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ABSTRACT 

The conventional method for determining target angle of 

arrival with an array of sensors is to digitize the output of 

each sensor at the Nyquist sampling rate for the system 

bandwidth and use digital signal processing algorithms such 

as maximum likelihood estimation or multiple signals classi-

fication (MUSIC).  Here we show that if the targets sparsely 

populate the angle/frequency domain, the angles and fre-

quencies can be obtained from a much smaller number of 

measurements by randomly summing sensor outputs and by 

randomly sampling in time through the use of a novel appli-

cation of recently developed compressive sensing algorithms.   

1. INTRODUCTION 

Angle-of-arrival (AOA) determination using an array of 

sensors is an important topic across a wide range of disci-

plines [1-3].  Recently, several researchers have applied the 

new paradigm of compressive sensing (CS) [4-6] to AOA 

determination [7-10].   In this prior work, the authors have 

exploited sparsity in either the time or angle domains to ease 

receiver constraints while retaining AOA resolving capabil-

ity.  Here we take advantage of sparsity in both angle and 

frequency to formulate the conventional AOA problem [1] 

in the conventional CS format.  Some of this work is related 

to that presented in [4-6] but our formulation shows how to 

treat frequency domain and angle domain sparsity on an 

equal footing and how to morph the doubly-sparse AOA 

problem into the conventional CS format.  The major contri-

bution of our work is, however, the use of a super-resolution 

algorithm with our CS AOA formulation to determine angle.  

We present, for the first time to our knowledge, cumulative 

probability distributions as a function of angle for CS with 

variable compression ratios and compare these results to 

AOA determination with reduced numbers of elements. 

2. COMPRESSIVE SENSING 

In the conventional formulation for compressive sensing [3], 

a sparse vector s of dimension j can be recovered from a 

measured vector y of dimension k (k << j) after transforma-

tion by a sensing matrix  as shown in eq. (1) 

 

  y =  s + w    (1) 

 

where w is a noise vector.  Often,  is factored into two ma-

trices, where  is a “random” mixing matrix and  

is a Hermitian matrix with columns that form a basis in 

which the input vector is sparse.  A canonical example is the 

case in which the input is a time series with samples taken 

from a single sinusoid with an integer number of periods.  

These data are not sparse but are transformed into a sparse 

vector by the discrete Fourier transform (DFT). Note that 

although  is not square and hence not invertible, is both 

square and invertible.   Work in compressive sensing has 

shown that under quite general conditions, all j components 

of s may be recovered from the much smaller number of 

measurements of y.  With no noise (w = 0) recovery proceeds 

by minimizing the  norm of a test vector s’ (the sum of the 

absolute values of the elements of s’) subject to the constraint 

y =  s’.  In the presence of noise, recovery proceeds by 

minimizing a linear combination of the  norm of the target 

vector and the  norm of the residual vector given by y -  s  

 

 s’( ) = arg  mins( ||s||1  + || y -  s ||
2
)

where the parameter  is chosen such that the signal is opti-

mally recovered [11].   

 

Figure 1 – Target-antenna element array geometry. 

 

3. APPLYING CS TO AOA ESTIMATION ON THE 

GRID 

Here we consider angle of arrival estimation using the array 

shown in Fig. 1.  For simplicity, we consider a linear array of 

antenna elements and a set of targets located far from the 

sensors.  Thus the incoming signals are plane waves and the 

relative delay at the individual elements gives the angle of 

arrival directly.  Conventional algorithms for determining the 

angle of arrival are discussed in the pioneering paper on Mul-

tiple Signal Classification (MUSIC) and include beamform-

ing, maximum likelihood, maximum entropy as well as 
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MUSIC itself [1].  Following Schmidt, we consider the ma-

trix formulation of the angle-of-arrival problem given by 

 

  X(t) = AF(t) + W(t)  (3) 

 

where X(t) is the vector of signals received at the N antenna 

elements, F(t) is the vector of the target signals at J locations 

in angle space, and W(t) is a noise vector.  For a single fre-

quency f, the elements anj of the N x J matrix A are given by 

exp(i k nj) where k = 2 f/c (c is the speed of light) and nj is 

given by the product of the location of the n
th
 antenna ele-

ment with the unit vector corresponding to the j
th

 angle loca-

tion [1].  In a conventional system, the output of each an-

tenna element is digitized at the Nyquist rate and digital 

signal processing is used to obtain the target angle and fre-

quency.  Denote the matrix formed by the output of N an-

tenna elements for M time steps D.  In many systems, it is 

neither possible nor desirable to make and/or process all the 

measurements required to form D.  For example, the N Ny-

quist-rate ADCs, one at each antenna element, may consume 

too much power [7] or the communication rate between 

elements may be limited [9].  This motivates us to determine 

if we can achieve the desired target information (amplitude, 

angle and frequency) from a smaller number of measure-

ments using techniques described in the well-known papers 

on compressive sensing [1-3]. 

 

Angle of arrival estimation can be converted to the conven-

tional compressive sensing format as follows.  We assume 

that the number of targets is small compared to the total 

number of elements in the D matrix.  Thus, even though D is 

not measured, its 2-dimensional Fourier transform in the 

sine-of-the-angle (sine-angle) and the frequency domain is 

sparse.  This assumption might break down for wideband 

targets such as chirp radar reflections or cluttered environ-

ments with chaff at many angles.  The dimension of the angle 

space is determined by the number of antenna elements. 

Therefore, before compression the number of sine-angle bins 

is taken to be equal to the number of elements in the array; 

likewise, the number of frequency bins is equal to the num-

ber of time samples.  The matrix D can be transformed from 

the antenna-element/time domain to the sine-angle/frequency 

domain with Fourier transforms to obtain a sparse matrix S 

given by S = FtDFa  where Ft is the Fourier transform from 

time to frequency and Fa is the Fourier transform from array 

position to sine-angle position (Ft and Fa are square matrices 

compatible with D). In our sytem, neither the measurements 

of D, nor the transforms Ft and Fa are performed at the re-

ceiver.  The inverse transforms are, however, required during 

the recovery of D, since D = Ft
-1

 S Fa
-1

 where F
-1

 is the in-

verse Fourier transform.  Therefore, after determining S 

through compressive sensing techniques, the original data 

matrix D can be recovered as if it were measured at the Ny-

quist rate at each array element, and then D could be proc-

essed with traditional techniques. 

 

The next step is to mix the matrix D along the lines of con-

ventional compressive sensing.  D is compressed in the an-

tenna-array dimension by a “wide” pseudo-random matrix L 

and in the time dimension by a “skinny” pseudo-random 

matrix R such that L is of dimension n x N and R is of dimen-

sion M x m.  L and R are known matrices that we generate 

and store.  The new matrix C, given by C = LDR, is of di-

mension n x m.  In our system C is digitized with mn/MN 

fewer resources (sampling steps per unit time) than would be 

required for a similar measurement of D.  Note that neither 

the sampling rate nor the array dimension changes as a result 

of measuring C; only the total number of measurements is 

reduced.   

 

The sparse representation S can be recovered from the com-

pressed measurements C as follows.  First, write C = L D R = 

L Ft
-1

 S Fa
-1

 R.   Second, minimize the matrix  norm of S 

subject to the constraint C = L Ft
-1

 S Fa
-1

 R in the absence of 

noise or in the presence of noise.  

 

S’( ) = arg minS ( ||S||1 +  || C - L Ft
-1

 S Fa
-1

 R||2
2
) (4) 

 

where as in eq. (2) we use the double bar notation to indicate 

the “entry-wise” norm  of the enclosed matrix and the choice 

of the penalty parameter  allows optimal recovery of S with 

minimal noise [11].        

 

There are two differences between eq. (4) and eq. (2).  First, 

in eq. (4), the target quantity S is a matrix. This can be fixed 

by “flattening” the N x M dimensional matrix S to a vector s 

of length MN.  Second, the matrix multiplications in the 

least-squares term of eq. (4) must be rewritten in terms of a 

single matrix on the left-hand side of s.  That is, since both 

the 2D Fourier transform and the transformations by the left 

and right mixing matrices are linear, we can express eq. (4) in 

the form:  

 

 G.F2 s = Flatten(L Ft
-1

 S Fa
-1

 R)  (5) 

 

where G performs the left-right mixing matrix transforma-

tions and F2 performs the 2D discrete Fourier transformation. 

A brief derivation of G and F2 in terms of L, R, Ft, and Ft (or 

L, R, Ft
-1

 and Fa
-1

) is given in the Appendix.  One final step is 

needed before most CS packages can be used.  All matrices 

in eq. (4) are complex (including the mixing matrices) while 

most packages use real numbers.  We rewrite G as {{GR, -

GI}, {GI, GR}} and s as {sR,sI} where the subscripts R and I 

indicate the real and imaginary parts of G and s.  Although 

this formulation is a slight departure from the strict minimi-

zation of the  norm for complex vectors, we have shown 

with extensive calculations that this recovery technique 

works well without modification to existing codes.     

 

Fig. 2 shows the mean square error in the recovered matrix S 

as a function of the small dimension of the mixing matrix (m 

= n in these calculations) with a 32-element array and 32-

time steps and 3 targets with the target angles and frequen-

cies chosen such that S is sparse.  The sharp dependence of 

CS recovery on the small dimension of the mixing matrix is 

characteristic of CS systems.    
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Figure 2 – Residual error as a function of the small dimension m or 

the mixing matrices use in space and time with noise level  as a 

parameter.   Residual error is defined as the mean-square of the 

difference between the elements of the S matrix calculated from the 

penalized  norm and the S matrix calculated directly from trans-

forming D.  There are 32 antenna elements and 32 time points sam-

pled at each ADC.  Three targets are present with angles and fre-

quencies on the grids. 

4. RESOLVING AOA OFF THE GRIDS 

The critical issue in using compressive sensing for determin-

ing AOA is formatting the recovery such that the flattened S 

matrix is sparse.  But the Fourier transform of a digital rep-

lica of a single frequency sine wave is sparse if and only if 

the duration of digital replica is exactly an integer number of 

periods.  If the duration of the time window is not an exact 

number of periods, then the discrete Fourier transform will 

not be sparse because of the extra frequency components 

introduced by truncating the waveform at a fraction of a pe-

riod.  For AOA determination in a scenario with a single tar-

get the elements djk of the D matrix can be written as a exp( 

2 i f tj + 2 i f xk sin ) where  a, f and  are the target ampli-

tude, frequency, and angle; tj ranges from 0 to tmax (the dura-

tion of the time window) in units of t (the sampling period); 

and xk ranges from 0 (the position of the first antenna) to xmax 

(the position of the last antenna) in units of x (the separation 

of individual antennas).  The values of t and tmax set the 

values of a frequency grid for which the Fourier transform in 

time of D is sparse.  For a given frequency, the values of x 

and xmax determine the angular grid for which the array di-

mension Fourier transform of D is sparse. 

 

Our calculations proceed as follows.  First, we define the 

time, position, frequency and sin  grids.  Then we calculate 

the D matrix.  Next we mix the D matrix from the left and 

right with wide and skinny matrices whose elements are ran-

domly chosen from +/-1+/-i to calculate the matrix C, which 

is the basic matrix to be measured.  We have used a Mathe-

matica package for minimizing an -penalized functional 

called L1Packv2 developed by Loris [11] to recover S from 

C and the G matrix discussed above.  With no noise, recov-

ery is perfect, provided that m and n satisfy the usual com-

pressive sensing relations relative to M and N and the number 

of targets, which determines the number of non-zero ele-

ments in S.   

 

To insure that the discrete 2D Fourier transformation can be 

inverted, the dimension of the frequency grid equals the 

number of time steps while the dimension of the angle grid 

equals the number of antenna elements (the number of an-

tenna elements need not equal the number of time steps).  If 

the target frequency and/or angle do not lie on the grids, the 

matrix S defined above is not sparse.  But sliding the Fourier 

transforms by the correct offsets as given in eq. (6), trans-

forms a target with an arbitrary angle or frequency on to the 

grid and makes S sparse:    

 

exp[2 i(j-1)(k-1)/N]  exp[2 i(j-1-offset)(k-1)/N]. (6) 

 

Since the Fourier transforms are used only in the recovery 

process, the correct offsets can be found by minimizing the 

penalized norm as a function of offset to find the true target 

angle and frequency.  The data taking process, the random 

matrices, and the measurement matrix C are unchanged. 

5. RESULTS 

In test calculations the matrices D and S are known and one 

can calculate the error in the compressive sensing estimate 

of the coefficients of S compared to the true value.  Fig. 2 

shows this error as a function of the small dimension of the 

mixing matrices for several values of , the standard devia-

tion of the Gaussian pseudo-random noise added to the real 

and imaginary parts of each element of D in the simulation.  

In an actual application, where the input angle and fre-

quency are unknown and off the grid, the error shown in 

Fig. 2 cannot be used to determine the angle and one must 

evaluate the penalized norm given in eq. (4) as a function of 

offset for each realization of the random noise.   Illustrations 

of such calculations are shown in Fig. 3.  Note that the true 

offset is 0.8 and in the large noise case (  = 0.3), particu-

larly, the offset inferred from the minimum in the penalized 

norm has large errors.  We emphasize that for targets off the 

grid, the value of the offset at the minimum of the penalized 

norm is the only knowledge of the unknown target angle.   

 

 

 

 

1426



 a)

 b) 

Figure 3 – Penalized norm (p.n.) as a function of Fourier transform 

offset for 4 realizations of the pseudo-random noise added to each 

measurement.  a)  = 0.03, b)  = 0.3. 

 

To find the cumulative probability distribution, the angle (or 

frequency) must be determined from the minimum of the 

curves shown in Fig. 3 for a large number of independent 

realizations.  Fig. 4 shows the results for a 32 element array 

and a single time point. We performed 1024 calculations for 

each curve.  The red curves are generated using an identity 

mixing matrix, that is, unmixed, and using the penalized -
norm as the angle estimator.  We have shown in separate 

work that using the -norm as the angle estimator with un-

mixed signals gives the same results as using the MUSIC 

algorithm.  The leftmost curve is for an unmixed 32-element 

array while the right hand curve is for an unmixied 16 ele-

ment array.  The median angular error [  for P(  = 0.5] 

for the 16-element array is about 2
3/2

 larger compared to the 

median angular error for the 32-element array, in agreement 

with simple arguments for conventional arrays and proces-

sign discussed in the next section. The four green curves cor-

respond to compressive sensing with the small dimension of 

the mixing matrix equal to 4, 8, 16 and 32.  Note that the 

performance of the compressive sensing algorithm with a 

4x32 mixing matrix is about the same as the unmixed 16 

element array.  The 32x32 mixing matrix result is slightly 

inferior to the identity mixing matrix result as expected since 

the non-unitary random mixing matrix distorts the distribu-

tion of the noise.  The median angle error scales by 2
1/2 

in 

going from the unmixed 32 element result to the 16x32 CS 

result.  This reflects the loss in SNR in the 16x32 CS system 

compared to the 32 element system without CS as discussed 

in Section 6.  In all calculations shown in Figs. 2-4 we set the 

penalty parameter  equal to the noise standard deviation . 

Results are not sensitive to this assumption as shown by the 

probability distributions given in Fig. 5 for  = 0.3 and  = 

0.1, 0.3, 0.6.  We emphasize that the choice of  is a system 

design issue and determined by a priori knowledge of noise 

levels.   

Figure 4 – Cumulative probability P( ) as a function of for 32 

and 16 element arrays mixed with an identity matrix, which yields 

the same results as conventional MUSIC alogorithm,(red curves) 

and for a 32 element array randomly mixed to 32, 16, 8 and 4 ele-

ments. 

 

 

Figure 5 – Cumulative probability P( ) as a function of for a 

32-element array randomly mixed down to 4 measurements with  

= 0.3 and  = 0.01 (magenta), 0.3 (green), 2.0 (blue) 

 

6. SIGNAL-TO-NOISE RATIO DEPENDENCE 

Define the signal-to-noise ratio (SNR) of a signal s in the 

presence of noise to be ||s||
2
 / (2  

2
), where 

2
 is the variance 

of the noise in the real and imaginary part of a single sample 

in the received signal. On average, compressive measure-

ments reduce the SNR of a signal by the compression ratio 
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[12], which will limit the utility of large compression ratios 

in practical applications.  Even under the modest compres-

sion, say by reducing the number of measurements by half, 

the SNR will drop by 3 dB and this loss of SNR affects 

AOA accuracy. 

 

AOA accuracy is proportional to 1/( SNR
1/2

 xmax) [13] where 

xmax is the width of the linear array.  Alternatively, the num-

ber of measurements can be reduced by simply measuring 

fewer elements of the array.  We compare two reduced 

measurement approaches to standard array measurements 

using the full array: compressive sensing and standard sens-

ing on a smaller array. The accuracy standard is the uncom-

pressed, full sized array AOA ~ 1/(SNR
1/2

xmax).  The AOA 

uncertainty for the compressively sensed full sized array for 

the same signal is CSAOA ~ 1/ [(SNR/2)
1/2 

xmax] = 

2
1/2

/(SNR
1/2 

xmax). Finally, the uncertainty for the half sized 

array with standard processing is HAOA ~1/ [(SNR/2)
1/2 

xmax/2] = 2
3/2 

/ (SNR
1/2 

xmax).  The constant of proportionality 

is the same in all three cases.   

7. CONCLUSIONS 

We formulate AOA estimation in the conventional format 

used in compressive sensing and calculate AOA by finding 

the minimum in the penalized -norm of a sparse target 

vector as a function of the offset in the Fourier transform 

necessary to sparsify the input signal.  We calculate cumula-

tive probability distributions for the AOA error for varying 

noise levels and degrees of compression.  Relations between 

median angle errors for different cases are in good agree-

ment with simple scaling laws.  We recognize that the CS 

recovery algorithms developed in this paper may be compu-

tationally complex and/or slow but there is extensive work 

going on world-wide to develop optimized CS recovery al-

gorithms. 

8. APPENDIX 

 

In order to apply standard minimization packages [11], to the 

matrix formulation of the AOA problem given in equation 

(4), the problem needs to be restated in terms of -
minimization of vectors.  This is easily accomplished since 

the mapping of C=LDR is linear in the elements of D. 

   

Let G be the nm x NM complex matrix with columns Gk; k is 

in the set {1…NM} defined by the flattened outer product of 

the i
th
 column of L with the j

th
 row of R where k = Nj + i. 

Then c=Gd, where d is the vector formed by flattening D and 

c is the vector formed by flattening C.  In other words, if 

Col(G, k)=Flatten(Outer(Col(L, i), Row(R, j))) for each k,  

1≤ k ≤NM, then Flatten(C) = G Flatten(D) = Flatten(LDR). 

 

This flattened formulation can be derived by considering the 

image of the standard basis {Eij} of the space of NxM matric-

es under the linear transformation given by C=LDR, where 

Eij is a matrix with a one in the i
th
, j

th
 position and zeros else-

where.  The same technique may be used to derive the matrix 

formulation of the discrete 2D Fourier transformation F2
-1

 

from Ft
-1

 and Fa
-1

. 

 

REFERENCES 

[1] R. O. Schmidt, “Multiple emitter location and signal 

parameter estimation,” IEEE Trans Ant. and Prop., vol. AP-

34, pp. 276-280, Mar. 1986. 

[2] N. Iwakiri and T. Kobayashi, “Ultra-wideband time-of-

arrival and angle-of-arrival estimation using transformation 

between frequency and time domain signals,” Journal of 

Commun., vol. 3, pp. 12-19, Jan. 2008. 

[3] D. Malioutov, M. Cetin, A. S. Willsky, “A sparse signal 

reconstruction perspective for source localization with sen-

sor arrays,” IEEE Trans. Signal Proc., vol. 53, pp. 3010-

3022, Aug. 2005. 

[4] D. L. Donoho, “Compressed sensing,” IEEE Trans. In-

form. Theory, vol. 52, pp. 1289-1306, Sept. 2006. 

[5] E. J. Candes and T. Tao, “Near optimal signal recovery 

from random projections: Universal encoding strategies?” 

IEEE Trans. Inform. Theory, vol. 52, pp. 5406-5425, Dec. 

2006. 

[6] R. G. Baraniuk, “Compressive sensing,” IEEE Signal 

Processing Mag., vol. 24, no. 4, pp.118-120, 124, 2007. 

[7] A. Gurbuz, J. McClellan, and V. Cevher, “A compres-

sive beamforming method,” Proc. on ICASSP 08, pp. 2617-

2620, 2008. 

[8] V. Cevher and R. Baraniuk, “Compressive sensing for 

sensor calibration,” Proc. on SAM08, pp. 175-178, 2008. 

[9] V. Cevher, A. Gurbuz, J. McClellan, and P. Chellappa, 

“Compressive wireless arrays for bearing estimation,” 

Proc. on ICASSP08, pp. 2497-2500, 2008. 

[10] I. Bilik, “Spatial compressive sensing approach for 

field directionality estimation,” Proc. IEEE 2009 Radar 

Conference, Pasadena, CA, pp. 1-5, May 2009. 

[11] I. Loris, “L1Packv2: A Mathematica package for mi-

nimizing an -penalized functional,” Computer Phys. 

Comm., vol. 79, pp. 895-902, 15 Dec. 2008. 

[12] M. Davenport, M. Wakin and R. Baraniuk,  Detection 

and estimation with compressive measurements, Rice ECE 

Department Technical Report, TREE 0610, Nov. 2006. 

[13] R. J. Mailloux, Phased Array Antenna Handbook Sec-

ond Edition, p. 12, Artech House, Boston, 2005. 

 

1428


