT is proportional to the number of pro-
tons relaxing at that rate. The mean, width and some of the
moments ofT are used to infer information about the rock
and/or fluid [1, 2]. Although our work is motivated by NMR
applications, the sum-of-exponentials model is widely used
in a number of disciplines including acoustics [3], diffusion
tomography [4], imaging [5] and optics [6].

It is well known in the literature that the inverse Laplace
transform is an ill-conditioned problem: small changes in
the measured data due to noise can result in widely different
fT (T ) [7, 8]. In theory, there are infinitely many solutions
for fT (T ). The classical approach to the problem involves

choosing the ”smoothest” solutionfT (T ) that fits the data.
This smooth solution is often estimated by minimization of a
cost functionQ with respect to the underlyingf [9, 10],

Q = ‖M−K f‖2+α‖ f‖2, (2)

whereM is the measured data,K is the matrix of the dis-
cretized kernele−t/T and f is the discretized version of the
underlying density functionfT (T ) in eqn. (1). The first term
in the cost function is the least squares error between the data
and the fit from the model in eqn. (1). The second term de-
noting Tikhonov regularization, incorporates smoothnessin
the expected solution of the density function.

The mathematical definition of smoothness as well as the
value ofα are subjective. The parameterα denotes the com-
promise between the fit to the data and ana priori expectation
of the density function. Whenα is too small, the inversion
problem is unstable. Small changes in the data (due to ad-
ditive noise) result in widely different estimates forfT (T ).
Whenα is too large, the solution does not sufficiently take
the measured data into account. In this case, the estimated
density functionfT (T ) is stable, but results in poor fit to the
data. In the literature, there are a wide variety of recipes
to chooseα, including the ”L” curve method, generalized
and ordinary cross validation, predictive mean square error
and self-consistency methods [11, 12, 13]. These different
methods provide different values ofα and result in different
solutions fT (T ), all of which provide reasonable fits to the
data.

Often, the density function ofT may itself not be of direct
interest. Instead it is used to derive a second set of parameters
such as specific moments ofT , which are used to provide in-
sight into the underlying physical process. For example, the
negative 0.4-th moment of relaxation time is related empiri-
cally to the irreducible water-saturation in rocks. Similarly,
the 0.2-th moment of relaxation time is found to be a good
predictor of rock permeability [2]. The average chain length
of a hydrocarbon is related to the 0.8-th moment of relaxation
time [14].

Theω-th moment ofT is defined as,

〈T ω 〉 ≡

∞
∫

0

T ω fT (T )dT, ω ∈ R. (3)

In this manuscript, we demonstrate that theω-th moment of
T can be obtained directly from a linear transformation of the
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data,

〈T ω 〉 =
(−1)n

Γ(µ)

∞
∫

0

tµ−1
[

dnM(t)
dtn

]

dt (4a)

ω = µ − n, with

{

n = 0 if ω > 0
n = [−ω ]+1 otherwise.

(4b)

whereΓ() represents the Gamma function and[ω ] refers to
the integral part of the numberω . The contribution of vari-
able ω is in two parts: a real numberµ and an integern
where the mathematical operatortµ−1 operates on then-th
derivative of the data. Eqn. (4) obviates the use of the ill-
conditioned Laplace transform to compute the moments. In
the next section, we provide a derivation of eqn. (4) from the
perspective of fractional calculus. We demonstrate that when
ω > 0, eqn. (4) corresponds to fractional integration of the
data. Whenω ≤ 0, the operation corresponds to fractional
differentiation.

A practical application of this work is in computation of
moments from NMR relaxation data obtained from fluids in
porous media [15].

2. MOMENT ESTIMATION USING FRACTIONAL
CALCULUS

From eqn. (1), it is seen that integer moments ofT can be
obtained by integration or differentiation of the data. For
example,

〈T 〉 =

∞
∫

0

M(t)dt (5a)

〈

1
T

〉

=

∣

∣

∣

∣

dM
dt

∣

∣

∣

∣

t=0
(5b)

〈

1
T 2

〉

=

∣

∣

∣

∣

d2M
dt2

∣

∣

∣

∣

t=0
(5c)

This leads one to naturally consider fractional calculus toob-
tain theω-th moment ofT whenω is not restricted to be an
integer and can take on a real value.

The Liouville fractional integral denoted by−∞D−ω
x of a

functiong() is defined as, [16]

−∞D−ω
x (g)≡

1
Γ(ω)

x
∫

−∞

(x− t)ω−1g(t)dt, ω > 0. (6)

Fractional derivatives are defined by applying differentiation
a whole number of times to fractional integral. Letω ≤ 0
andn be the smallest integer greater than−ω . Let µ = n+
ω ,0< µ ≤ 1. Fractional derivatives are defined as (eqn (6.1),
Chapter 2, [16])

−∞D−ω
x (g)≡ −∞Dn

x

[

−∞D−µ
x g(x)

]

, ω < 0. (7)

The notation−∞D−ω
x unifies integration and differentiation

into a single entity, sometimes referred to as ’differintegra-
tion’. Whenω > 0, −∞D−ω

x denotes a fractional integral and
whenω ≤ 0, it denotes fractional differentiation. Fractional
calculus has so far been a largely theoretical subject with

applications in problems where the governing equation is a
fractional differential equation in time.

Consider an exponential function,g(x) = eax,a > 0,x ∈
[−∞ 0]. In this classical textbook example, it has been shown
that (eqn (6.9), Chapter 1, [16])

−∞D−ω
x eax = a−ωeax, ω ∈ R. (8)

Since fractional differentiation and integration are linear op-
erations, when applied to a sum of exponentials in eqn. (1),
we get,

−∞D−ω
0 (M(−t)) = 〈T ω〉 , ω ∈ R. (9)

To prove eqn. (4), let us first consider the case of fractional
integration withω > 0. Let t1 =−t andg(t1) = M(t). From
eqn. (6),

−∞D−ω
0 (g) =

1
Γ(ω)

0
∫

−∞

(−t1)
ω−1g(t1)dt1, ω > 0. (10)

Reversing the time-axis on the right-hand side of eqn. (10)
yields

−∞D−ω
0 (M(−t)) =

1
Γ(ω)

∞
∫

0

tω−1M(t)dt, ω > 0. (11)

From eqn. (9) and (11), we get,

〈T ω〉=
1

Γ(ω)

∞
∫

0

tω−1M(t)dt, ω > 0. (12)

Next, consider the case of fractional differentiation withω ≤
0. Letω = µ − n, wheren = [−ω ]+1.
Case 1: Let −1< ω ≤ 0. In this case,n = 1 andµ = ω +1.
From the definition of fractional differentiation in eqn. (7),
we get,

−∞D−ω
x (M(−t)) =

1
Γ(µ)

d
dx





x
∫

−∞

(x− t)µ−1M(−t)dt



 .

(13)
The next step is to interchange the integral and differential
operators in eqn. (13). This can be done by applying the
general form of Leibniz integration rule given as,

d
dx

b(x)
∫

a(x)

g(x, t)dt = g(x,b(x))b′(x)− g(x,a(x))a′(x)+

b(x)
∫

a(x)

∂
∂x

g(x, t)dt. (14)

However, in order to avoid artificial singularities that result
from the direct application of Leibniz rule, we first apply in-
tegration by parts to the integral between the square brackets
of eqn. (13) to get

−∞D−ω
x (M(−t)) =

1
Γ(µ +1)

d
dx





x
∫

−∞

(x− t)µ dM(−t)
dt

dt





(15)
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where we use the property thatM(t) vanishes exponentially
ast → ∞. Applying Leibniz integration rule to eqn. (15), we
obtain,

−∞D−ω
x (M(−t)) =

1
Γ(µ)

x
∫

−∞

(x− t)µ−1 dM(−t)
dt

dt. (16)

Whenx = 0, using eqn. (9) and reversing the time-axis we
get,

〈T ω 〉=
−1

Γ(µ)

∞
∫

0

tµ−1 dM(t)
dt

dt. (17)

Case 2: Let −2< ω ≤−1. In this casen = 2 andµ = ω +2.
From the definition of fractional differentiation in eqn. (7),
we get,

−∞D−ω
x (M(−t)) =

1
Γ(µ)

d2

dx2





x
∫

−∞

(x− t)µ−1M(−t)dt



 .

(18)
Applying the integration by parts twice to eqn. (18) followed
by Leibniz rule, we obtain,

−∞D−ω
x (M(−t)) =

1
Γ(µ)

x
∫

−∞

(x− t)µ−1
(

d2M(−t)
dt2

)

dt.

(19)
Whenx = 0, using eqn. (9) and reversing the time-axis we
get,

〈T ω〉=
1

Γ(µ)

∞
∫

0

tµ−1 d2M(t)
dt2 dt. (20)

Case 3: Let ω ≤ 0. Let n = [−ω ]+1 andµ = n+ω . In this
case, from eqn. (7), we get,

−∞D−ω
x (M(−t)) =

1
Γ(µ)

dn

dxn





x
∫

−∞

(x− t)µ−1M(−t)dt



 .

(21)
By induction from cases (1) and (2), we can deduce that

−∞D−ω
x (M(−t)) =

1
Γ(µ)

x
∫

−∞

(x− t)µ−1
(

dnM(−t)
dtn

)

dt.

(22)
Whenx = 0, using eqn. (9) and reversing the time-axis we
get,

〈T ω〉=
(−1)n

Γ(µ)

∞
∫

0

tµ−1 dnM(t)
dtn dt. (23)

3. SIMULATION RESULTS

In this section, we present simulation results on a non-
smooth distributionfT (T ), shown in Fig. 1(A). Simulated
data are generated from this distribution using eqn. (1) and
corrupted with additive Gaussian zero-mean noise with stan-
dard deviationσε . One such data set is shown in Fig. 1(B).
Fractional moments were estimated using eqn. (4) described
in this manuscript. Estimated moments are compared with
the true moments in Fig. 1(C). The errorbars on the estimated
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Figure 1: (A) A complexfT (T ) is considered. (B) Data sim-
ulated from this model with additive white Gaussian noise
with σε = 0.01. One realization of the data is shown. (C)
Moments are estimated from the data using eqn. (4). The
mean and error-bar of estimated moments are obtained from
100 different noise realizations and compare well with the
true moments.

moments are obtained from analyzing data with multiple re-
alizations of noise. The simulation results obtained on this
models are representative of results seen on other models.

4. SUMMARY

Traditional methods of computing moments involves solv-
ing the inverse Laplace transform for the probability den-
sity function, which is a well-known mathematically ill-
conditioned problem. Often, regularization or prior informa-
tion about the expected density function is incorporated to
make the problem better conditioned. However, the choice
of a regularization functional as well as the weight given to
prior information are non-unique and are well-known draw-
backs of the transform.

This paper describes a novel method using fractional cal-
culus to estimate moments of a random variable from the
measured Laplace transform of its probability density func-
tion. The moments are obtained from a simple, straight-
forward linear transformation of the data. Further, we have
demonstrated that whenω > 0, computation of moments cor-
responds to fractional integration of the data. Whenω ≤ 0,
computation of moments corresponds to fractional differen-
tiation.
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