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ABSTRACT

Rejection sampling (RS) is a well-known method to generate
(pseudo-)random samples from arbitrary probability distributions
that enjoys important applications, either by itself or as atool in
more sophisticated Monte Carlo techniques. Unfortunately, the use
of RS techniques demands the calculation of tight upper bounds for
the ratio of the target probability density function (pdf) over the
proposal density from which candidate samples are drawn. Except
for the class of log-concave target pdf’s, for which an efficient
algorithm exists, there are no general methods to analytically
determine this bound, which has to be derived from scratch for
each specific case. In this paper, we tackle the general problem
of applying RS to draw from an arbitrary posterior pdf using the
prior density as a proposal function. This is a scenario thatappears
frequently in Bayesian signal processing methods. We derive a
general geometric procedure for the calculation of upper bounds
that can be used with a broad class of target pdf’s, including
scenarios with correlated observations, multimodal and/or mixture
measurement noises. We provide some simple numerical examples
to illustrate the application of the proposed techniques.

1. INTRODUCTION

Bayesian methods have become very popular in signal processing
during the past decades and, with them, there has been a surgeof
interest in the Monte Carlo techniques that are often necessary for
the implementation of optimala posterioriestimators [4, 3, 8, 6].
Indeed, the application of Markov Chain Monte Carlo (MCMC) [4]
and particle filtering [3, 2] algorithms has become a commonplace
in the current signal processing literature. However, in many
problems of practical interest these techniques demand procedures
for sampling from probability distributions with non-standard
forms and the researcher is brought back to the consideration of
fundamental simulation algorithms, such as importance sampling
[1], inversion procedures [8] and the accept/reject method, also
known asrejection sampling(RS).

The RS approach [8, Chapter 2] is a classical Monte Carlo
technique for “universal sampling”. It can be used to generate
samples from any target probability density function (pdf), that we
can evaluate up to a proportionality constant, by drawing from a
possibly simpler proposal density. The sample is either accepted or
rejected by an adequate test of the ratio of the two pdf’s and it can
be proved that accepted samples are actually distributed according
to the target distribution. An important limitation of RS methods
is the need to analytically establish an upper bound for the ratio
of the target and proposal densities. With the exception of strictly
log-concave pdf’s, which can be efficiently dealt with usingthe
adaptive rejection sampling (ARS) method of [5], there is a lack
of systematic methods to obtain these upper bounds.
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01/TCM), and Program Consolider-Ingenio 2010, ref. CSD2008-
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In this paper, we aim at a general procedure to apply RS in
scenarios where the target pdf is the posterior density of a signal
of interest (SI) given a collection of observations (this statement
can be readily connected to problems of distributed estimation in
sensor networks) and the proposal density is the prior of theSI.
In [7] we sketched a partial solution to this problem, restricted
to cases where each observation is contaminated by independent
additive noise with a exponential-family unimodal distribution. In
the present work we extend these results to encompass a much
broader class of target distributions (including those resulting from
correlated noises, mixture or multi-modal marginal noise densities)
and introduce a very general, yet simple, method for obtaining
closed-form upper bounds derived from the solution for Gaussian
target pdf’s. Some extensions of the basic approach in [7] that
can be used to obtain tighter bounds in specific scenarios arealso
proposed.

The remaining of the paper is organized as follows. The basic
problem is stated in Section 2, where the RS algorithm is alsobriefly
reviewed. Some basic definitions and assumptions are presented in
Section 3. The restricted technique of [7] is concisely described
in Section 4 for completeness and then we proceed to introduce
more general bounding algorithms in Section 5 (for closed-form
upper bounds) and Section 6 (for scenario-specific extensions of the
restricted algorithm). Two illustrative examples are given in Section
7 and, finally, Section 8 is devoted to the conclusions.

2. PROBLEM STATEMENT

2.1 Signal model

Many signal processing problems involve the estimation of an
unobserved SI,x ∈ R

m (vectors are denoted as lower-case bold-
face letters all through the paper), from a sequence of related
observations. We assume an arbitrary prior probability density
function1 (pdf) for the SI,p(x), and considern scalar observations,
yi ∈ R, i = 1, . . . ,n, which are obtained through nonlinear
transformations of the signalx contaminated with additive noise.
Formally, we write

y1 = g1(x)+ξ1, . . . ,yn = gn(x)+ξn (1)

wherey = [y1, . . . ,yn]
T ∈R

n is the vector of available observations,
gi : R

m → R, i = 1, . . . ,n, are nonlinearities andξi are independent
noise variables, possibly with different distributions for eachi. Let
us initially assume noise pdf’s of the form

p(ξi) = ki exp{−V̄i(ξi)} , ki > 0, (2)

whereki is a real constant and̄V(ξi) is a function, subsequently
referred to asmarginal potential. We assume that it is a real and non-
negative function,̄Vi : R → [0,+∞), and in general multimodal. If
the noise variables are independent, the joint pdfp(ξ1,ξ2, . . . ,ξn) =

1We usep(·) to denote the probability density function (pdf) of a random
variate, i.e.,p(x) denotes the pdf ofx and p(y) is the pdf ofy, possibly
different.
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∏n
i=1 p(ξn) is easy to construct and we can define ajoint potential

V(n) : R
n → [0,+∞) as

V(n)(ξ1, . . . ,ξn) , − log[p(ξ1, . . . ,ξn)] = −
n

∑
i=1

log p(ξn). (3)

Substituting (2) into (3) yields

V(n)(ξ1, . . . ,ξn) = cn +
n

∑
i=1

V̄i(ξi) (4)

wherecn = −∑n
i=1 logki is a constant.

In subsequent sections we will be interested in a particularclass of
joint potential functions denoted as

V(n)
l (ξ1, . . . ,ξn) =

n

∑
i=1

|ξi |
l , 0 < l < +∞, (5)

where the subscriptl identifies the specific member of the class.

In particular, the function obtained forl = 2, V(n)
2 (ξ1, . . . ,ξn) =

∑n
i=1 |ξi |

2 will be termedquadratic potentialand it yields a Gaussian
density when plugged into Eq. (2).
Let g = [g1, . . . ,gn]

T be the vector-valued nonlinearity defined
as g(x) , [g1(x), . . . ,gn(x)]T . The scalar observations are
conditionally independent given the SIx, hence thelikelihood
function, ℓ(x;y,g) , p(y|x), can be factorized as

ℓ(x;y,g) =
n

∏
i=1

p(yi |x). (6)

Since we are assuming additive noises,
p(yi |x) = ki exp{−V̄i(yi −gi(x))} and the likelihood in (6) induces
asystem potentialV(x;y,g) : R

m → [0,+∞), defined as

V(x;y,g) , − ln[ℓ(x;y,g)] = −
n

∑
i=1

log[p(yi |x)], (7)

that is a function ofx and depends on the observationsy and the
functiong. Using (4) and (7), we write the system potential in terms
of the joint potential,

V(x;y,g) = V(n)(y1−g1(x), . . . ,yn−gn(x)), (8)

i.e.,V(x;y,g) = cn +∑n
i=1V̄i(yi −gi(x)).

2.2 Rejection sampling

Let us now assume that we wish to approximate, by sampling,
some integral of the formI( f ) =

∫

R
f (x)p(x|y)dx, wheref is some

measurable function ofx andp(x|y) ∝ p(x)ℓ(x;y,g) is the posterior
pdf of the SI given the observations. Unfortunately, it may not be
possible in general to draw directly fromp(x|y) and we must apply
simulation techniques to generate adequate samples. One appealing
possibility is to carry out rejection sampling using the prior, p(x), as
a proposal function. If we letL be an upper bound for the likelihood,
ℓ(x;y,g) ≤ L, then we can generateN independent samples from
p(x|y) according to the following algorithm.
1. Seti = 1.
2. Drawx′ ∼ p(x) andu′ ∼U(0,1), whereU(0,1) is the uniform

pdf in [0,1].

3. If ℓ(x′;y,g)
L > u′ thenxi = x′, else discardx′ and go to step 2.

4. Seti = i +1. If i > N stop, else go back to step 2.
We can approximateI( f ) ≈ Î( f ) = 1

N ∑N
i=1 f (xi).

In the sequel, we address the problem of analytically calculating
the boundL. Note that, since the log function is monotonous, it
is equivalent to maximizeℓ w.r.t. x and to minimize the system
potentialV also w.r.t. x. As a consequence, we may focus on the
calculation of a lower bound forV(x;y,g). Note that this problem
is far from trivial. Even for very simple marginal potentials,V̄i , the
system potential can be highly multimodal w.r.t.x [7].

3. DEFINITIONS AND ASSUMPTIONS

Hereafter we restrict our attention to the case of a scalar SI, x∈ R.
This is done for the sake of clarity, since dealing with the general
casex ∈ R

m requires additional definitions and notations. The
techniques to be described in Section 4.1 can be extended to the
general case, although this extension is not trivial. We define the set
of state predictionsas

X , {xi ∈ R : yi = gi(xi) for i = 1, . . . ,n} (9)

Each equationyi = gi(xi), in general, can yield zero, one or several
state predictions. We also introduce the maximum likelihood (ML)
state estimator ˆx, as

x̂∈ argmax
x∈R

ℓ(x|y,g) = argmin
x∈R

V(x;y,g), (10)

not necessarily unique.
Let us useA ⊆R to denote the support of the vector functiong, i.e.,
g : A ⊆ R → R

n. We assume that there exists a partition{B j}
q
j=1

of A (i.e.,A = ∪
q
j=1B j andBi ∩B j = /0,∀i 6= j) such that we can

define functionsgi, j : B j → R, j = 1, . . . ,q andi = 1, . . . ,n, as

gi, j (x) , gi(x), ∀x∈ B j , (11)

and: (a) every functiongi, j is invertible inB j and (b) every function
gi, j is either convex inB j or concave inB j . Assumptions (a)
and (b) together mean that, for everyi and all x ∈ B j , the first

derivative dgi, j

dx is either strictly positive or strictly negative and the

second derivatived
2gi, j

dx2 is either non-negative or non-positive. As
a consequence, there are exactlyn state predictions in each subset
of the partition,xi, j = g−1

i, j (yi). We write the set of predictions in
B j as X j = {x1, j , . . . ,xn, j}. If gi, j is bounded andyi is noisy,
it is conceivable thatyi > max

x∈[B j ]
gi, j (x) (or yi < min

x∈[B j ]
gi, j (x)),

where[B j ] denotes the closure of setB j , henceg−1
i, j (yi) may not

exist. In such case, we definexi, j = arg max
x∈[B j ]

gi, j (x) (or xi, j =

arg min
x∈[B j ]

gi, j (x), respectively), and admitxi, j = +∞ (respectively,

xi, j = −∞) as valid solutions.

4. BACKGROUND

We review the basic bounding algorithm of [7]. This technique is
valid only if we impose an important additional constraintson the
model of Section 2, namely that each marginal potentialV̄i(ξi) has

a unique minimum atξi = 0 anddV̄i
dξi

6= 0 for all ξi 6= 0.

4.1 Basic algorithm for the calculation of bounds

Our goal is to obtain an analytical method for the computation of a
scalarγ ∈ R such thatγ ≤ inf

x∈R

V(x;y,g) for arbitrary (but fixed)

observationsy and known nonlinearitiesg. The main difficulty
to carry out this calculation is the nonlinearityg, which renders
the problem not directly tractable. In [7] it is described how to
build, within each setB j (A =∪

q
j=1B j ), adequate linear functions

{
r i, j
}n

i=1 in order to replace the nonlinearities
{

gi, j
}n

i=1. We
construct everyr i, j in a way that ensures

V̄i(yi − r i, j (x)) ≤ V̄i(yi −gi, j (x)), ∀x∈ I j , (12)

where I j is any closed interval inB j such that ˆx j ∈
arg min

x∈[B j ]
V(x;y,g) (i.e., a ML state estimator ofx restricted toB j ,

possibly non-unique) is contained inI j . The latter requirement can
be fulfilled if we chooseI j , [min(X j),max(X j )] [7].
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Moreover, since V(x;y,g j) = cn + ∑n
i=1V̄i(yi − gi, j (x)) and

V(x;y,r j) = cn+∑n
i=1V̄i(yi −r i, j (x)) whereg j = [g1, j , . . . ,gn, j ] and

r j = [r1, j , . . . , rn, j ], Eq. (12) implies thatV(x;y,r j ) ≤ V(x;y,g j ),
∀x∈ I j , and as a consequence,

γ j = inf
x∈I j

V(x;y,r j ) ≤ inf
x∈I j

V(x;y,g j) = inf
x∈B j

V(x;y,g). (13)

Therefore, it is possible to find a lower bound inB j for the
system potentialV(x;y,g j ), denotedγ j , by minimizing the modified
potentialV(x;y,r j ) within I j . Repeating this procedure for every
B j , and choosingγ = min

j
γ j , we obtain thatγ ≤ inf

x∈R

V(x,y,g) is a

global lower bound of the system potential.
The construction of eachr i, j is straightforward dividing the

problem into two cases. Case I corresponds to nonlinearities gi, j

such that dgi, j(x)
dx ×

d2gi, j(x)
dx2 ≥ 0 , while case II corresponds to

functions that comply withdgi, j(x)
dx ×

d2gi, j(x)
dx2 ≤ 0, whenx∈ B j . In

case I we choose a linear functionr i, j that passes through min(X j)
and the state predictionxi, j ∈X j , while in case II we choose a linear
function r i, j that passes through max(X j) and the state prediction
xi, j ∈ X j .

Unfortunately, it is possible that the minimization of
the modified system potentialV(x;y,r j) remains difficult and
analytically intractable. We propose a general method to
circumvent this limitation in Section 5. To develop this new
technique, we start from the lower bound of the quadratic potential,

V(n)
2 , presented next.

4.2 Lower Bound γ2 for quadratic potentials

Assume that the joint potential is quadratic, i.e.,V(n)
2 (y1 −

g1, j (x), . . . ,yn−gn, j (x)) = ∑n
i=1(yi −gi, j (x))2 for eachj = 1, . . . ,q,

and construct the set of linearitiesr i, j (x) = ai, jx+bi, j , i = 1, . . . ,n
and j = 1, . . . ,q. The modified system potential inB j becomes

V(x;y,r j ) =
n

∑
i=1

(yi − r i, j (x))
2 =

n

∑
i=1

(yi −ai, jx−bi, j )
2, (14)

and it turns out straightforward to computeγ2, j = min
x∈B j

V(x;y,r j ).

Indeed, if we denotea j = [a1, j , . . . ,an, j ]
T and w j = [y1 −

b1, j , . . . ,yn−bn, j ]
T , then

x̂L, j = arg min
x∈B j

V(x;y,r j ) =
aT

j w j

aT
j a j

, (15)

and γ2, j = V(xL, j ;y,r j ). It is apparent thatγ2 = min
j

γ2, j ≤

V(x;y,g).

5. CLOSED-FORM UPPER BOUNDS

We assume the availability of an invertible increasing function

R(v) : R
+ → R

+ such thatR◦V(n) ≥ V(n)
2 , where◦ denotes the

composition of functions. Then, we can write

(R◦V)(x;y,g) ≥V(n)
2 (y1−g1(x), . . . ,yn−gn(x))

=
n

∑
i=1

(yi −gi(x))
2 ≥ γ2.

(16)

whereγ2 is the bound obtained in Section 4.2 and, as consequence,
V(x;y,g) ≥ R−1 (γ2) = γ .

For instance, consider the family of joint potentialsV(n)
p . Using

the monotonicity ofL p norms, it is possible to prove [? ] that
(

n

∑
i=1

|ξi |
p

) 1
p

≥

(
n

∑
i=1

ξ 2
i

) 1
2

, for 0≤ p≤ 2, and (17)

n

(
p−2
2p

)( n

∑
i=1

|ξi |
p

) 1
p

≥

(
n

∑
i=1

ξ 2
i

) 1
2

, for 2≤ p≤ +∞. (18)

Let R1(v) = v2/p. Since this function is indeed strictly increasing,
we can transform the inequality (17) into

R1

(
n

∑
i=1

|yi −gi(x)|
p

)

≥
n

∑
i=1

(yi −gi(x))
2, (19)

which yields

n

∑
i=1

|yi −gi(x)|
p ≥ R−1

1

(
n

∑
i=1

(yi −gi(x))
2

)

=

(
n

∑
i=1

(yi −gi(x))
2

)p/2

≥ γ p/2
2 , (20)

hence the transformationγ p/2
2 of the quadratic boundγ2 is a lower

bound for V(n)
p with 0 < p ≤ 2. Similarly, if we let R2(v) =

(

n

(
p−2
2p

)

v1/p
)2

, the inequality (18) yields

n

∑
i=1

|yi −gi (x)|
p ≥ R−1

2

(
n

∑
i=1

(yi −gi(x))
2

)

=



n

(

− p−2
2p

)( n

∑
i=1

(yi −gi (x))
2

)1/2




p

≥ n(− p−2
2 )γ p/2

2 ,

(21)

hence the transformationR−1
2 (γ2) = n−(p−2)/2γ p/2

2 is a lower bound

for V(n)
p when 2≤ p < +∞.

It is possible to devise a systematic procedure to derive a
suitable functionR given an arbitrary joint potentialV(n)(e),
where e , [ξ1, . . . ,ξn]

T . Let us define the manifoldΓv ,
{

e ∈ R
n : V(n)(e) = v

}

. We can constructR by assigningR(v)

with the maximum of the quadratic potential∑n
i ξ 2

i whene ∈ Γv,
i.e., we define

R(v) , max
e∈Γv

n

∑
i=1

ξ 2
i . (22)

Note that (22) is a constrained optimization problem that can be
solved using, e.g., Lagrangian multipliers.

From the definition in (22) we obtain that,∀e ∈ Γv, R(v) ≥

∑n
i=1 ξ 2

i . In particular, sinceV(n)(e) = v from the definition ofΓv,
we readily obtain the desired relationship,

R
(

V(n)(ξ1, . . . ,ξn)
)

≥
n

∑
i=1

ξ 2
i . (23)

We additionally need to check whetherR is a strictly increasing
function of v. The two functions in the earlier examples of this
Section,R1 andR2, can be readily found using this method.

Let us remark the generality of this approach. Indeed, some
of the assumptions imposed on the model of Section 2 are not
needed anymore. For example, the joint potentialV(n) does not
have to be defined as an addition of marginal potentials (see Eq.
(4)) but may take more general forms. This technique also provides
a suitable tool to compute bounds in scenarios where the noise
random variablesξi , i = 1, . . . ,n, are correlated.
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6. ENHANCEMENTS

The method based on the solution for quadratic potentials may
admittedly lead to upper bounds which are not tight enough. In
that case, the rejection rate (and, as a consequence, the average
computational load) of the RS algorithm grows. In this Section we
propose specific methods for the calculation of bounds that account
for observation models where the observational noise components
have possibly multimodal pdfs from either exponential or mixture
families. The approach in Section 5 has a more general scope
but the procedures in this Section can yield tighter bounds and,
consequently, more efficient RS algorithms.

6.1 Multimodal exponential noise densities

Let us assume that thei-th noise variable,ξi , is distributed
according to the pdf p(ξi) = ∏Ti

t=1 pt(ξi) where pt(ξi) ,

ki,t exp
{
−V̄i,t(ξi −µi,t)

}
is, itself, an exponential density with

location parameterµi,t and proportionality constantki,t . If we
assume that each̄Vi,t is a marginal potential function with a single
minimum atµi,t , then the noise pdf

p(ξi) =
Ti

∏
t=1

pt(ξi) = ki exp

{

−
Ti

∑
t=1

V̄i,t(ξi −µi,t)

}

, (24)

is possibly multimodal and the basic algorithm in Section 4 cannot
be applied directly to obtain an upper bound on the resulting
likelihood function.

In order to tackle this problem, let us split thei-th observation
equation, yi = gi(x) + ξi , in Ti equation which are (jointly)
equivalent to the original one,

yi,1−µi,1 = gi(x)+ξi,1, . . . ,yi,Ti −µi,Ti = gi(x)+ξi,Ti . (25)

It turns out possible to extend the bounding procedure of Section 4
to this scenario by introducing the extended observation vector

ye = [y1,1−µ1,1, . . . ,y1,T1 −µ1,T1, . . . ,yn,Tn −µn,Tn ] (26)

with dimensionT ×1, whereT = ∑n
1 Ti . In a similar way, we can

build up an extended vector-nonlinearity

ge(x) = [g1(x), . . . ,g1(x)
︸ ︷︷ ︸

T1

, . . . ,gn(x), . . . ,gn(x)
︸ ︷︷ ︸

Tn

]T , (27)

and an extended joint potential

V(n)(ξ1, . . . ,ξ1
︸ ︷︷ ︸

T1

, . . . ,ξn, . . . ,ξn
︸ ︷︷ ︸

Tn

). (28)

Since the system potential actually remains the same, i.e.,
V(x;ye;ge) = V(x;y;g), we can apply the procedure of Section
4 to compute a boundγ ≤ V(x;ye;ge) which is also a bound for
V(x;y;g).

6.2 Mixture noise densities

In many application it is common to model noise random variables
by means of a mixture of pdfs. In particular, letξi have the density

p(ξi) =
Si

∑
s=1

λsps(ξi) (29)

and assume all other variables,ξ j 6=i , have “simple” pdf’s of the form
(2). Again, we assumeps(ξi) = ki,sexp

{
−V̄i,s(ξi −µi,s)

}
, is an

exponential density with a proportionality constantki,s and location
parameterµi,s. The mixture coefficients are normalized to yield

∑Si
s=1λs = 1 and each̄Vi,s has a unique minimum atµi,s.

It is apparent that (due to the normalization of theλs’s)

− log[p(ξi)] = − log

(
Si

∑
s=1

λsps(ξi)

)

≥ min
s∈{1,...,Si}

V̄i,1(ξi −µi,s).

(30)
The latter equation implies that we can compute a lower boundfor
the system potentialV(x;y,g) by exploring theSi possible systems
of the form

y1 = g1(x)+ξ1, . . . ,yi −µi,s = gi(x)+ ξ̃i,s, . . . ,yn = gn(x)+ξn
(31)

where s ∈ {1, . . . ,Si} and ps(ξ̃i) = ki,sexp
{

−V̄i,s(ξ̃i)
}

. Let γs

be the lower bound computed for thes-th problem, then the
global lower bound for the system potentialV(x;y,g) is γ =

− log
(

∑Si
s=1λsexp{−γs}

)

7. EXAMPLES

We show the application of the proposed bounding methods by
way of two simple examples. They have been chosen for the sake
of illustration only and are not intended to represent any specific
practical system. In fact, we do not even claim that RS be the best
way to draw from these distributions: they are simply convenient to
put the proposed techniques at work.

7.1 Example 1: Independent noise variables

Givenx∈ R with prior densityp(x) = N(x;−2,1) (Gaussian, with
mean−2 and variance 1) and the system withy = [y1,y2]

⊤ ∈ R
2

given by
y1 = exp(x)+ξ1, y2 = exp(−x)+ξ2 (32)

wherep(ξ1) ∝ exp
{
−|ξ1−1|3−|ξ1 +1|3

}
andξ2 is a mixture of

two pdfs, p(ξ2) ∝ 0.8exp
{
−|ξ2|

3
}

+ 0.2exp
{
−|ξ2−4|3

}
. The

resulting system potential is

V(x;y,g) =|y1−1−exp(x)|3 + |y1 +1−exp(x)|3

− log[0.8exp(−|y2−exp(−x)|3)

+0.2exp(−|y2−4−exp(−x)|3)].

(33)

Since the density ofξ2 is a mixture, we need to apply the
technique proposed in Section (6.2). Therefore, we consider
two different bounding problems, one for each component in the
mixture of p(ξ2). For the first problem, we use the first mixture
term which yields the densityp(ξ2) ∝ exp

{
−|ξ2|

3
}

. The resulting
potential function that we wish to lower bound for this case is
denoted

Ṽ(x;y,g)1 = |y1−1−exp(x)|3 + |y1 +1−exp(x)|3

+ |y2−exp(−x)|3.
(34)

where the subscript iñV(·)1, indicates that we are handling the first
mixture component.

There is an additional difficulty that arises because of the
form of p(ξ1) ∝ exp

{
−|ξ1−1|3

}
exp
{
−|ξ1 +1|3

}
, which fits the

pattern of Eq. (24). Thus, using the approach in Section 6 we build
extended vectors for the observations

ye = [y1−1,y1 +1,y2]
⊤, (35)

and the nonlinearities,

ge(x) = [exp(x),exp(x),exp(−x)]⊤ (36)

that yield the “extended version” of (34), denotedṼ(x;ye,ge)1. The
latter potential can be bounded using the method in Section 4.
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To be specific, if we let, e.g.,y = [1.5,9]⊤, the linear functions
associated to the nonlinearities inge (calculated with the procedure
in Section 4) are

r1(x) = 0.25x+0.67,

r2(x) = 0.76x+1.79, (37)

r3(x) = −2.76x+2.93

Note that the nonlinearities are monotonous and convex, so we have
a trivial partitionB1 ≡ R and we can skip the second subscript in
the linear functionr i, j (x). Substitutingge by re = [r1, r2, r3]

⊤ into
a quadratic potential we obtain

Ṽ2(x;ye,re)1 =(y1−1− r1(x))
2 +(y1 +1− r2(x))

2

+(y2− r3(x))
2.

(38)

An analytical lower bound for (38) is easily calculated and it yields

γ(1)
2 = 5.40. Next we can apply transformationR2(v) in Section

5 (see Eq. (21)), we arrive at a lower boundγ(1) = R−1
2 (γ(1)

2 ) =

11.17≤ Ṽ(x;y,g)1, for the first sub-problem.
The second sub-problem arises from the second term in the

mixture of p(ξ2). In this case,p(ξ2) ∝ exp
{
−|ξ2−4|3

}
and the

potential to be bounded in this second case turns out to be

Ṽ(x;y,g)2 = |y1−1−exp(x)|3 + |y1 +1−exp(x)|3

+ |y2−4−exp(−x)|3.
(39)

The problem is handled exactly in the same way as the first one.The
extended observation vector, isye = [y1−1,y1 +1,y2−4]⊤ and the
nonlinearity vector remains equal to the sub-problem 1. We obtain

a lower bond for (39)γ(2) = R−1
2 (γ(1)

2 ) = 7.77≤ Ṽ(x;y,g)2.

The boundsγ(1) and γ(2) are combined according to the
mixture coefficients inp(ξ2). to yield a global lower boundγ =

− log[0.8exp(−γ(1))+0.2exp(−γ(2))] = 9.25. The real minimum
of the system potential is 13.57.
Now we use the prior pdfp(x), and the upper boundL =

exp{−9.25} = 9.5 · 10−5 to implement a rejection sampler that
draws fromp(x|y).

Figure 1 (Left plot) shows the target functionp(x|y) and the
histogram ofN = 10,000 samples generated by the RS algorithm.
The histogram follows closely the shape of the true posterior pdf.

−2.5 −2 −1.5 −1 −2 −1 0

Figure 1: Left plot: The target densityp(x|y) of Example 1 and
the histogram ofN = 10000 samples using RS with the calculated
bound. Right plot: The target densityp(x|y) of Example 2 and
the histogram ofN = 10000 samples using RS with the calculated
bound.

7.2 Example 2: Correlated noise variables

Let x ∈ R with prior densityp(x) = N(x;0,1/2) and consider the
system withy = [y1,y2]

⊤

y1 = exp(x)+ξ1, y2 = exp(−x)+ξ2, (40)

where the vector of noise variables is jointly distributed as
p(ξ1,ξ2) ∝ exp

{
−ξ 2

1 −ξ 2
2 −ρξ1ξ2

}
, so that the joint potential is

V(2)(ξ1,ξ2) = +ξ 2
1 + ξ 2

2 + ρξ1ξ2. Due to the monotonicity and
convexity of of g1 and g2, we can work with a partition ofR
consisting of just one set,B1 ≡R. The system potentialV(x;y,g) =
− log[p(y,x)] becomes

V(x;y,g) =(y1−exp(x))2 +(y2−exp(−x))2

+ρ(y1−exp(x))(y2−exp(−x)).
(41)

If, e.g., y = [2,5]⊤, the state predictions arex1 = log(2) andx2 =
− log(5), thereforeI1 = [− log(5), log(2)]. Using the technique in
Section 4.1, we findr1(x) = 0.78x+ 1.45 andr2(x) = −1.95x+
1.85. We can easily minimize the quadratic potential associated to
these linear functions, namely

V2(x;y,r) = (y1− r1(x))
2 +(y2− r2(x))

2, (42)

to find γ2 = 2.79≤ V2(x;y,r). Using the technique in Section 5,
we readily find an increasing functionR(v) = 2

(2+ρ)v such that

R◦V ≥ V2, henceγ = R−1(γ2) ≤ V(x;y,g). In particular if, e.g.,
ρ =−0.7, we obtainγ = R−1(γ2) = 1.75 (the true global minimum
of the system potential being 2.72). Finally, the likelihood upper
bound isL = exp(−1.75).

Figure 1 (lower plot) shows the target functionp(x|y) (solid
line) and the histogram constructed fromN = 10,000 independent
samples generated by the RS algorithm.

8. CONCLUSIONS

We have proposed new methods for the systematic computationof
the bounds needed for the implementation of rejection sampling
schemes. In particular, we have considered the problem of
drawing from a posterior probability distribution using the prior
as a proposal function to generate candidate samples. In this
setup, the problem consists in finding a tight upper bound for
the likelihood function induced by the available data. We have
briefly reviewed previous results and then extended them to:(a)
provide a more general bounding algorithm that can be used with
a very broad class of noise distributions (including correlated
noise variables) and (b) propose scenario-specific algorithms that
yield more accurate bounds in cases where the noise variables are
described by exponential-multimodal and mixture densities. Two
simple examples have been provided to illustrate the application of
the proposed techniques.
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