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ABSTRACT

Distributed source coding (DSC) refers to separate com-
pression and joint decompression of mutually correlated
sources. Though theoretical foundations were set more than
thirty years ago, driven by applications such as wireless sen-
sor networks, video surveillance, and multiview video, DSC
has over the past few years become a very active research
area. This paper provides an introduction to DSC theory,
practical code designs and applications, and outlines current
research trends while identifying challenges and opportuni-
ties in both theory and practice of DSC.

1. INTRODUCTION

Imagine a dense sensor network consisting of many tiny
sensors deployed for information gathering. Readings from
neighboring sensors will often be highly correlated. This can
be exploited to significantly reduce the amount of informa-
tion that each sensor needs to send to a central point, thus
reducing power consumption and prolonging the life of the
nodes and the network. Communication among sensors is
often not feasible as it increases the complexity of the sen-
sors that in turn leads to additional cost and power consump-
tion. How then is it possible to exploit statistical dependency
of the readings in different sensor nodes without informa-
tion exchange among sensors? The answer lies in distributed
source coding.

Distributed source coding (DSC) refers to separate com-
pression and joint decompression of two or more physically
separated sources. The sources are encoded independently
(hence distributed) at the encoders and decompressed jointly
at the decoder. DSC is thus a compression method that aims
at exploiting mutual dependencies across different sources
that need not communicate among each other.

DSC appeared as an information-theoretical problem in
the seminal paper of Slepian and Wolf in 1973 [1]. Slepian
and Wolf studied the simplest lossless case of DSC when two
discrete sources are to be compressed independently and de-
compressed losslessly at the joint decoder, and provided an
information-theoretical achievable rate region showing that
asymptotically separate encoding is as good as joint encod-
ing. This surprising result triggered a lot of information-
theoretical research efforts that resulted in many extensions.
For example, in 1976 Wyner and Ziv [2] considered a lossy
version, with a distortion constraint, of a special case of
the asymmetric Slepian-Wolf problem, where one source is
available at the decoder as side information. Wyner and
Ziv showed that for a particular correlation, where source
and side information are jointly Gaussian, there is no per-
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formance loss due to the absence of side information at the
encoder. The main message from these early information-
theoretical works is that, in some special cases, side infor-
mation present at the decoder and not at the encoder can be
as helpful as if it were known to the encoder as well.

A possible realization of DSC via the use of conventional
linear channel codes to approach the Slepian-Wolf bound
was known as early as 1973, but due to the lack of any po-
tential application of DSC, work on code designs, i.e., how
to code the sources to approach given bounds given in [1, 2],
started only at the end of the last century. The launch of wire-
less sensor networks (WSN5s) ignited practical DSC consid-
erations since WSNs naturally call for distributed processing.
Closely located sensors are expected to have correlated mea-
surements; thus in theory the DSC setup fulfills the require-
ment of power-efficient compression for distributed sensor
networks.

The first practical DSC design was reported in 1999 in
[3] followed by many improved solutions. The key beauty
of these designs is that conventional channel coding can be
used for compression. Thus, in a communication system, the
same code can be used for compressing and protecting the
source! Powerful code designs, developed since 1999, have
paved the way towards practical applications. However, de-
spite tremendous achievements in both theory and practice,
the true potential of DSC has yet to materialize.

Nowadays, DSC has grown into a research field of its
own right bringing together information and coding theory,
signal/image processing, computer engineering and commu-
nications, and receiving attention by academics and industry.
This is no wonder as DSC has many diverse potential appli-
cations ranging from WSN, ad-hoc networks, to video sur-
veillance, stereo/multiview video, high-definition television,
hyper-spectral and multi-spectral imaging. This paper pro-
vides an introduction to DSC theory and practice, critically
reviews current research efforts and proposed applications,
and identifies many research opportunities.

2. UNDERLYING PRINCIPLES OF DSC

DSC considers source coding or compression of correlated
sources. The adjective distributed stresses that the compres-
sion occurs in a distributed or non-centralized fashion. For
example, the sources to be compressed could be distributed
across different nodes in a network. The task is to com-
press these sources and communicate compressed streams
over noiseless channels to a decoder for joint decompres-
sion. The basis of DSC is that the compressions take place
independently, that is, the nodes do not exchange their infor-
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mation, whereas decompression is joint.
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Figure 1: DSC concept with two separate encoders who do
not talk to each other and one joint decoder. X and Y are dis-
crete, correlated sources; Ry and Ry are compression rates.

(%)

Slepian and Wolf [1] considered the simplest case of
DSC with two discrete sources X and Y and lossless com-
pression (Fig. 1), and showed that it is possible to have no
performance loss of independent encoding compared to the
case when joint encoding is done. Indeed, Slepian and Wolf
showed that two discrete sources X and Y can be losslessly
decoded as long as:

Rx > H(X|Y),Ry > H(Y|X),R=Rx +Ry > H(X,Y), (1)

where Rx and Ry are rates used for compressing X and Y, re-
spectively. The above set of equations, known as the Slepian-
Wolf (SW) coding region, shows that the sum-rate R can be
as low as the joint entropy of the sources, which is the same
as if the source were encoded together. A special case of SW
coding is when one source, e.g., Y, is known at the decoder.
Then, a rate not higher than H(X|Y) suffices for compress-
ing X. This case is known as asymmetric SW coding, or SW
coding with decoder side information Y.

The remarkable result of [1] triggered significant
information-theoretical research resulting in solutions - in
the form of achievable rate regions - for more involved loss-
less source coding networks, e.g., networks with more than
two sources, zig-zag network etc. (see [4] and references
therein).

In 1976, Wyner and Ziv [2] considered a lossy version,
with a distortion constraint, of the asymmetric SW coding
problem and showed that for a particular correlation where
source and side information are jointly Gaussian, there is
no performance loss due to the absence of side informa-
tion at the encoder. The lossy case of the general non-
asymmetric SW setup shown in Fig. 1, known as multitermi-
nal (MT) source coding, was introduced by Berger and Tung
in 1977 [5] together with information-theoretical bounds on
the achievable rate region.

DSC theory is still a very active information-theoretical
area of research. Indeed, only the simplest DSC problems are
solved and for many realistic MT source coding networks we
still do not know exact compression limits.

Lossless DSC is considered together with network cod-
ing to provide limits for conveying sources over noiseless
networks (see [6] and references therein). Lossy MT source
coding problems [5] with two non-jointly Gaussian sources
are unsolved. Other research challenges include addressing
time-varying statistics, noisy channels and quantifying the
rate loss compared to optimal or joint encoding.

3. DSC: CODE DESIGN

Slepian and Wolf’s proof [1] is based on non-constructive
information-theoretical tools, such as random binning and
Fano’s inequality, and thus does not give an insight on how to

design an efficient binning scheme. A possible realization is
proposed in a 1974 paper [7] where the use of linear channel
codes was suggested for asymmetric SW coding.

In a nutshell, to encode X given Y at the decoder, bins are
generated as “cosets” of a linear channel code. For exam-
ple, suppose that both X and Y are binary sources with n-bit
realizations. Then an (n,k) binary linear block code C can
be used to generate 2" ¥ coset codes each indexed by unique
syndrome of C, sp, ...,S,,—«. By definition a coset i contains

a set of 2 binary words of length n which when multiplied
by the parity-check matrix of C, H, give syndrome s;. For
example, the first coset is code C itself as it contains n-words
that give syndrome so = 0. Then, to compress, x is multi-
plied by H, mapping it thereby into its corresponding (n — k)
syndrome bits, which is sent to the decoder achieving a com-
pression ratio of n : (n — k). The decoder applies conven-
tional channel decoding on the side information y with the
coset code whose syndrome is received, to recover X as the
codeword closest to y.

Another variant of the above method is to send parity
bits of a channel code (instead of syndromes) to compress.
Specifically, to compress with the “parity-based” approach,
x is encoded by a systematic linear channel code and only
parity bits are sent to the decoder. The decoder “sees” side in-
formation y as received systematic part of the codeword and
appends it to the received parity before conventional decod-
ing. The main advantages of parity-based binning are better
performance with transmission over noisy channels, while
syndrome-based schemes can in theory achieve higher com-
pression with shorter channel codes and do not require sys-
tematic codes. Both approaches are popular and the choice
of the approach rests very much on the application.

Note that the above methods look at correlation between
the sources as a virtual communication channel, and a good
code for this channel will provide a good SW code by us-
ing coset codes as bins. Thus, the seemingly source coding
problem of SW coding becomes a channel coding one, and
near-capacity channel codes such as turbo and low-density
parity-check (LDPC) codes [8] can be used to approach the
SW limit. This “syndrome-based” approach is extended to
non-asymmetric SW coding and compression of more than
two sources (see [4] and references therein).

After the success of the first SW code designs, schemes
for multiple non-uniform sources, non-binary sources, dif-
ferent correlation models, with rate compatible codes, trans-
mission over noisy channels appeared (see, for example,
[9, 10, 11, 12, 13, 14] and references therein). Moreover, the
original DSC framework assumes that the correlation statis-
tics are stationary and known to the encoders and decoder.
Some initial attempts have been made to forego this assump-
tion and recover the sources at the decoder without prior sta-
tistical knowledge (for example, see [15]).

WZ and MT source coding can be realized via quantiza-
tion followed by SW coding of quantization indices based on
channel coding. Quantization is used to tune rate-distortion
performance, while the SW coder can be seen as a condi-
tional entropy coder. The SW coder applies a linear chan-
nel code to generate cosets, and sends only the index of the
coset to the decoder. The WZ decoder comprises an SW
decoder, which uses the received coset index together with
side information and performs “error-correction” decoding
against “errors” introduced by the virtual correlation chan-
nel between the two or more correlated sources. The SW
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decoder is followed by a minimum-distortion reconstruc-
tion of the source using side information. This allows com-
pression with some distortion. Capacity-approaching de-
signs proposed in [16] based on trellis-coded quantization
followed by advanced channel coding, with turbo codes and
LDPC codes, come very close to the bounds for two jointly
Gaussian sources.

The latest code designs that come very close to the theo-
retical bounds assume binary symmetric or jointly Gaussian
correlations and use long block length, which is unacceptable
in many applications. Thus, there is a need for developing
efficient designs for non-stationary sources with more real-
istic mutual dependency and low block size (< 1000 bits).
Though channel codes have been proposed as a natural solu-
tion for DSC from its foundations, the demands imposed by
latest video applications might be better addressed via alter-
native solutions. One such very promising method is Distrib-
uted Arithmetic Coding (DAC) [17].

4. DSC: APPLICATIONS

Whilst the recent rediscovery of DSC was triggered by the
need for efficient data gathering in WSNs, very quickly an-
other application emerged - low-complexity video encoding.
In this section we give an overview of the applications of
DSC.

The inception of WSNs ignited practical DSC considera-
tions in the early years of this century since WSNs naturally
call for distributed processing. Closely located sensors are
expected to have correlated measurements; thus DSC is the
most effective compression method. However, many prac-
tical problems are in the way, including a complex corre-
lation structure of real signals, non-stationary non-Gaussian
sources, and high complexity of current source-channel DSC
designs that require long codeword length.

4.1 WZ Video Coding

In WZ video coding or distributed video coding, the DSC
paradigm is used to avoid a computationally expensive tem-
poral prediction loop at the encoder. As the name suggests,
WZ video coding exploits inter-frame video correlation with
WZ coding, thus avoiding the need for motion search and
storage of previous frames at the encoder. It relies on the
fact that with WZ coding, side information is not needed at
the encoder. That is, predictive coding can still be accom-
plished though the encoder does not know/use the previous
frames, which will be used at the decoder. Thus, WZ video
coding essentially comprises intra-frame encoding and inter-
frame decoding. WZ coding also improves robustness to er-
rors/losses in the channels; information-theoretical analysis
of robustness of WZ video coding under some assumptions
is given in [18] and references therein.

In classical video coding motion search is computa-
tionally the heaviest encoding operation. Thus, WZ cod-
ing can reduce complexity of the video encoder at the ex-
pense of increased complexity at the decoder side. This
leads to low-complexity encoders and high-complexity de-
coders, quite an unusual video architecture. Indeed, the
traditional video concepts with heavy encoders situated at
strong servers and light decoders (e.g., PC, TV) are ideal
for broadcasting/multicasting/video-on-demand applications
where a single encoding is done, and multiple decoders at
users’ equipment are performed. However, some other appli-

cations may require multiple encodings and a single decod-
ing. Such applications range from video surveillance, res-
cue and exploration missions, multiview camera arrays, to
cellphone-to-cellphone conversation.

The WZ video framework appeared in a US patent [19]
in 1980, but to the best of the authors’ knowledge it remained
without software implementation until only recently [20, 21].
WZ coding can be applied in the pixel domain [20], or in the
transform domain [21, 22]. DCT-based coders perform better
at the expense of a small increase in encoder complexity [22].

In pixel-domain WZ video coding [20], the pixels of a
frame are directly input to a WZ coder and no image trans-
form is applied. Video frames are divided into key frames
and WZ frames. Key frames are intra-coded frames that are
compressed and decompressed conventionally (for example,
as intra-coded frames in H.264/MPEGx). Like I frames in
conventional video coding, the key frames reduce compres-
sion efficiency, but are needed to stop possible error propa-
gation and improve decoding of WZ frames.

Let P, P, ... be a sequence of n x m pixel frames to be
compressed by the video encoder. Let P;(x,y) be a pixel in
the i-th frame at position (x,y). Each WZ frame, P, is first
quantized pixel-by-pixel using 2™ quantization levels, and
resulting quantization indices are fed into an SW encoder,
which outputs parity-check symbols (parity-based binning).
These output bits are sent to the decoder. Note that the num-
ber of output bits per frame (the information block length of
the SW channel coder) is Mnm, which is usually enough for
efficient use of turbo/LDPC codes.

The decoder consists of a classic WZ decoder which per-
forms SW decoding on the received parity-check bits, using
previously recovered frames to generate side information,
followed by estimation.

Note that, a crucial difference between WZ video coding
to the standard WZ setup lies in the fact that in the former the
decoder can generate side information from all prior informa-
tion available. The better the side information is, the higher
the correlation and the better the compression. The process
of side information generation resembles motion compensa-
tion at the decoder and is a key to efficient video compres-
sion. This correlation channel depends on the dynamics of
the scene and varies from frame to frame. As correlation
changes, the required WZ rate will also change from frame
to frame. Thus, an efficient rate control algorithm is needed
to ensure that: (i) a rate no higher than necessary is sent to
the decoder; (ii)) SW decoding is successful. It is natural to
shift this rate control to the decoder side, in which case a
feedback channel is needed for indicating the necessary rate
to the encoder.

Great challenges of a decoder-driven video have made
WZ video coding a very active research topic with many
novel contributions appearing every year. Indeed, research
has been going towards improving side information genera-
tion, correlation modelling [23], rate control, key-block se-
lection, etc. Initial video coders proposed in 2002 [20, 21]
have significantly evolved during the past eight years (see
[24] for the latest overview), towards more flexible designs
capable of distributing complexities between encoder and de-
coder depending on application and QoS demands.

However, despite all the achievements, performance wise
WZ video coders still significantly lack behind best video
coding standards, such as H.264/AVC. And obviously, due to
non-stationarity of the sources, WZ video coders can never

1881



reach the performance of best conventional codecs. That is
why probably, a “pure” WZ video coder [19, 20, 21] will
remain only a neat research idea, but a place for WZ coding
in conventional video whether for compression, resolution
increase, or effective protection has yet to be found.

4.2 Multiview Video Coding

DSC naturally arises in the multiview video setup, where
each camera independently compresses its view before trans-
mission to a central decoder, which jointly decompresses all
views. Indeed, since cameras observe the same scene only
from different angles, it is expected that the captured views
will be highly correlated and exploiting the correlation saves
the rate compared to independent encoding and decoding. In
the multiview setup, DSC can be used to reduce inter-view
correlation, but also intra-view inter-frame correlation, thus
ideally side information needs to be generated by combining
past/current/future frames from all the views (see [25, 26]),
which makes multiview WZ video coding very challenging.

In [27], two schemes are proposed: the first, asymmetric,
setup uses H.264/AVC to compress one view which is ex-
ploited as decoder side information for reconstructing WZ
coded second view. The second, symmetric, scheme re-
sorts to source splitting (see [16]) to tradeoff the rates be-
tween the two cameras. To generate side information, a
stereo matching algorithm based on loopy belief propaga-
tion is adopted at the decoder to produce pixel-level disparity
maps between the corresponding frames of the two decoded
video sequences on the fly. The obtained results were slightly
better than using two independent H.264/AVC cameras.

Some other recent promising schemes include [28],
where WZ coding is used for scene representation with om-
nidirectional image sensors to acquire a 3D scene, [29], and
[30].

4.3 Video over Networks

WZ coding can be used to provide error protection of video
or enable scalability. For example, in [31], a robust scalable
video transmission over wireless networks was addressed
and a solution proposed based on a single Raptor code for
both compression (i.e., SW coding in DCT domain) and
packet loss protection. Using the received packets together
with a correlated video available at the decoder, an iterative
soft-decision decoder was developed.

WZ coding has been also used for error protection in
video communications channels (see [22, 32] and references
therein). The idea is to compress independently video frame
using both a conventional MPEG-like coder and a WZ video
coder. MPEG provides a fine “description” but error prone,
whereas WZ coding uses a coarser quantizer to provide a
low-rate “description”. The decoder first decodes the (cor-
rupted) MPEG stream and then in case of errors after MPEG
decoding, the decoder performs error concealment and then
uses the obtained frame as side information for decoding the
WZ stream.

WZ coding is embedded within compressive-and-
forward - the best performing protocol for wireless relay
channels when the relay is close to the destination (see [33]).
In [34], DSC is proposed for video streaming in parallel from
multiple servers. The source broadcasts signals to multiple
servers, which employ MT source coding to compress the
received bitstreams without decoding and send the result to

a fixed client receiver over the Internet. Note that the signals
at the servers are highly correlated since they are differently
corrupted replicas of the same original data. Thus, DSC is
natural solution to reduce the required rate. Following the
basic ideas of compress-and-forward, the method of [34] was
extended in [35] incorporating spreading codes.

4.4 Other Applications

DSC has been considered for compression of hyperspectral
and multispectral images in [36, 37] and [38], respectively.
For example, in [36] using DSC to exploit inter-band corre-
lation, performance gains of up to a factor of three compared
to 2D and 3D wavelet techniques are observed. Another ap-
plication of DSC is proposed in [39], where it is used for
wireless hearing aids. DSC is also proposed for biometrics
and fingerprint feature extraction [40] and for cognitive radio
spectrum sensing [41].

5. DISCUSSION AND CONCLUSION

The rediscovery of DSC at the end of the last century caused
a research shift from information theory to coding and sig-
nal/image processing. The coding community has been ex-
cited by a novel marriage between source coding and channel
coding that brought a plethora of new design problems that
go far beyond current practice and require deep understand-
ing of source-channel coding theory.

The image/video processing community was initially sur-
prised with remarkable WZ video coding that completely
revolutionizes the conventional way of thinking in video cod-
ing. This resulted in a search for better-performing code
designs, novel side information generation techniques, rate
control, and correlation modelling. The gap to the classic
video coding standards has been reducing, and with compa-
rable encoder complexities, WZ video coding is generally
beating conventional coding solutions (see [24] and refer-
ences therein).

Unfortunately, H.264/AVC performance is unreachable,
and in an era of huge electronic advances and continuous
chip-size and power-consumption reduction, pure complex-
ity reduction probably cannot justify a complete technology
shift. Thus, now after ten years of intense research, it might
seem that we have reached a dead-end for WZ video coding.
Consequently, initial excitement is slowly being replaced by
disappointment and a slow decrease of interest until proposed
applications have reached a higher level of maturity.

WZ video coding has a tremendous value as it has en-
hanced our understanding in video itself. It showed that
video coding does not need to be centralized and encoder-
driven; instead, it can be a play between the encoder and
decoder and distributing the work in coding and processing
could reduce overall power consumption, lead to better per-
formance, and add necessary security guarantees. Indeed,
with WZ coding, we know now that we can design an “intel-
ligent” decoder which can do the job almost equally well as
the encoder! But we are yet to discover how to use this.

And this brings us to the potentials of DSC. Though ini-
tially suggested to help communications in WSN, application
of DSC to WSNs seem far away. Clearly, large block length
requirements of efficient DSC designs and non-stationary
source statistics are still huge obstacles. But more impor-
tantly, uncertainty introduced by probabilistic source cod-
ing is probably the price that accurate industrial sensor net-
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works cannot pay. The exception might be camera and mi-
crophone arrays and visual sensors with known geometrical
structures where high compression is a must and informa-
tion sent might be recovered with some distortion. In video
coding and processing, DSC can find its place as a support-
ing mechanism, for example, to increase resolution in super
high-definition systems, encode colour information, provide
protection, encode headers, etc.

Driven by all these applications, work on code designs is
still equally important as it was 10 years ago: the search for
efficient low-delay, low-complexity, application-layer codes
is not over yet. Novel ideas are needed to bridge the gap
between code design and practice. Thus, research into the-
ory, designs and applications of DSC has strong potentials to
lead to a killer-application soon. It is not just that DSC is so
elegant that we cannot let it go.
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