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ABSTRACT

Rejection sampling (RS) is a well-known method to generat
(pseudo-)random samples from arbitrary probability dstions
that enjoys important applications, either by itself or a®a in
more sophisticated Monte Carlo techniques. Unfortunathé/use
of RS techniques demands the calculation of tight upper dotor
the ratio of the target probability density function (pdfjeo the
proposal density from which candidate samples are drawnejiix
for the class of log-concave target pdf's, for which an edinti

In this paper, we aim at a general procedure to apply RS in
scenarios where the target pdf is the posterior density éfreak
%f interest (Sl) given a collection of observations (thiatsment
can be readily connected to problems of distributed estiman
sensor networks) and the proposal density is the prior ofShe
In [7] we sketched a partial solution to this problem, resér
to cases where each observation is contaminated by independ
additive noise with a exponential-family unimodal disttiion. In
the present work we extend these results to encompass a much
broader class of target distributions (including thoselltexy from

algorithm exists, there are no general methods to anallytica
determine this bound, which has to be derived from scratch fo
each specific case. In this paper, we tackle the generalgobl
of applying RS to draw from an arbitrary posterior pdf usihg t
prior density as a proposal function. This is a scenariodppears
frequently in Bayesian signal processing methods. We éexiv
general geometric procedure for the calculation of uppembs
that can be used with a broad class of target pdf's, includin
scenarios with correlated observations, multimodal anahiature
measurement noises. We provide some simple numerical égamp
to illustrate the application of the proposed techniques.

1. INTRODUCTION

Bayesian methods have become very popular in signal priogess
during the past decades and, with them, there has been aafurge
interest in the Monte Carlo techniques that are often nacgser

the implementation of optimal posterioriestimators [4, 3, 8, 6].
Indeed, the application of Markov Chain Monte Carlo (MCM@) [
and particle filtering [3, 2] algorithms has become a comntex®

in the current signal processing literature. However, innyna
problems of practical interest these techniques demarckgdtwes

correlated noises, mixture or multi-modal marginal noisasities)
and introduce a very general, yet simple, method for obtgini
closed-form upper bounds derived from the solution for Gems
target pdf’s. Some extensions of the basic approach in [& th
can be used to obtain tighter bounds in specific scenarioalsoe
proposed.

The remaining of the paper is organized as follows. The basic

gproblem is stated in Section 2, where the RS algorithm istaigdly

reviewed. Some basic definitions and assumptions are pegsien
Section 3. The restricted technique of [7] is concisely dbsd

in Section 4 for completeness and then we proceed to inteoduc
more general bounding algorithms in Section 5 (for closmdaf
upper bounds) and Section 6 (for scenario-specific exteagsibthe
restricted algorithm). Two illustrative examples are giire Section

7 and, finally, Section 8 is devoted to the conclusions.

2. PROBLEM STATEMENT

2.1 Signal model

Many signal processing problems involve the estimation of a
unobserved Six € R™ (vectors are denoted as lower-case bold-

face letters all through the paper), from a sequence ofelat
observations. We assume an arbitrary prior probabilitysidgn
functiont (pdf) for the Sl,p(x), and considen scalar observations,

[1], inversion procedures [8] and the accept/reject metraddo ¥ € R, 1= 1,....n, which are obtained through nonlinear
known asrejection samplingRS). transformations of the signal contaminated with additive noise.

The RS approach [8, Chapter 2] is a classical Monte Carld 0rmally, we write

for sampling from probability distributions with non-stiard
forms and the researcher is brought back to the considerafio
fundamental simulation algorithms, such as importancepam

technique for “universal sampling”. It can be used to geteera
samples from any target probability density function (pttfipt we
can evaluate up to a proportionality constant, by drawitgnfia
possibly simpler proposal density. The sample is eitheepted or
rejected by an adequate test of the ratio of the two pdf’s twndn
be proved that accepted samples are actually distributeatdiog
to the target distribution. An important limitation of RS theds
is the need to analytically establish an upper bound for &tie r
of the target and proposal densities. With the exceptiortradtly
log-concave pdf’s, which can be efficiently dealt with usiting
adaptive rejection sampling (ARS) method of [5], there isekl
of systematic methods to obtain these upper bounds.

This work has been partially supported Iinisterio de Ciencia
e Innovacionof Spain (project MONIN, ref. TEC-2006-13514-C02-
01/TCM), and Program Consolider-Ingenio 2010, ref. CS3200
00010 COMONSENS) andComunidad Autobnoma de Madri¢project
PROMULTIDIS-CM, ref. S-0505/TIC/0233).
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Y1=01(X) + &1, ¥n = Gn(X) +én e«
wherey = [y1,...,yn]' € R"is the vector of available observations,
g :RM™ =R, i=1,...,n, are nonlinearities anfl are independent
noise variables, possibly with different distributions &achi. Let
us initially assume noise pdf’s of the form

p(&) = kiexp{-Vi(&)}, )

wherek; is a real constant and(¢;) is a function, subsequently
referred to asnarginal potentialWWe assume thatitis a real and non-
negative functiony; : R — [0,+o0), and in general multimodal. If
the noise variables are independent, the jointgddt, &2, ...,&n) =

ki >0,

1we usep(-) to denote the probability density function (pdf) of a random
variate, i.e.,p(x) denotes the pdf ok and p(y) is the pdf ofy, possibly
different.
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M, p(én) is easy to construct and we can defin@iat potential
V() : RN — [0, +0) as

(W(&1,...,&n) £ —log[p(&1,.... & Zlogp (&) (3
Substituting (2) into (3) yields
mewm:%fZWm )

wherec, = — S, logk; is a constant.
In subsequent sections we will be interested in a partiai&ss of
joint potential functions denoted as

Ely ZL‘EI ) 0< l < +0°7 (5)

where the subscrigt identifies the specific member of the class.
In partlcular the function obtained fdr= 2, V2 (El én) =
S l|£.| will be termedquadratic potentiadnd it yields a Gaussian
density when plugged into Eq. (2).

Let g = [g1,...,0n]" be the vector-valued nonlinearity defined

as g(x) £ [g1(x),...,on(x)]T.  The scalar observations are
conditionally independent given the | hence thelikelihood

function £(x;y,g) £ p(y|x), can be factorized as

n
€0y, 9) = ['] pi[X)- (6)
He
Since we are assuming additive noises,
p(yi|x) = ki exp{—Vi (y;i — gi (X ))} and the likelihood in (6) induces

asystem potentidV/ (x;y, g) — [0, +w), defined as

Zil()g p(yi[x)],

that is a function o and depends on the observatignand the
functiong. Using (4) and (7), we write the system potential in terms
of the joint potential,

L

V(x:y,9) = —In[l(x;y,0)] (7)

VW (y; —g1(x),....Yn— (X)), ®)

—gi(x)).

V(xy,0) =
..,V (XY,9) = cn+ 3Ly Vi(y
2.2 Rejection sampling

3. DEFINITIONSAND ASSUMPTIONS

Hereafter we restrict our attention to the case of a scalat SR.
This is done for the sake of clarity, since dealing with theegal
casex € R™M requires additional definitions and notations. The
techniques to be described in Section 4.1 can be extenddteto t
general case, although this extension is not trivial. Wenéefie set

of state predictionas

ZE{eER: yi=g(x) fori=1,....n} 9)
Each equationy; = gi(X;), in general, can yield zero, one or several
state predictions. We also introduce the maximum likelch@dL)
state estimatax, as

X € argmax/(x|y,g) = argmirV (x;y,g), (10)
XeR XeR

not necessarily unique.
Let us use” C R to denote the support of the vector functgm e,
g: ./ CR — R". We assume that there exists a partit{o# }] 1
of & (i.e.,of = uq 1#j andBiN L) =0, Vi # j) such that we can
define functlong, i-%;—R, j=1,..,qandi=1,...,n as
gi,j(x) £ (11)
and: (a) every functiog; j is invertible inZ; and (b) every function
0i,j is either convex in%j or concave in%j. Assumptions (a)
and (b) together mean that, for evenand allx € %, the first
derlvatlved—d— is either strictly positive or strictly negative and the

'second derlvatlve—g'z—J is either non-negative or non-positive. As

a consequence, there are exactlgtate predictions in each subset
of the partition,x j = gifjl(yi). We write the set of predictions in
Bj as Zj = {X1j,..-,%nj}. If gij is bounded andj is noisy,

it is conceivable thaty; > m[ax]gi_j(x) (ory; < I‘Tin]gi.j(x)),

gi(x), vxe %,

where[#
exist.

j] denotes the closure of s&f;, henceg;” B (yi) may not
In such case, we defingj = arg maxg,_,( ) (or X j =
x€[#]

arg rF/i}n] gi,j(x), respectively), and admk; j = +oo (respectively,
xe[Bj] '
X j = —o0) as valid solutions.

4. BACKGROUND

Let us now assume that we wish to approximate, by samplingyVe review the basic bounding algorithm of [7]. This techmidsi

some integral of the forr(f) = [ f(x)p(x|y)dx, wheref is some
measurable function ofandp(x|y) O p(x)¢(x;y,g) is the posterior
pdf of the Sl given the observations. Unfortunately, it may be
possible in general to draw directly fropgx|y) and we must apply
simulation techniques to generate adequate samples. @aelaqy
possibility is to carry out rejection sampling using theoprp(x), as
a proposal function. If we ldt be an upper bound for the likelihood,
£(x;y,9) < L, then we can generaté independent samples from
p(x|y) according to the following algorithm.
1. Seti=1.
2. Drawx’ ~ p(x) andu’ ~ U (0, 1), whereU (0,1) is the uniform
pdfin [0,1].
I X9 - 9 - i thenx; = X/, else discara’ and go to step 2.
4. Seti =i+1. Ifi > N stop, else go back to step 2.
We can approximate(f) ~ () = § $N ; f(x)).
In the sequel, we address the problem of analytically catmg
the boundL. Note that, since the log function is monotonous, it
is equivalent to maximizé w.r.t. x and to minimize the system
potentialV also w.r.t. x. As a consequence, we may focus on the
calculation of a lower bound fdr (x;y,g). Note that this problem
is far from trivial. Even for very simple marginal potensaV, the
system potential can be highly multimodal w.x{7].

10

valid only if we impose an important additional constraiatsthe
model of Section 2, namely that each marginal poteMigdj;) has

a unique minimum a; =0 andg\f/: #0forall & # 0.

4.1 Basic algorithm for the calculation of bounds

Our goal is to obtain an analytical method for the compuratiba
scalary € R such thaty < inﬁ;V(x;yg) for arbitrary (but fixed)
Xe

observationsy and known nonlinearitieg. The main difficulty
to carry out this calculation is the nonlineari@y which renders
the problem not directly tractable In [7] it is describedahto
build, within each se#8; (&7 = U] 1%j), adequate linear functions

{ru}.:l in order to replace the nonllnearltleekj,‘,}l:1 We
construct every; j in a way that ensures
Vi(yi = 1ij(x) SVE(Yi — 9} (X)), Vx€E .7, 12

where .#; is any closed interval in%j such thatxj ¢

arg T}”]V(X ;Y,9) (i.e., a ML state estlmator ofrestricted to%;,
XE |7

possibly non-unique) is contained.ify . The latter requirement can
be fulfilled if we choose#; £ [min(.27),max(2;)] [7].
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Moreover, sinceV(xy,gj) = ¢+ yiL l\7.(y. - Gi,j(x)) and For instance, consider the family of joint potentl‘aqg‘). Using
V(XY,rj) =Cn+ 31 Vi(¥i —rij(X) wheregj = [gu ..., gn j] and the monotonicity ofZP norms, it is possible to prove] that

ri =1[ryj,---,m,jl, Eq. (12) implies thaV (xy,rj) gV(x;y,gj), N i n 1
vx € 4, and as a consequence, (Z'Ei|p> > (Zfi2> _for 0< p<2, and (17)
yj = |nf V(x y,rj) < |nf V(x Y, 0j) = |nf V(x y,0). (13) - - )
pT &P S &2 2 for 2<p<
i R < p < Hoo. 18
Therefore, it is possible to find a lower bound i#j for the 21' | Zi ' P 4o

system potentif (x;y, g; ), denotedy;, by minimizing the modified Let Ry(v) = v¥/P. Since this function is indeed strictly increasing,

potentialV (x;y,rj) within .#;. Repeating this procedure for every
#j, and choosmg/ miny;j, we obtain thaty < |nf V(x y,0)isa we can transform the inequality (17) into
j

global lower bound of the system potential. R d g ()P > c (%)) 2 19
The construction of each j is straightforward dividing the ! i;w' a0l _i;(y. 6 (9)%, (19)

problem into two cases. Case | corresponds to nonlinemgtig

such thatd—gc',‘(—x) X %2@ > 0, while case Il corresponds to which yields

d2g; n n

functions that comply Wlth—d—x %Q <0, whenx € %j. In Z'yi —g(xP > RI1 Z(yi —gi (X))Z
case | we choose a linear functign that passes through mi?j) i i

and the state prediction ; € 27, while in case Il we choose a linear

: - p/2
functionr; j that passes through ma®’j) and the state prediction n 2
il o) = (yo-aw?) =2% eo
Unfortunately, it is possible that the minimization of =

the modified system potentiaf (x;y,rj) remains difficult and . p/2 . .
analytically intractable.  We prop(;se a general method t(bence the transformatlo;f/ of the quadratic boungb is a lower

circumvent this limitation in Section 5. To develop this new bound forvé) with 0 < p < 2. Similarly, if we letRy(v) =

technique, we start from the lower bound of the quadratiemtil, (7)

V2<”), presented next. (n » vl/P) , the inequality (18) yields

4.2 Lower Bound y» for quadratic potentials 5
. Z|Yi -—a(I°P>R, Z(Yi ~Gi(0)

Assume that the joint potential is quadratic, i.e!l2 (Y1 — i= i=

(21)

91,j(X), ., ¥n—0nj(X) =34 (vi — gl]())zforeaChj 1,. 7q, (7,)_,2) n /2] P o )
n\" % ( (v gi(»z) n(~ ) yp/2,

and construct the set of linearitiggj (x) = & jx+bjj, i =1,. = Zl L —
i=

andj=1,...,q. The modified system potentlal ﬁ, becomes
n n hence the transformatid®, () = n~(P~2/2#/2 is a lower bound

Vy,r) =3 Gi—rijx)?=Y i—ax—bj)?  (14)
: i; C i; S for V5" when 2< p < +co.
It is possible to devise a systematic procedure to derive a
and it turns out straightforward to compugg; = mlgV(x;y,r,—). suitable functionR given an arbitrary joint potentiav<”)(e),
XE A

where e £ [517...7£n]T. Let us define the manifold™y =

Indeed, if we denotea; = [a1i,...,ani]’ and wj = [y; —
i = gl = {ee R": V(" (e) :v}. We can construcR by assigningR(v)

b1j....,Yn—bnj]T. then
with the maximum of the quadratic potentig]'é? whene € Ty,
alw; i.e., we define
A
(15)

Ta ' 2 22
al'a; eer”zif (22)

Note that (22) is a constrained optimization problem that ba
solved using, e.g., Lagrangian multipliers.

X =argminV(xy,rj) =
J Qxeu@j (Xy,rj)

and yo; = V(x_j;y,rj). It is apparent thaty, = rnjinyz_J <

V(xY,9). From the definition in (22) we obtain thate € 'y, R(v) >
s, &2 In particular, sinc&/ (" (e) = v from the definition offy,
5. CLOSED-FORM UPPER BOUNDS we readily obtain the desired relationship,
We assume the availability of an invertible increasing fiorc ( (&1, ) £2 23)
R(v) : Rt — R* such thatRoV( > V2<n), whereo denotes the SR 21 '

composition of functions. Then, we can write We additionally need to check whethBris a strictly increasing

function of v. The two functions in the earlier examples of this

(RoV)(xy,09) > Vz(n) (y1—01(X),...,¥Yn—0n(X)) Section,R; andRy, can be readily found using this method.
(16) Let us remark the generality of this approach. Indeed, some
= Zl(yi —gi(x)? >y of the assumptions imposed on the model of Section 2 are not
i needed anymore. For example, the joint potentié) does not

have to be defined as an addition of marginal potentials (spe E
wherey, is the bound obtained in Section 4.2 and, as consequence4)) but may take more general forms. This technlque alsviges
V(xy,g) >R 1(p)=y. a suitable tool to compute bounds in scenarios where thee nois
random variablegj, i = 1,...,n, are correlated.
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6. ENHANCEMENTS It is apparent that (due to the normalization of th&s)
The method based on the solution for quadratic potentialg ma

. . : S
admittedly lead to upper bounds which are not tight enough. | _ N 3] > i L (F
that case, the rejection rate (and, as a consequence, tregave log[p(&i) log S;)\Sps(f') - se{T,l,h,s}v"l(E' His)-
computational load) of the RS algorithm grows. In this Smttve (30)

propose specific methods for the calculation of bounds #@iunt  The Jatter equation implies that we can compute a lower bdend

for observation models where the observational noise coeigs  the system potential (x;y,g) by exploring theS possible systems
have possibly multimodal pdfs from either exponential oktumie  of the form

families. The approach in Section 5 has a more general scope
but the procedures in this Section can yield tighter bountts a v, — 91(X)+&1,....Yi — His=0i (x)+§i S -3 ¥n=0On(X) + &y
consequently, more efficient RS algorithms. ’ ’ (31)

6.1 Multimodal exponential noise densities wheres € {1,...,5} and ps(§) = k‘vsexD{_\Zﬁ(é)}' Let v
be the lower bound computed for theth problem, then the

Let us assume that theth noise variable, &, is distributed global lower bound for the system potenti(x;y,q) is y —

according to the pdfp(&) = |‘|tT‘:1 pt(&) where p(&) = S
kitexp{—Vit(& — i)} is, itself, an exponential density with —log <ZS=1AseXp{7VS})
location parameteyi; and proportionality constarit¢. If we
assume that eadh; is a marginal potential function with a single 7. EXAMPLES
minimum atgi ¢, then the noise pdf We show the application of the proposed bounding methods by
way of two simple examples. They have been chosen for the sake
T of illustration only and are not intended to represent argcsjz
= rlpt(fi) =kiexp Zqut — Hit) (24)  practical system. In fact, we do not even claim that RS be &gt b
t= way to draw from these distributions: they are simply comsento

is possibly multimodal and the basic algorithm in Sectioradrmot put the proposed techniques at work.

be applied directly to obtain an upper bound on the resulting; 1 Example 1: Independent noise variables
likelihood function.

In order to tackle this problem, let us split theh observation ~ Givenx € R with prior densityp(x) = N(x; —2,1) (Gaussian, with
equation, y; = gi(x) + &, in T, equation which are (jointly) mean—2 and variance 1) and the system wyth= lyi,y2] " € R?

equivalent to the original one, given by
y1 = exp(X) + &1, Y2 = exp(—X) + & (32)

1 — O VT — T = O 25
Vil —Hia =G0+ &ia, Yim — K =600 +&im. (28 p(&1) Dexp{—|& — 1>~ |& + 113} and&; is a mixture of
It turns out possible to extend the bounding procedure ofi@eé  two pdfs, p(&2) 0 0.8exp{ —| &3} + 0.2exp{—|&2 —43}. The
to this scenario by introducing the extended observatiahove resulting system potential is
Ye=[Y1,1—H11,- Y1 —H1Tys-->Yn Ty — Hn T, (26)
° o V (%, 9) =lya — 1= exp(0) >+ lya + 1— exp()
—log[0.8exp(—|y2 — exp(—x)[?) (33)
+0.2exp(—|y2 — 4—exp(—x)|3)].

with dimensionT x 1, whereT = 31 T. In a similar way, we can
build up an extended vector-nonlinearity

ge(x) = [gl(x)7"'7gl( ) 7gn( ) 7gn( )] ’ (27)
T Tn

Since the density of, is a mixture, we need to apply the
technique proposed in Section (6.2). Therefore, we conside
two different bounding problems, one for each componenhe t
mixture of p(&2). For the first problem, we use the first mixture

ich i [ —|&|3}. The resultin
VOE . E £ o8 term which yields the densitg(&>) U exp{—|&|°}. There g
(815581, 8,5 8n) (28) potential function that we wish to lower bound for this case i
T T denoted

and an extended joint potential

Since the system potential actually remains the same, ie., V(<Y,9)1=|y1—1—exp(x)|>+|y2+1—exp(x)*

V(X Ye:0e) = V(Xy;0), we can apply the procedure of Section +lyz—exp(—x) 2 (34)
4 to compute a boungt < V(X;Ye;ge) Which is also a bound for '
V(xy:9). where the subscript ¥ (-), indicates that we are handling the first

mixture component.

S ) ) There is an additional difficulty that arises because of the
In many application it is common to model noise random vdegb  form of p(&;) O exp{—|& — 113} exp{ —|& + 13}, which fits the

by means of a mixture of pdfs. In particular, §thave the density  pattern of Eq. (24). Thus, using the approach in Section 6uile b
extended vectors for the observations

6.2 Mixturenoisedensities

S
p(é&i) = leAspS(Ei) (29) Ye=[VY1—Ly1+ :|_7y2]T7 (35)

and assume all other variablgs,;, have “simple” pdf's of the form and the nonlinearities,

(2). Again, we assumes(&) = kisexp{—Vis(& — pis)}, is an X) = [exp(xX), exp(x), exp(—x)] 36
exponential density with a proportionality constéyg and location Ge() = [exp(x), exp(x). exp(—X)] 36)

parameterllu s- The mixture coefficients are normalized to yield that yield the “extended version” of (34), denoté(k ye7ge)l The
Z&MS =1 and each; s has a unique minimum af s. latter potential can be bounded using the method in Section 4

1060



To be specific, if we let, e.gy,= [1.5,9] T, the linear functions where the vector of noise variables is jointly distributes a
associated to the nonlinearitiesgg (calculated with the procedure p(&1,&) O exp{fglz _ 522 _ pglgz}, so that the joint potential is

in Section 4) are V@(&1,&) = +EF + &3 + p&1&,. Due to the monotonicity and
convexity of ofg; and g, we can work with a partition ofR

ri(x) = 0.25¢+0.67, consisting of just one se®; = R. The system potenti®(x;y,g) =

ra(x) = 0.76x+1.79, (37)  —log[p(y,x)] becomes

ra(x) = —2.76x+2.93

V(%Y,0) =(y1 —exp(x))” + (y2 — exp(—x))?

Note that the nonlinearities are monotonous and convex gdvawe + p(y1 —exp(x))(y2 — exp(—x)).
a trivial partition#1 = R and we can skip the second subscript in

the linear functiorr; j(x). Substitutingge by re = [r1,r2,r3] " into If, e.g.,y = [2,5]T, the state predictions arg = log(2) andx, =
a quadratic potential we obtain —log(5), therefore.#; = [—log(5),log(2)]. Using the technique in
Section 4.1, we find1(x) = 0.78x+ 1.45 andry(x) = —1.95x+
1.85. We can easily minimize the quadratic potential asseditd
(38)  these linear functions, namely

(41)

Vo(X Ve, Te)1 =(y1 — 1= r1(x))%+ (y1 +1—r2(x))?
2

+(y2—r3(x))”.

ey 2 2
An analytical lower bound for (38) is easily calculated angiélds V2(%y,r) = (Y1 — (X)) + (y2 —r2(x))%, (42)

1 . . .
Vé )~ 5.40. Next we can apply transformatid®y(v) in Section to find y» = 2.79 < V(x;y,r). Using the technique in Section 5,
5 (see Eq. (21)), we arrive at a lower boupid = Rgl(yél)) = we readily find an increasing functioR(v) = ﬁv such that
1117 <V(xy,9)a, for the first sub-problem. RoV > Vs, hencey = R1(yp) < V(xy,q). In particular if, e.g.,

The second sub-problem arises from the second term in thﬁ = —0.7, we obtainy = R~1(y,) = 1.75 (the true global minimum
mixture of p(&z). In this casep(&) O exp{—|&— 4} and the  of the system potential beingZ2). Finally, the likelihood upper

potential to be bounded in this second case turns out to be bound isL = exp(—1.75).
. Figure 1 (lower plot) shows the target functigix|y) (solid
V(xy,0)2 = |y1 — 1—exp(x)[3+|y1 + 1—exp(x) 3 line) and the histogram constructed fréin= 10,000 independent

(39)  samples generated by the RS algorithm.
T lya— 4— exp(—X)[2. ples g y J

8. CONCLUSIONS
The problem is handled exactly in the same way as the firstTime. . .
extended observation vectoryis=[y; —1,y1+1,y,—4]" andthe ~We have proposed new methods for the systematic computattion
nonlinearity vector remains equal to the sub-problem 1. Wain ~ the bounds needed for the implementation of rejection sampl

2 o1/ Dy ~ schemes. In particular, we have considered the problem of
a lower bond for (39)/?) =Ry (y;”) = 7.77 <V (xy,g)2. drawing from a posterior probability distribution usingetiprior

The boundsy!Y and y'? are combined according to the as a proposal function to generate candidate samples. $n thi

mixture coefficients inp(&>). to yield a global lower boun¢g = setup, the problem consists in finding a tight upper bound for
—log[0.8exp(—y V) 4 0.2exp—y1?))] = 9.25. The real minimum the likelihood function induced by the available data. Weeha
of the system potential is 157. briefly reviewed previous results and then extended them(dp:
Now we use the prior pdfp(x), and the upper bound = provide a more general bounding algorithm that can be usé wi
exp{—9.25} = 9.5- 1075 to implement a rejection sampler that & Very broad class of noise distributions (including carted
draws fromp(x]y). noise variables) and (b) propose scenario-specific algostthat

Figure 1 (Left plot) shows the target functigpixly) and the yield more accurate bounds in cases where the noise vagiabde

histogram ofN = 10,000 samples generated by the RS algorithm.described by exponential-multimodal and mixture dersiti&wo

The histogram follows closely the shape of the true postedé simple examples have been provided to illustrate the apipiie of
the proposed techniques.
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