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ABSTRACT equalized symbols and compare them with the results of
The statistical efficiency of a batch-processing constantMonte-Carlo simulations. We find that although several ap-
modulus blind equalizer for estimating a) the complex-proximations are involved in our theoretical results devia
valued tap weight within a two-path channel model and b}ions from the numerical simulations are rather insigniftca
the equalized signal is investigated. Expanding the catsta ~ The channel model that we employed in our analysis is
modulus cost-function in a multidimensional Taylor seriesoften used as a simple model for a HF-communication chan-
up to third order we derive closed-form expressions for thenel. It follows the considerations leading to the Watterson
first-order bias and variance of the path weight and the equamodel [9] which underlies the ITU recommendation [10] for
ized symbols as a function of the variance of the Gaussiatesting HF modems: Although the HF ionospheric channels
distributed noise, the block length, and the actual channeire non-stationary both in frequency and time they can be
parameters. We study random as well as deterministic syngonsidered as nearly stationary for band-limited signats a
bol sequences. In the first case we compute the average sifficiently short times. Furthermore, in most cases the HF
the bias and variance over zero-mean random (real-valuedpannel is of specular nature, and the representative chan-
signals of binary pulse amplitude modulation (PAM), andnel parameter combinations of the ITU recommendations in-
(complex-valued) signals of phase shift keying (PSK) moduclude only two fading paths without frequency shifts follow
lation. We compare our analytical results with Monte-Carloing a complex Gaussian random process. As for quiet and
simulations and find good agreement for small to mediummoderate conditions, which have more than 90 % probability
noise variance. of occurrence, the frequency spread of the random process
is rather small (up to 1 Hz) we assume the tap-gain func-
1. INTRODUCTION tion of each path to be constant for each block of received
data. In this contribution we consider two cases: a channel
With purely real-valued tap-gains distorting a PAM signal,

path propagation. Then, an equalizer either exploitin@ira onq the more general case of a channel with complex-valued
ing sequences or operating in a blind way is needed to '§ap gains distorting a complex-valued PSK signal.

move the intersymbol interference. The constant-modulus- The paper is organized as follows: we start with the def-
algorithm (CMA) is by far the most known and studied jition of the constant-modulus cost-function. After it

method for blind channel equalization. It was first imro‘general expressions for the bias and variance of the path pa-

duced for blind equalization of quadrature amplitude mody,neters and the equalized signal we present the mainsesult
ulation (QAM) signals in [1] and of PAM and FM signals fq the CM cost-function and compare with MC-simulations.
in [2]. A review including a large list of publications about

the constant modulus criterion for blind equalization can b : :
found in [3]. Theoretical analysis of the CMA mainly deal 2. CONSTANT-MODUL USCOST-FUNCTION
with a study of the convergence behavior, see e.g. [4, 5r6], oThe algorithm which is analyzed in this work is a variant
of the error surface [3]. Results concerning an upper boundf the well known CMA. One modification consists in em-
for the mean-squared-error (MSE) can be found in [7] angloying a parametric zero-forcing filter and the second dif-
the steady-state MSE for the equalization of noise-free norference is that the channel parameters are then estimated
constant-modulus signals with CMA variants have been pulbatch-wise from the global minimum of a cost-function us-
lished in [8]. ing the constant-modulus-criterion. The impulse respafise

In this contribution, we present results of a statisti-the channel is modeled as
cal analysis, both theoretical and numerical, of a batch-
processing constant-modulus blind equalizer using a para- h(t) =35(t) +A3(t—1) 1)
metric channel model. Our theoretical calculations arethas _ ,
on a multidimensional Taylor series of the constant-mesluluwith complex-valued path attenuatign= ae!? and delay
cost-function in a power series in terms of the additive @ois T (As the channel can only be identified up to an unknown
and the deviations of the estimated parameters from the tru@verall factor, we set the amplitude of the first path equal to
ones. In order to compute the bias, we have to extend thene.) ] ) ) )
Taylor series up to third order, as within a second-order ex- The received lowpass signalt) is then the convolution
pansion the parameter deviations depend linearly on the a@f the complex envelope
ditive noise which is assumed to be zero-mean. We present -
expressions for the first-order bias and variance of the path _ i
parameters as well as an expression for the variance of the y o Z Sg(t=iT), 2)

Radio communication can be severely distorted due to mult

j=—o0
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with the channeh(t). Here,g(t) is the combined transmitter An approximation to the position of the new minimum
and receiver filter which fulfills the first Nyquist condition can be found by using a Taylor expansion of the cost func-
ands are the (complex-valued) information-bearing sym-tion around(%,p). A general expression for the multi-
bols with magnitudds| = 1. Over-sampling the received dimensional Taylor series can be found for example in [11]:
signal by a factor oM times the symbol rat&, we denote -

the data in one batck = (xg,...,xgy)" € CNM whereN is ty) =3 1 {(5yT O,)™f } _ (5)

the number of symbols in the batch apdl’ denotes trans- m! y=y

position. The delay is = LT /M with L being an integer. In
order to equalize the received signal a zero-forcing fiter
of lengthWL + 1, with W being an integer, is applied to the
received data. The filter is parameterized by the path weig
A and the delay. The estimation of the delay will not be th
issue of the statistical analysis presented here. The dslay

Here, we have to partition the variables into one part con-
taining the received signal and another part containing the
annel parametey, = (x",p")". The Taylor series up to
ird order then involves partial derivatives of secondeord

which we collect in the following matrices

timation can be carried out before, independently from the 92c 9%c 9°c
estimation ofA, and does typically not rely on the constant- Dl(j ) = i(;p) = ffm =

modulus criterion. Furthermore, provided that the delagsdo 0%i0Xj |z p 0%0Px|%.p 9P I p
not change in time, the estimation of the delay is rathersobu (6)

for a sufficiently long observation period. We proceed on theéand partial derivatives of third order which are compriged i
assumption that the estimated delay equals the true one. 1he tensors

the following, we will treat the case that the second path is 93¢ 33
the less dominant one with weight| < 1, so that the filter @iﬁpp) =—— | @i(jﬁ‘p) =——1 .
acts on the past dataw = (Xam-wL,- .-, %) " . (The other 0%9pIP |z 5 0% 0% 0Pk |5 5

case where the first path is weaker than the following on
can be treated analogously. Than > 1 and the transversal
filter acts on the 'future’ data.) Explicitly, the zero-famg
equalized signal is given by:

%urthermore, we define the multiplication of a tengowith
a vectorz with respect to the first dimension of the tensor to
be the resulting matrixZ x, z) with elements

W (Z*12)jk = DijK4 (8)
Zn = Xpyw = z Xk (—A)K. (3)  where we used Einstein’s summation convention, i.e. if an
k=0 index occurs twice in a term, summation over the index is

) ) ) . implied. Then, the third-order Taylor expansion reads
We note that in our Monte-Carlo simulations for a given

value of A, the filter ordeW is chosen such thaa W < . o aa T T 0x

10719, On the other hand, in our theoretical analysis we as- c(x;pls) ~ c(x;pls) + {Dxc DPC} { dp }

sume an infinite filter lengthilV — « as otherwise the esti- 1 DO Do) 5

mate for the path parameter would have an additional bias. 4+ = {5XT5pT} [ (%) (00) ] { 5X }
Itis obvious, that from a batch of length Nfsymbols we 2 D0 DPP p

can get out only a smaller numberf=N — [WL/M] + 1

equalized symbols[k] denotes the smallest possible integer

larger than or equal t®.) -
The cost-function in whiclN equalized symbols are con- +3 5P (2%PP) 41 8x)8p + = (5P Op)%c. (9)

sidered depends on the received data, the path parameters,

the particular transmitted symbol sequeree{s };~ ., and As the cost-function contair® = MN +WL values of the

an unknown, overall scaling factgre R for adjusting the received signal, each perturbed by an amourd:afthe es-

+ é(5xT Oy)3c+ %5XT(@(XX‘D) *1 0%)0p

magnitude of the equalized signal: timation errordp of a small number of parameters, here just
three, is typically much smaller than any one of the com-

N ponents o®x. Moreover, the second last term consist$of

c(x;a,Q,y|s) Z (ly z|?— (4) parts, and the third last term evenRsfparts. Then, provided

n=1 that the third order partial derivative with respeciptds not
significantly larger than the other partial derivatives,wit

3. GENERAL EXPRESSIONSFOR FIRST-ORDER skip the last term in EqQ. 9 which is cubic &p.
BIASAND VARIANCE From the necessary condition for the minimiig,c =0

we get
The path parameters are found by m|n|m|2|n1g the CM cost-

function c(x; p|s) with respect top = (a,¢,y)’ . (In case 5p = _(D(pp) + (PP 4y 5x))*1

of complex-valued receive data, we deflne the real-valued 1

receive vectos = (™ 3¢ X x0T and con- - (DP)5x + E(@(XXP) +10x)T0x). (10)
sider the real-valued cost-function as a function of realtva

ables only.) In case of no noise, the minimum of the cosThe biagdp) = E[dp] is obtained by taking the expectation
function is at the position of the true parameperWith ad-  operation, using fodx

ditional noise on the received signal i’e. X changes to

x = X + 8x, the position of the minimum will change corre- [5X5XT] _ {UEI for real-valued receive data

spondingly fromp to p = p + dp. 10,31 for complex-valued receive data
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E[0x] =0, E[6x0x;0%] =0, (11) 4. THEORETICAL RESULTSFOR THE
and expanding the denominator of Eq. 10 for small CONSTANT-MODUL US COST-FUNCTION

ox (provided that none of the eigenvalues of the matrixwe studied three different cases with respect to the nafure o

(DPP))~L(9XP) 4, 5x) equals one), the channel and symbols. All different cases have the fellow
ing assumptions in common:
(DPP) 4 (P%PP) 41 5x)) T+ ~ (12)  AO0.1 The filterg(t) is a rectangular pulse:
(DPP)L(1— (DPP)) 1 (PP 4y 8x) + ... ). T-1 g<t<T
9(t) = {O otﬁerv_vise (37
Finally, defining the vectors with elementﬁﬁl> =
_@.(nxf(mDEﬁ.X) andAf(Z) - @i(if‘m, we get for the leading order (Note: For path delays larger than the length of the
teer of thie bias pulse the results below are the same for arbitrary
pulse which fulfills the first Nyquist condition.)
biagp) = E[dp] A0.2 The path delay is an integer multiple of the symbol
1 periodT. (Note: For different path delays the results
= g2(DPP))~1((DPP)~1aMD §A(2>) . (13) below change slightly.)

The calculation of the results below can be carried out by
If we consider only the term of order(dx) in Egs. (10,12) computing the formulas like Egs. (13,14,16) containing the
which would have been obtained from a second-order Taylgpartial derivatives of the cost function. The terms invotyi
series which, of course, would lead to a zero bias, the lgadinmultiple sums can be resolved with the help of the assump-
order variance is identical to the leading order term of theions Eqgs. (18,24) and formulas for geometric series. Betai
MSE. The first-order variance is then contained in: of the rather long calculations will be published elsewhere

var(p) =E {5p5pT} 4.1 Random complex-valued symbol sequencetransmit-

ted over complex two-path channel
— Ur%(D(PP))*lD(PX)D(XP) (D(PP))*l_ (14) . ]
In this case, a n-PSK signal passes the two-path channel Eq.
An expression for the variance of the equalized signa(l) with complex path weighh = ae!? and we make the
can be derived by expanding Eq. (3) in a Taylor series in  following assumptions:
(which is trivial forx asz, depends linearly og). Consider-  Al1.1 The symbolss, € C have the expectations

ing only the leading order idx, A we obtain for the error .
of the equalized signah Elsa] = 0,E[saSy| = Onm,E[snSm| =0.  (18)

A1.2 The noisedx; is a discrete complex-valued Gaussian

N 3 DS
02y = Z(Xnm + Oxnm; A + 04 ) —Xpuw(A) random process with

ow
~ 5T LT OW i}
~ OXgW + Xpm o 5\6}\ . (15) E[6x]=0 , E[5X@5XJ _ Uﬁd,j ) (19)
The first-order variance is computed straightforward: Under the above assumptions, the term of leading or-
der in g? for the variance and bias of the CM-estimate for
2 2 |1 OW 2 ) the path parameters of a two-path channel with tap gain
E[62:07)] = o |w[“+ XM 3 E[6a“] (16) A = qel?is asymptotically (for large block lengtk)
(9W * -1 * 2
92 T OW (S(AA%) (A*X) o 2 O _2
202 01 {ng = (D ) DA My } . Es[5a?] = N tON ) (20)
Here, we have used the second-order Taylor series of the cost Es[oa] = _gg% +O0(NY (21)
function in terms of the complex signaland the complex 1 1-a
ﬁ%ttr;r?:erémete}\, ignoring the scaling factoy in the first Es[é(pz} _ ?Es[éaz] , Es[0¢] =0 (22)

The bias and variance can be computed for a particulaa{nd the leading order term for the variance of the equalized
symbol sequence. On the other hand, we are interested in Ing vari qualiz

the average over all possible symbol sequences with a givémeOIS in the casdy = 0 reads

probability distributionw(s). Regarding the expectation of o2
the above expressions with respect to the symbol sequence, E[|62?] = I ”az + 0N, (23)

e.g. &[E[da]] = [ds E[da]w(s) we see that an analytical
calculation is not feasible. On the other hand, the expectgr 5 Random real-valued symbol sequence transmitted
tions of the individual terms in the expressions for the biag )

. . ) ver real two-path channel
and variance can be carried out analytically. Because these . ] .
individual terms have distributions which are very wellabc ~ Here, a binary PAM signal passes the channel Eq. (1) with
ized around their mean for large block lengthwe approx- real path weighf = a and we assume:
imate/replace the above expectation by proper expression&2.1 The symbols, € {+1,—1} have the expectations
containing the expectations of the individual terms. More
details of this argument will be published elsewhere. Elsa] =0, E[sSm]=0m - (24)
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A2.2 The noisedx; is a discrete real-valued Gaussian ran-

d ith 102 . T
OM Process wi ° biag da) - MC-simulations p
E[5X@] -0 7 E[5X@ 5Xj] _ Ur%d,j . (25) E[da] - analytical result /4
=+ = biag5¢) - MC-simulations

Under the above assumptions, the term of leading or- 4|4
der in g2 for the variance and bias of the CM-estimate for T+
Ll

0
the path parameter of a two-path channel with tap gais oo e, *a

asymptotically (for large block lengtk o L %, r|'++1
ymptoticaly (forlarg o .v,ﬁ*p:;;wmﬁwﬁ T
2 O21+a? oo, B t‘_ I-l-'l Ly 1‘" *
_ % -2 101 "o 1 ] 1 |

E[5a ] N 1_az+ﬁ(N ) (26) i i‘_‘_ |", + 14.

a 0° 6a ' }

E[6a] = —a? 4+ +ON?). (27 ‘ ‘ 1 4

[oa] "1-0a2 N (1-0a?)7? (N7 @D 0 0.2 0.4 0.6 0.8
a

4.3 Periodic real-valued symbol sequence transmitted

over real two-path channel Figure 2: Bias of the path parametersp for o, = 0.01 and

It is interesting to compute results for a specific symbol seN = 100. The transmitted symbols are 4-PSK.

guence. There are some particular symbol sequences which

show a relatively large deviation from the average. E.gafor _ o

deterministic periodic binary PAM signdi-1— 1} and the ~ Therefore, we have to compare with the standard deviation

assumption A2.2 we find for the first-order variance and bia§f the numerical results, not with the MSE. On the other
hand, the equalized symbols do not show a bias, therefore,

o2 1 2a B Fig. 3 displays the MSE of the equalized signals. We find
E[&’Z} = Wn (1— Nm) +O(N7?) (28) very good overall agreement, only for valuesoftlose to
) one, the numerical results are problematic due to the filter
E[da] = _ 0y 3+5a FONNY). (29) length approaching infinity.

2 (1+a)?

5. NUMERICAL COMPARISONS

We compared the analytical results with Monte-Carlo (MC)
simulations. We considered a block lengthhf= 100, i.e. E|62|?] - analytical result
there are B ~ 10% different symbol sequences. In order to

obtain smooth curves, we had to use a large number of &

x MSE - MC-simulations

least 200000 MC runs, resulting in a computation time of '(-',)J
about one day on a PC. S
101
1 3 std(da) - MC-simulations
“ +/E[6a?]-analytical result
*‘ ° std(d¢) - MC-simulations . . .
% = = = /E[d¢?-analytical result o
102 |

Figure 3: Mean-Squared-Error of the equalized 4-PSK sym-
bols ato, = 0.01 andN = 100.

Standard deviation

For the case of real path weight and BPSK symbols Figs.
4 and 5 display the bias and standard deviation for varying
path attenuatiom. For the bias we plotted two lines: the
first one corresponds to the first term in Eq. 27, which is
the leading order term iN. The small gap to the numerical
result is filled by including both terms. In Fig. 6 the bias

i _ L and the square root of the variance are plotted for varying
Figure 1. Standard deviation of the path parametexgfor  nsise variance. We find that the results start to differ for a

0n = 0.01 andN = 100. The transmitted symbols are 4-PSK. npjse variance larger than abarg ~ 0.03, which shows the

limitations of the Taylor series expansion. Finally, in Fig

For the case of a complex path weight and 4-PSK symge show the dependence of the results on the block lexgth
bols Figs. 1 and 2 show the standard deviation and bias for

varying path attenuatioa. In order to avoid confusion, we REFERENCES
note that the theoretical variance is based on a second or-
der Taylor expansion which by itself does not lead to a bias.[1] D. N. Godard, “Self-recovering equalization and carrie
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E[da]

0.02, - -
N — MC-simulations
r —«— leading third order term
0.01r two third order terms
0 L
-0.01+
0.02f
-0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8

a

bias/standard deviation

0.0§ —
—— E[da] - MC-simulations
0.06k —e— E[dq] - analytical result
06 —o— stdda) - MC-simulations
—— /E[6a?- analytical result
0.04r b
0.02r
O -
-0.02r-
-0.045
0.06% 55 0.1 0.01

Figure 4: Comparison of analytical results with Monte-@arl Figure 6: Comparison of analytical and numerical results fo
simulations forg, = 0.1 andN = 100. Including both third bias and standard deviation far= 0.2 andN = 100 as a

order terms gives reasonable agreement.

*10°3

0 01 02 03 04 05
a

-05 -04 -03 -0.2 -0.1

bias/standard deviation

function of the noise variance.

0.025

E[da] - MC-simulations
E[da] - analytical result
0.02r std(da) - MC-simulations

+/E[0a?]- analytical result
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Figure 5: Square root of the variance of the path parametefigure 7: Comparison of analytical and numerical results fo

a for g, = 0.01 andN = 100: solid line: analytical result.
Crosses: Standard deviation from MC-simulations.
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