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ABSTRACT 

One of the main challenges of distributed video coding 

(DVC) is that correlation among source and side informa-

tion needs to be estimated and well modelled a priori. Since 

in DVC correlation dynamically changes with the scene, in 

order to get the full benefit from powerful distributed source 

code (DSC) designs, predicting and tracking correlation is 

essential. This paper proposes an adaptive scheme based on 

integrated particle filtering within the LDPC-based DSC 

that dynamically tracks the changes in image correlation to 

enhance belief propagation LDPC decoding. The system 

maintains its low encoder complexity, showing significant 

performance improvement compared to the case without 

dynamic particle filtering tracking.  

 

1. INTRODUCTION 

Distributed Video Coding (DVC) or Wyner-Ziv video cod-

ing, is one of the earliest and most advanced applications of 

Distributed Source Coding (DSC) to date. DVC [1, 2] was 

proposed as a solution for emerging setups, such as video 

surveillance with tiny cameras and cell-to-cell communica-

tions, where low encoding complexity is a must. It brought a 

paradigm shift from the conventional centralized video cod-

ing architecture, where encoding complexity is much higher 

than decoding complexity, typical of traditional television 

broadcasting. 

Wyner-Ziv (WZ) coding [3], where one source is avail-

able at the decoder as side information, is a lossy version of 

the Slepian-Wolf problem [4] with a distortion constraint. 

Slepian and Wolf considered lossless separate compression 

of two discrete sources, and showed that, roughly speaking, 

there is no performance loss compared to joint compression 

as long as joint decompression is performed. Wyner and Ziv 

showed that for a particular correlation where source and side 

information are jointly Gaussian, there is no performance 

loss due to the absence of side information at the encoder.  

WZ source coding is usually realized by quantization 

followed by Slepian Wolf (SW) coding of quantization indi-

ces based on channel coding. Quantization is used to tune 

rate-distortion performance, while the SW coder is essen-

tially a conditional entropy coder. The WZ decoder will thus 

comprise a SW decoder, which makes use of side informa-

tion to recover the coded information. The SW decoder is 

followed by a minimum-distortion reconstruction of the 

source using side information. 

Practical SW code design based on conventional channel 

codes is possible since correlation between the sources to be 

separately compressed is seen as a virtual communication 

channel, and as long as this virtual channel can be modeled 

by some standard communication channel, e.g., Gaussian, 

channel codes can be effectively employed. Designs [5] 

based on trellis-coded quantization followed by advanced 

channel coding, e.g., with turbo codes and low-density par-

ity-check (LDPC) codes come very close to the bounds for 

two jointly Gaussian sources. 

However, in much the same way as the information-

theoretical DSC framework [3, 4], the state-of-the-art SW 

and WZ code designs based on turbo and LDPC codes per-

form well only when correlation statistics between sources 

are stationary and known at the encoders and decoder. To 

overcome this in case of non-stationary sources, in [6], an 

algorithm is proposed that performs adaptive SW decoding 

with decoder side information, using particle filtering inte-

grated within an LDPC decoder based on belief propagation. 

The algorithm of [6] assumes discrete sources and binary 

symmetric channel correlation whose crossover probability p 

changes over time. Particle filtering and belief propagation 

are used to predict and track the change of p, to enhance de-

coding. 

The problem of statistical correlation estimation between 

the source and side information is particularly important in 

DVC, since the scene dynamically and unpredictably 

changes. Thus in DVC we have a problem of WZ coding of 

non-stationary sources with unknown statistics. However, the 

designs (with few exceptions) usually simplify the problem 

by modelling correlation noise, i.e., the difference between 

the source and side information, as Gaussian or Laplacian 

random variable and estimate the parameters either based on 

training sequences or previously decoded data, which im-

poses certain loss especially for high-motion sequences. 

Non-stationarity of the scene has been dealt mainly by esti-

mating correlation noise (e.g., on the pixel or block level) 

from previously decoded data and different initial reliability 

is assigned to different pixels based on the amount of noise 

estimated [7, 8, 9].  

In this paper, we build on [6], to predict and track vary-

ing correlation between source and side information for WZ 
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decoding of video. Side information is generated using mo-

tion compensated interpolation, and belief-propagation de-

coding is enhanced with particle filtering-based correlation 

tracking mechanisms. Belief propagation and particle filter-

ing are both performed iteratively on one generalized factor 

graph, where messages between different regions exchange 

their information to improve SW decoding. Thus in contrast 

to previous work, conventional belief propagation-based SW 

decoding and correlation statistics estimation are considered 

jointly. 

For simplicity, the proposed design is tested on a pixel-

based DVC [2] without a feedback channel. Similar decoders 

can be built for DCT-based designs, feedback channels, and 

including methods of [7, 8, 9] to start with.  

The paper is organized as follows. In the next section, 

we outline previous methods for correlation estimation in 

DVC. We explain the concept of adaptive graph-based de-

coding incorporating particle filtering in Section 3. In Section 

4, the proposed system setup is described, followed by ex-

perimental results in Section 5. The paper concludes with 

Section 6. 

 

2. DVC AND CORRELATION MODELLING 

DVC exploits the WZ coding principles to avoid compu-

tationally-expensive motion search operation at the encoder 

and shifting it to the decoder side. The fact that in WZ cod-

ing, the encoder does not need to know/use side information 

makes it possible to accomplish predictive coding without 

encoder motion compensation. In a nutshell, a block of pixels 

in the current frame is WZ encoded into a stream without any 

reference to previously encoded data, and the decoder uses 

all available information to generate a side information block 

that will be used to WZ decode the compressed stream. 

State-of-the-art WZ coding designs based on turbo, 

LDPC, and trellis-based codes are successfully used for DVC 

(see [10, 11] and references therein). 

 Note that a key difference between WZ coding and 

DVC is that in the former statistics of the sources is known to 

both the encoder and decoder and does not change over time. 

In DVC, however, the decoder needs to generate side infor-

mation using all information it has; regardless of how side  

information is generated, correlation noise statistics will be 

unknown and dynamically change over time. Indeed, due to 

the non-stationarity of real scenes, WZ coding in DVC has to 

deal with varying correlation statistics.  

Estimating correlation statistics has been identified as a 

key challenge in DVC. Usually, correlation error is modeled 

as a Gaussian or Laplacian random variable whose parame-

ters are estimated from previously decoded frames. It has 

been shown however that these models are not accurate 

enough if there are occluded regions in the scene [7]. In this 

case, the correlation noise is not white anymore and station-

ary, but instead would be concentrated in the occluded ar-

eas, which are usually at the boundaries of moving objects. 

In [8], the correlation noise is always modeled as 

Laplacian, but to capture the non-stationary nature of the 

scene, the correlation parameter was varied from pixel to 

pixel. The noise power is increased if the pixel difference 

between motion compensated blocks in the two key frames 

used to generate side information is high; otherwise, it is 

decreased. The reasoning behind this method is that if the 

difference between the two key frames is high then we have 

less confidence in their average and the noise variance is 

higher. Thus, incorporating this model within SW decoding 

ensures that the channel code (employed for SW decoding) 

assigns higher reliability to pixels that have been predicted 

with higher accuracy, that is, the difference between the key 

frames is smaller. 

Similarly, in [9], the Laplacian distribution is used 

with the parameter estimated online at the sequence, frame, 

block, and pixel level from decoded frames at the decoder.   

Note that in [7, 8, 9], non-stationarity of a scene is ad-

dressed by changing correlation model on-the-fly and sup-

plying the SW decoder with different initial reliability esti-

mates. However, once SW decoding starts, (via, for example, 

belief propagation) the correlation is fixed.  

Since the SW decoding process refines starting beliefs, 

unifying the process of correlation estimation and decoding 

into a single iterative process can provide better statistics 

estimate and consequently improved performance. 

   

3. ADAPTIVE SLEPIAN-WOLF DECODING WITH 

PARTICLE FILTERING 

In this section, we describe an adaptive algorithm for SW 

decoding via a factor graph, which enables efficient compu-

tation of marginal distributions via the belief propagation 

(BP) algorithm [12]. BP operates on the factor graph, which 

is a bipartite graph connecting variable nodes (representing 

unknown variables) and factor nodes. Messages are passed 

iteratively between connected variable nodes and factor 

nodes until the algorithm converges or a fixed number of 

iterations is reached. These messages will represent the in-

fluence that one variable has on another.  In our case, mes-

sages will be inferences or beliefs on source bits and correla-

tion. Thus, we group these types of messages into regions, 

thus generalizing the BP algorithm.  

3.1  Graphical model 

First, we construct the graph, then identify variable nodes 

and factor nodes, and how they are connected. For standard 

BP decoding of the SW code, the variable nodes are the 

coded bits and the factor nodes represent the connection 

among multiple variable nodes. N source bits x∈{x1, x2,...,,xN} 

are compressed by the SW encoder into syndrome bits  

s∈{sA, sB,...,,sM}, where M<N. The syndrome factor node fa, 

a∈{A, B,...,M} is connected to variable nodes x, taking into 

account constraints imposed by syndrome bits s.  

In order to take into account the correlation between x 

and side information bits y∈{y1,y2,...,yN}, we additionally 

define correlation factor nodes fi, i∈{1, 2,...,N} as: 

( )
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yxp
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ii .            (1) 

p is the estimated correlation between X and Y, i.e., Y 

can be considered as the output of X having passed through a 

Binary Symmetric Channel with crossover probability p. If p 
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is known a priori and is a constant over time, X can be com-

pressed very close to the SW limit (H(X|Y)) using a syn-

drome-based approach and LDPC codes [13]. However in 

reality, p is rarely a constant over time and thus using an es-

timated a priori p for all X, will definitely not achieve per-

formance close to the SW bound. 

In order to allow for variability of p over time, variable 

nodes representing pi, i∈{1, 2,...,N} are added to the graph to 

connect to factor node fi. The number of correlation factor 

nodes fi connected to each pi is referred to as the connection 

ratio. In general, it is usually enough to assume that p will 

vary slowly over time, and thus it is expected that adjacent 

variable nodes pi will not differ much in value. This is repre-

sented in the graph by additional p-factor nodes fi,j that con-

nect adjacent variable nodes pi and pj, as defined in (2), 

where λ is a hyper-prior and can be chosen rather arbitrarily. 
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The final constructed graph, illustrated in Fig. 1, com-

prises three regions: Region 3 is a standard Tanner graph for 

channel decoding, Region 1 is a bipartite graph capturing 

correlation factor p variability, and Region 2 connects Re-

gions 1 and 3. 

 

3.2 Message passing algorithm 

In this section, message passing based on the BP algorithm 

between the 3 regions of the above graph is described. Stan-

dard BP (sum-product algorithm), generally used for chan-

nel decoding can handle only discrete variables. The cross-

over probabilities p, however, are not discrete, since they 

can change continuously over time. We therefore resort to 

particle filtering [14], which is integrated within the stan-

dard BP algorithm in order to handle continuous variables. 

Particle filtering (PF) estimates the a posteriori probability 

distribution of the correlation variable node p by sampling a 

list of random particles with associated weights. 

The message passing schedule for the generalized factor 

graph in Fig. 1, incorporating PF, is as follows: 

1. Initialise the values of N variable particles in Region 

1, ppi ˆ= , for estimating the noise and a uniform 

weight 1/N. 

2.  Initialise messages sent from factor nodes fi in Re-
gion 2 to variable nodes xi in Region 3 as in (1), 

where p= p̂ . 

3.  If the decoded estimate has the same syndrome as 
the received one or maximum number of iterations is 

reached, export the decoded codeword and finish. If 

not, go to Step 4. 

4. Update variable nodes in Region 3 using standard BP 
(sum-product algorithm) for channel decoding. 

5. Update particles in Region 1 by updating variable 
nodes using BP. 

6. Compute the belief for each variable in Region 3 be-

ing }1,0{∈ix . 

7. Compute the belief (=weight) of each particle for 
each variable node in Region 1. 
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Fig. 1: Generalized factor graph representing constraints between 

syndromes in Region 3 and correlation constraints in Region 1. 

8. Update factor nodes in Regions 3, 1 and 2 in that or-
der. 

9. Generate a new codeword based on the belief of 
variable nodes in Region 3. 

10. Go back to Step 3. 
 

Note that when the belief or weight for each particle for 

each variable node in Region 1 is updated (Step 7), a selec-

tion stage is carried out whereby particles with negligible 

weights are discarded while concentrating on particles with 

large weight. This is carried out via the systematic resam-

pling algorithm [15]. However, after the resampling step, 

particles tend to congregate round values with large weight. 

In order to maintain diversity for future updating steps apply-

ing PF in Region 1, our algorithm perturbs the particles by 

applying the random walk Metropolis-Hastings algorithm, 

which essentially adds Gaussian noise on the current value pi 

for each of the N particles. The weight of each particle is then 

reset to a uniform weight 1/N for each particle. 

 

4. SYSTEM SETUP 

In order to demonstrate the benefit of correlation tracking in 

DVC, as a proof-of-concept, we implemented the following 

pixel-based DVC setup. As in [1, 9, 16], all frames are clas-

sified as key frames or Wyner-Ziv frames. Key frames are 

conventionally intra-coded; Wyner-Ziv frames are first 

quantized pixel-by-pixel using a uniform scalar quantizer to 

Q bits/pixel, and then additionally compressed using an 

LDPC-based SW coder which generates M syndrome bits, 

yielding an SW compression ratio of M/Q.  

At the decoder side, side information frame Y is gener-

ated using motion-compensated interpolation of previous 

and future key frames [1,16]. Spatial smoothing [16], via 

vector-median filtering, is used to improve the result which 

is then quantized using the same scalar quantizer as at the 

encoder and is used as side information Y in SW decoding. 

Each frame is decoded by the adaptive LDPC-based SW 
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decoder described in Section 3. SW decoding is followed by 

estimation and reconstruction [6]. 

Note that our implementation does not use a feedback 

channel, thus, rate control rests with the encoder. However, 

adding a feedback channel together with rate-compatible 

SW coding is possible in this set-up.    

Our DVC decoder is flexible, providing the following 

tunable parameters: source and side-information quantization 

ratio, rate (compression ratio), hyper-prior λ, connection ratio 
between Regions 1 and 2, inclusion of Metropolis-Hastings 

random walk or not for perturbing particles following resam-

pling, maximum number of iterations if BP fails to converge,  

number of particles to model statistics, and initial estimate of 

correlation p̂ . 

 

5. EXPERIMENTAL RESULTS 

In order to verify the effect of correlation tracking across 

WZ-encoded frames in a video sequence, we tested the 

above set-up with two video sequences, Car and Coast, with 

different scene dynamics. Both the average bit-error rate 

(BER) of the SW decoder and the PSNR of the recon-

structed video sequence are calculated. These are plotted 

versus rate, which refers to the SW rate M/Q, i.e., a rate of 1 

represents zero compression. For comparison, the bench-

mark performance of the DVC decoder (as described in Sec-

tion 4) but without PF-aided correlation tracking, is also 

determined. In results plots below, solid lines always repre-

sent performance of our proposed DVC setup and dotted 

lines the benchmark performance. During our experiments, 

we observed that a starting p=0.13, λ=0.1, connection ra-

tio=16  and using Metropolis-Hastings gave the best results. 

Figs. 2 and 3 show the BER and PSNR performance, re-

spectively, of Car video sequence for varying quantization 

levels Q. As expected, the BER for sequences quantized to 

Q=3 bits is better than for higher Q’s and the waterfall sec-

tion of the curves shifts to the right as the scene differences 

between X and Y increase, i.e., too many errors introduced 

by the virtual correlation channel that cannot be tracked. 

There is a clear improvement, for all Q’s, in BER for se-

quences decoded by the generalized PF-based BP decoder 

compared to the classical BP decoder with no PF, e.g., ena-

bling an extra 20% compression for the same BER of 10
-6
.  

BER improvement matches PSNR improvement. It is in-

teresting to observe that while the BER improvement due to 

PF-based correlation tracking is more pronounced for lower 

Q, PSNR improvement due to PF-based correlation tracking 

is more pronounced for higher Q. The improvement of re-

constructed video quality when using the generalized PF-

based BP algorithm can be up to 3dB for this sequence, or 

10% more compression for the same PSNR. 

Fig. 4 shows a reconstructed frame from the Car se-

quence, where the proposed PF-based SW decoder removes 

the artefacts (in the centre of the frame) that could not be 

removed by the standard benchmark SW decoder. 

Figs. 5 and 6 show the relative performance of correla-

tion tracking versus standard WZ decoding for the Coast 

sequence for varying Q. Both BER and PSNR plots show 

similar trends to those of the Car sequence. 
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Fig. 2: BER of adaptive SW decoder for Car video sequence for 

varying number of quantization levels. Solid lines: proposed de-

coder, dotted lines: benchmark with no PF.  
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Fig. 3: PSNR for reconstructed Car sequence for varying number of 

quantization levels. Solid lines: proposed decoder, dotted lines: 

benchmark with no PF. 

 

 
(a) 

 
(b) 

Fig. 4: Reconstructed view of frame 7 of Car sequence for Q=3, rate 

0.5 for: (a) benchmark system (b) proposed system. 

However, as expected, due to the faster scene changes, 

the improvement in performance is less pronounced than for 

the Car sequence. Correlation tracking is robust enough to 

handle such scene changes and provides about 5% increase 

in compression for the same PSNR compared to the case of 

assuming a fixed p. 
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Fig. 4: Coast BER for varying quantization levels. 

 

6. CONCLUSIONS 

In this paper, we show that it is possible to improve per-

formance of DVC through the use of an adaptive SW de-

coder incorporating particle filtering to track varying corre-

lation between the source and side information. Our SW 

decoder is based on a generalized factor graph, comprising 

three regions: Region 3 which is the SW code bipartite 

graph decoded with standard belief-propagation algorithm, 

Region 1 which represents the variable correlation nodes 

updated via the particle filtering algorithm, and Region 2 

which connects Regions 1 and 3. We demonstrate worthi-

ness of this approach for correlation estimation by imple-

menting a simple pixel-based DVC coder with an adaptive 

BP-based SW decoder incorporating particle filtering for 

tracking variability in real-time of pixel-by-pixel correlation. 

BER of SW decoding and PSNR results for two video se-

quences with varying scene dynamics clearly indicate the 

improvement due to the integration of particle filtering for 

correlation tracking within the BP-based LDPC SW decoder. 
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