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ABSTRACT
In this paper, a fast and accurate quantization noise estima-
tor aiming at fixed-point implementations of Digital Signal
Processing (DSP) algorithms is presented. The estimator en-
ables significant reduction in the computation time required
to perform complex wordlength optimizations.

The proposed estimator is based on the use of Affine
Avrithmetic (AA) and it is aimed at differentiable non-linear
algorithms with and without feedbacks. The estimation re-
lies on the parameterization of the statistical properties of
the noise at the output of fixed-point algorithms. Once the
output noise is parameterized (i.e. related to the fixed-point
formats of the algorithm signals), a fast estimation can be ap-
plied throughout the wordlength optimization process using
as a precision metric the SQNR.

The estimator is tested using a subset of non-linear algo-
rithms such as vector operations, adaptive filters and a chan-
nel equalizers. wordlength optimization times are boosted by
three orders of magnitude while keeping the average estima-
tion error down to 13%.

1. INTRODUCTION

The original infinite precision of an algorithm based on
the use of real arithmetic must be reduced to the practi-
cal precision bounds imposed by digital computing systems.
wordlength optimization (WLQO) aims at the selection of the
variables’” wordlengths of an algorithm to comply with a cer-
tain output noise constraint while optimizing the character-
istics of the implementation. Fixed-point (FxP) arithmetic
is commonly used in VLSI implementations since it leads
to lower cost implementations in terms of area, speed and
power consumption [1, 2, 3].

WLO is a slow process due to the fact that the optimiza-
tion is very complex (NP-hard) and also because of the ne-
cessity of a continuous assessment of the algorithm accu-
racy. This estimation is normally performed by adopting a
simulation-based approach [4, 3] which leads to exceedingly
long design times. However, in the last few years, there have
been attempts to provide fast estimation methods based on
analytical techniques to reduce design times. Among the dif-
ferent quality metrics used, SQNR is of most interest for DSP
systems. In this work, we focus on fast SQNR estimation
of FxP algorithms covering non-linear mathematical opera-
tions. Thus, a wide range of DSP applications can be tar-
geted (i.e. adaptive filtering, matrix operations, etc.). Our
approach tries to overcome the limitations of previous ap-
proaches, which are: the application to non-recursive algo-
rithms only, the use of non-accurate quantization noise mod-
els, extremely long noise parameterization times, etc.

This paper contains the following contributions:
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e A novel AA-based SQNR estimator for differentiable
non-linear algorithms with and without loops. The es-
timator is fast and accurate and it enables fast WLO.
Performance results of a set of DSP benchmarks covering
algorithms with and without loops, under different appli-
cation scenarios (e.g. 4G equalization, adaptive filtering,
etc.).

The paper is structured as follows: In section 2, related
work is discussed. Section 3 deals with the novel SQONR esti-
mation proposal. Performance results are collected in section
4. And finally, section 5 draws the conclusions.

2. RELATED WORK

In this section, we focus on those approaches aiming at
the automatic SQNR estimation of non-differentiable algo-
rithms. SQNR estimators applicable only to LTI systems are
not included in the discussion ([2, 5]).

2.1 Non-linear approaches

The approaches aiming at non-linear systems are mainly
based on perturbation theory, where the effect of the quanti-
zation of each algorithm’s signal on the quality of the output
signal is supposed to be small. This allows to apply a first-
order Taylor expansion to each non-linear operation in order
to characterize the effect of the quantization of the inputs of
the operations. This constrains the application to algorithms
composed of differentiable operations. The existent methods
enable to obtain an expression that relates the wordlengths
of signals to the power — also mean and variance — of the
quantization noise at the output (see subsection 3.3).

In [6] a hybrid method which combines simulations and
analytical techniques to estimate the variance of the noise is
proposed. The estimator is suitable for non-recursive and re-
cursive algorithms. The parameterization phase is fast, since
it requires N simulations for an algorithm with N variables.
The noise model is based on [7] and second order effects are
neglected by applying first order Taylor expansions. The pa-
per suggests that the contributions of the signal quantization
noises at the output can be added, assuming that the noises
are independent. In non-linear systems this is a strong as-
sumption that might lead to variance underestimation. The
accuracy of the method is not supported with any empirical
data, so it cannot be inferred the quality of the method.

In [8] another method suitable for non-recursive and re-
cursive algorithms is presented. Here, N2 /2 simulations as
well as a curve fitting technique (with N?/2 variables) are
required to parameterize quantization noise, leading to high
parameterization times. On the one hand, the noise produced



by each signal is modeled following the traditional quanti-
zation noise model from [9], which is less accurate than [7],
and, again, second order statistics are neglected. On the other
hand, the expression of the estimated noise power accounts
for noise interdependencies, which is a better approach than
[6]. The method is tested with an LMS adaptive filter and the
accuracy is evaluated graphically. There is no information
about computation times.

Finally, in [10] the parameterization is performed by
means of N simulations and the estimator is suitable only for
non-recursive systems. The accuracy of this approach seems
to be the highest since it uses the model from [7] and it ac-
counts for noise interdependencies. Although the informa-
tion provided about accuracy is more complete, it is still not
sufficient, since the estimator is only tested in a few SQNR
scenarios. This approach was successfully extended to recur-
sive systems in [11], with reasonably short parameterization
times due to the use of linear-prediction techniques.

2.2 Thiswork

Our approach tries to overcome most of the drawbacks of the
works presented above: it deals with non-recursive and re-
cursive systems, with an accurate noise model [7] and also
accounting for noise interdependencies. The parameteriza-
tion time can be relatively long for algorithms that contain
loops. However, the computation times are within standard
times (see section 4), and the benefits of fast estimates make
up for the sometimes slow parameterization process. Also,
the use of AA enables reconstructing the error probability
density function at each time step, thus allowing a powerful
tool for error analysis of DSP algorithms, and proposed tech-
nique can be integrated with other AA-based techniques that
enable range estimation, limit cycles analysis [12], etc.

3. SONR ESTIMATION
3.1 Wordlength optimization

Wordlength optimization is commonly divided into two se-
quential tasks:
e Scaling.
Its objective is to compute the number of integer bits of
each signal. It can be computed by means of a single
simulation that collects the signals ranges or by using in-
terval arithmetic (1A) based approaches.
¢ \\brdlength selection.
Here, the number of fractional bits is calculated. It is
a time-consuming task since it involves the application
of optimization techniques. During the optimization pro-
cess, thousands of estimates of the quality of the fixed-
point version of the algorithm (i.e. SQNR estimation) are
required. Traditionally, this estimation is based on simu-
lations, leading to extremely long optimization times.

The fast SQNR estimation technique that we present in this
paper is intended to replace those simulations, thus reducing
the wordlength selection time dramatically.

3.2 Affine Arithmetic

Affine Arithmetic (AA) [13] is an extension of Interval Arith-
metic (1A) aimed at the fast and accurate computation of the
ranges of an algorithm signals. Its main feature is that it au-
tomatically cancels the linear dependencies of the included

523

uncertainties along the computation path, thus avoiding the
oversizing produced by IA approaches.
The mathematical expression of an affine form is

N
X=X+ Y X (1)

i=1
where Xq is the central value of X, and & and x; are its i-th
noise term identifier and amplitude, respectively. In fact, X;é;
represents the interval [—x;, +Xxi], so an affine form describes
a numerical domain in terms of a central value and a sum
of intervals with different identifiers. Affine operations are
those which operate affine forms and produce an affine form
as a result. Given the affine forms X, y and € = ¢y, the affine
operations are

i=1

N
REC = XoE£C+ Y X 2
i=1
N
X+Y = XoE£Yo+ (X VYi)E 3)
i=1
N
€% = CoXo+ D, CoXig (4)

These operations suffice to model any LTI algorithm.
Differentiable operations can be approximated using a first-
order Taylor expansion:

81 (x0,Yo)
OX

X +
8f(x0,Y0)
8y

-yi) &
3.3 AA-based SQNR Estimation

Here, we present a method able to estimate the quantization
noise power of recursive and non-recursive non-linear algo-
rithms from an AA simulation.

Noise estimation is based on the assumption that the
quantization of a signal s; from npe bits to n bits can be mod-
eled by the addition of a uniformly distributed white noise
with the following statistical parameters [7]:

f(R.9) ~ f(x0,y0) +
i—1

()

of = %(2-2”i72-2”i’“) (6)
wo= 2Pz, W

This noise model is an extension of the traditional modeling
of quantization error as an additive white noise [9]. In [7] is
shown that the traditional continuous model can produce an
error of up to 200% in comparison to this modified version.

In [5] was proved that the effect of the deviation from the
original behavior of an algorithm with feedback loops can
be modeled by adding an affine form A;[n] to each signal i
at each simulation time instant n. The affine form f; models
a quantization noise with mean y; and variance o2, if each
error term € is assigned a uniform distribution:

fi[n] = i + V1202 0 = & 8)



Thus, it is possible to know at each moment the origin
of a particular error term (i) and the moment when it was
generated (n). The AA-based simulation can be made inde-
pendent on the particular statistical parameters of each quan-
tization thanks to error term &’. This is desirable in order to
obtain a parameterizable noise model. This error term en-
capsulates the mean value and the variance of the error term
€, and now it can be seen as a random variable with vari-
ance o7 and mean y;. This is a reinterpretation of AA, since
the error terms are not only intervals, but they also have a
probability distribution associated. Once the simulation is
finished, it is possible to compute the impact of the quanti-
zation noise produced by signal s; on the output of the al-
gorithms by checking the values of x; » (see eqn.(1)). This
enables the parameterization of the noise. Once the parame-
terization is performed, the estimation error produced by any
combination of (p,n) can be easily assessed replacing all €/ ,
by the original expression that accounts for the mean and

variance (ui + v'1202¢ ), thus enabling a fast estimation or
the quantization error. We will see all the process in the next
paragraphs.

The expression of a given output Y of an algorithm with
|S| quantized signals is

|S—1n—
15 S g

Ij7

where Yp[n] is the value of the output of the algorithm using
floating-point arithmetic and the summation is the contribu-
tion of the quantization noise sources. Note that Y; j[n] is a
function that depends on the inputs of the algorithm.

The error Erry at the output is in eqn.(10), and it is
formed by a collection of affine forms at each time step n.
The power of the quantization noise of the output can be ap-
proximated by the Mean Square Error (MSE), which is esti-
mated as the mean value of the expectancy of the power of
the summations of the uniform distributions at each time step
mas in egn.(11). The estimation is performed using an AA
simulation during K time steps.

R R I9=1n-1
Erry[n] =Yo[n] = Y[n] = — Y.jlnle j, (10)

=0 j=0

P(Erry[n]) = %KE:E [(Erry[m]ﬂ
1 K-1 A
= ¥ Y (Var(Erry[m])+
m=0

E [Erry[m]]z) (11)

This equation relies on the fact that error terms €/, are
uncorrelated to each other, which is a sensible assumption
in quantized DSP systems [9]. Also, the non-correlation be-
tween quantization noises enables to express the variance of
a summation of random variables as the summation of the
variance of each random variable. The two main terms in
eqn.(11) are developed in (12) and (13).
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[S—1m-1
Var (Erry[m]) = Var(— Yi,jmlel ;)
i=0 j=0
[S—1m-1
= Var (=Y j[mlg ;)
i=0 j=0
[S-1 m-1
= ot Y, Y[ (12)
i=0 =0
R [S—1m-1
E[Erry[m] = E[*Z'é Z%W,j[m]eiﬁj]
=0 =
[§S-1 m
= - .UiZYi.J[m] (13)
i=0 j=0
Combining (11), (12) and (13)
. 1 K=1 /181 ) m )
PEmb) - (3 (TE
m=0 \ i=0 j=0
S-1  m 2
< uZY.J[m]> (14)
i=0  j=0

The output noise power (egn. 14) can be expressed more
compactly by using vector V and matrix M as shown in
equations (egns. 15-17). The statistical parameters of the

quantization signals are in vectors 62 = <o§ ...0% > and

IS—1
fi = (uo...pg-1). Once vector V and matrix M are com-
puted the estlmatlon of the quantization noise does not re-
quire a simulation but the computation of (15), which is a

much faster process.

1 /-
_ A (G n o mnT
R, — K(o Vi My) (15)
K—1n—
n=0 :
—1n-1
SEGun)
n=0 j=
Mo,0 Mig-1,0
M = (17)
Mo, |s-1 m\afl 9-1
K—
My, i, Z <Z Y'1,11 Z Yiy, Jz ) (18)
=0 \j1=0 j2=0

The parameterization process is composed of the follow-
ing steps:
1. Perform a K—step AA simulation adding a affine forms
f; to each signal i



2. Compute eqns. (16-18) using previously collected Y; j[n].
During WLO the wordlengths of signals are used to com-

pute vectors o2 and i, and then the error can be estimated
very quickly by using egn.(15). Please note that expression
(14) can be applied to DSP algorithms including differen-
tiable operations (e.g. multiplications, divisions, etc.) by
means of egn.(5) due to the 1st order approximation.

4. RESULTS

This section presents the performance results of our fast es-
timator. The benchmarks used to test the performance of the
SQNR estimator are:

8x8 vector scalar multiplication (VECgyg)

MIMO channel equalizer (EQ) [14]

a mean power estimator based on an 1% IIR filter (POW)
2"9-order LMS filter (LMS;) [6]

5t-order LMS filter (LMSs) [6]

The set of benchmarks covers cyclic and acyclic algo-
rithms and that the set of operations includes additions, mul-
tiplications, and also divisions, usually neglected in similar
research studies. In addition to that, it is interesting to high-
light that the algorithms are not limited to linear filtering;
they address 4G MIMO channel equalizing, vector multipli-
cations and adaptive filtering.

All benchmarks are fed with 16-bit inputs and 12-bit con-
stants and the noise constraint is an SQNR ranging from 40
to 120 dB. The inputs used to perform the noise parameteri-
zation as well as the fixed-point simulation are summarized
in the last column of the table.

The procedure to carry out the tests is as follows:

Compute scaling by means of a floating point simulation.
Extract noise parameters (egns. 16-18) performing an
AA-based simulation.

Perform a WL selection based on the fast estimator
(egn. 15), using a gradient-descent approach.

Perform a single FxP bit-true simulation and use it as ref-
erence to assess the performance of the estimator.

The accuracy obtained by means of a gradient-descent
optimization [2] under different SQNR constraints — 80 in
total, from 40 dB to 120 dB - for the different benchmarks is
presented in Table 4. The first column indicates the bench-
mark used. The remaining columns show the accuracy of
the estimations measured in terms of the maximum absolute
value of the relative error in dB, and the average of the ab-
solute value of the percentage error, for four SQNR ranges:
[120,100) dB, [100,80) dB, [80, 60) dB and [60,40] dB (see
the expressions of the metrics at the bottom of the table).

The results yield that the estimator is very accurate. The
mean percentage error is smaller than 4.3 %, and the max-
imum relative error is smaller than 1.12 dB. Note that the
accuracy decreases as long as the error constraints get looser.
This is due to the amplification of the Taylor error terms (spe-
cially in the presence of loops) and also to the fact that the
uniformly distributed model for the quantization noise does
not remain valid for small SQNRs. Anyway, the quality of
the estimates is still very high. The average percentage error
confirms the excellent accuracy obtained by our estimator.

Table 4 holds the performance results in terms of com-
putation times. The first column shows the names of the
benchmarks. The second and third columns show the length
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of the input vectors required for a fixed-point simulation
and for the parameterization process. The parameterization
time is in the fourth column. The average number of it-
erations required during the optimization process is in the
sixth column. The next two columns present the computa-
tion time required to perform the gradient-descent optimiza-
tion using our estimation-based proposal and using a classi-
cal simulation-based approach. The computation time for the
simulation-based approach is an estimation based on multi-
plying the average number of optimization iterations by the
computation time of a single fixed-point simulation. Finally,
the speed-up obtained by our estimation-based approach is in
the last column.

The parameterization time goes from 330usecs. to 28
mins. (1646 secs.) and it depends on the size of the in-
put data, the complexity of the algorithm (i.e. number and
types of operations) and the presence of loops. The LMS
benchmarks clearly show how the parameterization time is
increased as long as the number of delays, and therefore
loops, increases. These times might seem quite long, but
it must be bared in mind that the parameterization process
is performed only once, and after that the algorithm can be
assigned a fixed-point format as many times as desired using
the fast estimator.

The mean number of estimates in the fifth column is
shown to give an idea of the complexity of the optimization
process. A simulation-based optimization approach would
require that very same number of simulations,thus taking
a very long time. For instance, the optimization of LMSs
would approximately require 2500 FxP simulations of 5000
input data. Considering the number of estimations required,
the optimization times are extremely fast, ranging from 0.02
secs to 7.26 secs. The speedups obtained in comparison to a
simulation-based approach are staggering: boosts from x 331
to x1377 are obtained. The average boost is x776 which
proves the advantage of our approach in terms of computa-
tion time.

In summary, results show that our approach enables fast
and accurate WLO of non-linear DSP algorithms.

5. CONCLUSIONS

A novel noise estimation method based on the use of Affine
Avrithmetic has been presented. This method allows to obtain
fast an accurate estimates of the quantization noise at the out-
put of the FxP description of a DSP algorithm. The estimator
can be used to perform complex WLO in standard times lead-
ing to significant hardware cost reductions. The method can
be applied to differentiable non-linear DSP algorithms with
and without feedbacks. In brief, the main contributions of
the paper are:

e The proposal of a novel AA-based quantization noise es-
timation for non-linear algorithms with and without feed-
backs

e The average estimation error for non-linear systems is
smaller than 12% in general, and smaller than 5% for
most cases.

e The computation time of WLO is boosted up to x1377
(average of x766)

The reduction of the computation time of the noise pa-
rameterization process in the presence of loops, is to be ap-
proached in the near future, as well as the improvement of
the quantization model for non-linear operations.



Table 1: Performance of the estimation method: Precision.

Estimation error

Benchmark | [120,100)! dB [100,80) dB [80,60) dB [60,40] dB

(dB)? (%)* (dB) (%) (dB) (%) (dB) (%)

VECs.s 0.05 0.57 0.04 040 | 0.04 057 ]0.13 1.19
EQ* 0.27 0.98 024 071 | 029 0.17 |0.18 1.52
POW* 0.39 5.00 0.17 155 | 0.76 596 |1.12 12.12
LMS; 0.09 0.46 0.08 024 | 015 0.78 | 0.92 3.73
LMS 0.09 0.46 0.08 0.07 | 013 1.08 |1.09 5.51
All 0.39 1.27 024 005 076 148|112 421

* Recursive ! Error constraint 2 |lOIog(E,%)| (max) 3 |1OO(Pref:a)| (average)

P

Table 2: Performance of the estimation method: Computation time.

Bench. FxP Param. Param. No. of estimates | Estimation-based | Simulation-based | Speed-up
Samples | Samples | time (secs)™ (mean) WLO (secs)™ WLO (secs)t

VECg«g | 20000 20000 330 1739 1.72 2331.79 x 1377
EQ* 16000 16000 61.64 231 0.12 105.78 x 904
POW* 20000 20000 546.14 97 0.02 21.93 %1048
LMS; 5000 5000 592.11 1032 0.94 310.93 x 331
LMS 5000 5000 1646.38 2547 7.26 1611.46 x221
All - - - - - - N

* Recursive T Using 1.66 GHz Intel Core Duo processor and 1 GB of RAM
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