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ABSTRACT

When multiple xDSL users coexist in the same network, crosstalk
can become a major performance limiting factor, e.g. in so-called
near-far scenarios. By employing multiple receiver signals, i.e. by
operating in a SIMO (Single Input Multiple Output) rather than the
standard SISO (Single Input Single Output) mode, each user can
estimate and compensate the crosstalk more efficiently, thereby in-
creasing its performance. In this paper, an algorithm is presented
for the optimal allocation of transmit power in these multi-user
SIMO networks. Secondly, since transmitters are usually limited
to integer bit loadings, an optimal bit allocation algorithm is pre-
sented which has the added advantage of being computationally
more efficient than the power allocation algorithm. The focus is on
multi-tone xDSL systems, where the use of multiple tones allows the
transmit spectra to be easily shaped and where near-far scenarios
frequently occur when some of the users are serviced from remote
terminals. Simulation results show that in these cases an improve-
ment of the data rate of 10% is possible by using existing twisted
pairs in SIMO configurations, compared to the standard SISO (Sin-
gle Input Single Output) configuration.

1. INTRODUCTION

To remain competitive with other emerging broadband accesstech-
nologies such as in cable and wireless networks, xDSL operators
must continue to improve their technologies for data transmission
over the existing telephone network. To maximize the capacity of
the twisted pair lines, these should be kept as short as possible so as
to minimize the effect of attenuation. Therefore, xDSL networks are
gradually extended by deploying high data rate connectionsfrom re-
mote terminals (RT’s) close to the end-users. Lines deployed from
an RT can share the same binder as lines deployed from the central
office (CO) for which a lower data rate is acceptable. This, how-
ever, creates a so-called near-far problem. At the point where the
RT deployed lines enter the binder, the signals on the CO deployed
lines have already traveled some distance and are attenuated. Strong
transmit signals on the RT lines then cause crosstalk interference on
the CO lines that can sometimes completely overpower the desired
signal. This far-end crosstalk (FEXT) is a major performance lim-
iting factor.

In typical xDSL networks, the last section of the twisted pairs
is laid out in a loop, going from the cabinet to the end of the street
and then returning to the cabinet. When users are inserted into such
a twisted pair loop, they are actually connected twice to thexDSL
network. Only one of the two resulting twisted pair connections
is used to transmit data, preferably the shortest connection so as to
maximize the achievable data rate. Many of these connections share
the same binder, resulting in a multi-user SISO (Single Input Single
Output) transmission system. An example is shown in figure 1(a),
where a near-far scenario creates considerable crosstalk on the CO
deployed line. In such a scenario, the RT deployed user has toap-
ply some power backoff in order to protect the CO deployed user,
thereby limiting its data rate.

Figure 1(b) shows a multi-user SIMO extension, where an extra
signal is used from the twisted pair that does not carry a transmitted
signal. The extra signal can be used to estimate the crosstalk that is
present on the twisted pair carrying the xDSL signal. This allows

each user to clean up the received xDSL signal, thereby creating a
higher data rate. Since CO deployed lines can then to some extent
mitigate the crosstalk they receive, RT deployed users haveto apply
less power backoff and can thus transmit at higher data rates.

In this paper, an algorithm is presented for the optimal alloca-
tion of transmit power in these multi-user SIMO networks. Sec-
ondly, since transmitters are usually limited to integer bit loadings,
an optimal bit allocation algorithm is presented which has the added
advantage of being computationally more efficient than the power
allocation algorithm.

The paper is organized as follows: section 2 introduces the sys-
tem model that is used and section 3 introduces a method for bit
loading in multi-user SIMO networks. Sections 4 and 5 then present
a method for optimal power and optimal bit allocation in multi-user
SIMO networks. Section 6 presents some simulation results and
section 7 concludes the paper. In the Appendix, proofs are pre-
sented for a number of theorems.

2. SYSTEM MODEL

Most current DSL systems use Discrete Multi-Tone (DMT) mod-
ulation. The available frequency band is divided in a numberof
parallel subchannels or tones. When we assume that all usersin the
network are synchronized, each tone can be treated independently
from other tones, and so the transmit power and the number of bits
can be assigned individually for each tone. This gives a large flexi-
bility in optimally shaping the transmit spectra.

Synchronized transmission for a binder ofN users can be mod-
elled on each tonek by

yk = Hkxk +zk k = 1. . .K. (1)

The vectorxk = [x1
k,x

2
k, . . . ,x

N
k ]T contains the transmitted signals

on tonek for all N users. Hk is an N × N block matrix where
each block element[Hk]i, j = h

i, j
k = [h

i, j
k (1), . . . ,h

i, j
k (I)]T with I

the number of receivers of useri, is a vector containing the chan-
nel coefficient of the transmitter of userj to each of the receivers
of useri. [zk]i = zi

k is the block vector of additive noise on tonek,
containing thermal noise, alien crosstalk, RFI (radio frequency in-
terference),. . . , where each block elementzi

k = [zi
k(1), . . . ,zi

k(I)]
T

contains the additive noise on the receivers of useri. The block
vectoryk contains the received symbols where each block element
[yk]i = [yi

k(1), . . . ,yi
k(I)]

T is a vector with the received signals at
each of the receivers of useri.

We denote the transmit power assn
k , ∆ f E{|xn

k|
2}, the posi-

tive definite noise covariance matrix asNn
k , ∆ f E{zn

kz
nH
k }. The

vector containing the transmit power of usern on all tones is
sn , [sn

1,s
n
2, . . . ,s

n
K ]T . The DMT symbol rate is denoted asfs, the

tone spacing as∆ f .
It is assumed that each user treats interference from other users

as noise. When the number of interfering users is large, the in-
terference is well approximated by a Gaussian distribution. Un-
der this assumption and under optimal receiver processing,the
achievable bit rate of usern on tonek, given the transmit spectra
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(2)
whereΓ denotes the SNR-gap to capacity, which is a function of the
desired BER, the coding gain and noise margin. The data rate and
total power for usern are

Rn = fs∑
k

bn
k and Pn = ∑

k

sn
k (3)

respectively.

3. MULTI-USER BIT LOADING

Formula (2) provides a relation between the transmit powersand bit
rates. Given the transmit powerssi

k, i = 1. . .N of all the users it can
be used to calculate the achievable bit rates. In practice however, it
will be more interesting to be able to calculate the requiredtransmit
powers for all the users, given the bit ratesbi

k, i = 1. . .N. In this
section a procedure is given to calculate these transmit powers.

Using the property det(I+xyH) = 1+yHx, (2) can be trans-
formed into:

bn
k = log2



1+
1
Γ

sn
kh

n,n
k

H

(

Nn
k + ∑

j 6=n

h
n, j
k sj

kh
n, j
k

H
)−1

h
n,n
k


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(4)
Given the bit ratesbn

k, this leads a nonlinear system of equations
that can be solved for the transmit powerssi

k, i = 1. . .N, with for
each user an equation of the form:

Γ
(
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)

= sn
kh
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k
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h
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H
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An iterative procedure is now proposed where each user calculates
an update of its required transmit power based on the transmit pow-
erssj

k(t) of the previous iteration:

sn
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)
(
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h
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)−1
]+

(6)
where [x]+ = max(x,0). Starting from a specific initialization,
this iterative procedure will provide a monotonically decreasing se-
quence of transmit powers, converging to a unique solution,as will
be detailed next.

Theorem 1 (Initialization). The SISO power loading, where each
user only uses one of its receiver signals, provides an upperbound
for the solution of (5).

Intuitively, since optimal receiver processing can alwayschoose
to ignore all but one of its receiver signals, the SIMO case can never
require more transmit power than the SISO case to transmit the
same number of bits. In the SISO case, (5) reduces to a linear sys-
tem of equations that can be easily solved [1]. Reducing the SIMO
case to a SISO case by arbitrarily selecting one of the receiver sig-
nals for each of the users thus leads to a bit loading problem that
will result in a power loading that is an upper bound for the power
loading in the SIMO case. Using this upper bound in formula (6)
results in updated power levelssn

k(t +1) that can never increase. A
formal proof of this theorem is given in Appendix A1.

Theorem 2 (Iteration). Update formula (6) exhibits monotonic be-
haviour: when the transmit powers sj

k(t), j 6= n are decreased, the

updated transmit power sn
k(t +1) cannot increase. Vice versa, when

the transmit powers sjk(t), j 6= n are increased, the updated transmit
power snk(t +1) cannot decrease.

Intuitively, when some of the other users decrease their trans-
mit power, the crosstalk on the user under consideration decreases
and thus this user can decrease its transmit power and still achieve
the same bit rate. A formal proof of this theorem is given in Ap-
pendix A2. Iterating formula (6), when initialized with theSISO
solution, thus results in a decreasing series of transmit powers that
leads to a stationary point of the nonlinear system of equations (5).
Convergence is guaranteed since the transmit powers cannotbe-
come negative.

Theorem 3 (Uniqueness). The nonlinear system of equations (5)
has a unique solution.

A formal proof of this theorem is given in Appendix A3. As a
consequence, each bit loading corresponds to a unique powerload-
ing and vice versa. A summary of the resulting procedure to cal-
culate the power loading corresponding to a given bit loading is
outlined in Algorithm 1.

Algorithm 1 Multi-user bit loading

t = 1,sn
k(t) = SISO solution

while sn
k,n = 1. . .N not convergeddo

t = t +1
for all usersn = 1. . .N do

calculatesn
k(t) with eq (6), based onsj

k(t −1), j 6= n
end for

end while

4. OPTIMAL SPECTRUM BALANCING

The Optimal Spectrum Balancing (OSB) algorithm [1] tacklesthe
spectrum management problem by formulating spectrum manage-
ment as an optimization problem. The objective is to maximize the
data rate of the whole binder, subject to a number of constraints.

First, there is atotal power constraint Pn,tot for each user
n = 1. . .N, indicating that the user’s total power should not exceed
the maximum allowed total transmit power. On top of this constraint
there is aspectral mask constraint sn,mask

k for each tone to guarantee
electromagnetic compatibility with other systems. Secondly, there
is a rate constraint Rn,target for each user. The rate constraint indi-
cates a minimum target data rate required by the user.

Mathematically, the optimization problem is expressed as a
maximization of the sum of the data rates of the usersRn, subject to
the power and rate constraints [1]:

maximizes1...sN ∑N
n=1 Rn

subject to Pn ≤ Pn,tot n = 1. . .N
0≤ sn

k ≤ sn,mask
k n = 1. . .N,k = 1. . .K

Rn ≥ Rn,target n = 1. . .N

(7)

It is observed that (7) is a non-convex problem. Finding the
global optimum requires an exhaustive search over all possible com-
binations of transmit spectra. Because the objective function is cou-
pled over the users and some of the constraints couple the problem
over the tones, this results in an exponential complexity inboth the
number of usersN and the number of tonesK.

In (7) the optimization is carried out over the transmit power
levels of all the users. This procedure is also referred to as‘power
loading’. Alternatively, the optimization can be carried out over the
number of bits transmitted by each user and is then referred to as
‘bit loading’.

OSB uses the dual decomposition technique to make the com-
plexity linear in the number of tonesK. The constraints coupled

1909



ob jk(sk) =
N

∑
n=1

ωn log2det



I+
1
Γ
h

n,n
k sn

kh
n,n
k

H

(

Nn
k + ∑

j 6=n

h
n, j
k sj

kh
n, j
k

H
)−1



−
N

∑
n=1

λnsn
k (10)

over the tones are moved into the objective function by usingLa-
grange multipliersω = [ω1 . . .ωN]T andλ = [λ1 . . .λN]T :

sopt or bopt = argmax
s or b

N

∑
n=1

ωnRn +
N

∑
n=1

λn
(
Pn,tot −

K

∑
k=1

sn
k

)
(8)

subject to 0≤ sn
k ≤ sn,mask

k n = 1. . .N
λn ≥ 0,ωn ≥ 0 n = 1. . .N

In the first term of the objective function, theω ’s weigh the rate
sum over the users. Some users can be given priority over other
users such that by allocating the proper weights, the rate constraints
can be satisfied. Similarly,λ ’s represent costs for power. A larger
λn results in less power allocated to then-th user. Again, allo-
cating proper costs for power results in enforcing the totalpower
constraints. Finding the Lagrange multipliers that enforce the con-
straints is a convex problem and can be solved by using a subgradi-
ent type of search method [2].

For fixed Lagrange multipliersω and λ , (8) is reduced to an
optimization of a sum over tones, which can be performed by opti-
mizing each tone individually:

for k = 1. . .K : sopt
k or bopt

k = argmax
sk or bk

N

∑
n=1

ωnRn
k −

N

∑
n=1

λnsn
k (9)

subject to 0≤ sn
k ≤ sn,mask

k n = 1. . .N
λn ≥ 0,ωn ≥ 0 n = 1. . .N

Due to this decoupling of the spectrum management problem over
the tones, the complexity of solving the problem becomes linear in
the number of tonesK instead of exponential. This is a significant
reduction since in xDSL typically a large number of tones is used.

The per-tone optimization problem in (9) is still a non-convex
problem. This problem is discussed in section 5.

5. EXHAUSTIVE SEARCH

One way to solve the per-tone optimization problem is to exhaus-
tively search over all possible loadings and choose the loading that
maximizes (9) for a specific tone. There are two possible ap-
proaches, namely an exhaustive search over the power loadings and
an exhaustive search over the bit loadings.

5.1 Power loading

To determine the optimal power loading, an exhaustive search over
all possible power loadings is performed. Applying (2) to (9) results
in objective function (10) on tonek. This objective function is
then evaluated for all possible combinations of transmit powers for
the users. Each user can select a transmit powersn

k ∈ S , where
S represents a discretized set of transmit powers chosen overthe
domain[0. . .sn,mask

k ]. With a setS of cardinalityS, this exhaustive
search procedure requiresSN evaluations of the objective function
to find the optimal transmit powers for tonek, that is, the transmit
powers that maximize the objective function.

In practice, the transmit power of xDSL modems can be con-
figured with an accuracy of 0.1 dBm/Hz [3][4][5]. A typical set S

then has a cardinalitySof more than 500.

5.2 Bit loading

To determine the optimal bit loading, an exhaustive search over all
possible bit allocations is performed. The objective function on tone
k is now

ob jk(bk) =
N

∑
n=1

ωn fsb
n
k −

N

∑
n=1

λnsn
k(bk), (11)

where the transmit powersn
k(bk) corresponding to a bit allocation

bk has to be determined using Algorithm 1 from section 3. This
objective function is then evaluated for all possible combinations of
bit loadings for the users. Each user can select a bit loadingbn

k ∈B,
whereB represents the set of allowed bit loadings. With a setB

of cardinalityB, this exhaustive search procedure requiresBN eval-
uations of the objective function to find the optimal bit loading for
tonek, that is, the bit loading that maximizes the objective function.

In practice, xDSL modems can load up to 15 bits on a tone
[3][4][5]. The cardinalityB of the search domain for bit loading
is thus significantly smaller than the cardinalityS of the search
domain for power loading. Performing exhaustive bit loading is
therefore significantly faster than exhaustive power loading, even
with a more complex objective function.

6. SIMULATION RESULTS

In this section, the performance of a 2-user SISO and SIMO system
is compared. The scenario that is considered is shown in figure 1:
one user is serviced by a 4000m CO line, the other by a 1000m
RT line. In the SIMO case, both users have an extra receiver on
the second twisted pair of their local loop. These twisted pairs are
deployed from the remote terminal and are respectively 1500m and
1200m long.

Downstream ADSL2+ transmission is considered over the
shortest pair in the local loop. A line diameter of 0.5mm (24 AWG)
is used and the maximum total transmit power is 20.4 dBm. The
SNR gapΓ is set to 12.9 dB. The tone spacing∆ f = 4.3125 kHz
and the DMT symbol ratefs = 4 kHz.

4000m
CO

3500m
RT

1000m

(a) SISO network

4000m

3500m 1000m

CO

RT

1500m

1200m

(b) SIMO network

Figure 1: SISO (a) and SIMO (b) scenario

Figure 2 shows the rate region for both the SISO and SIMO
case. Looking at the operating point where the CO deployed user
transmits at a data rate of 3 Mbps, the RT deployed user can transmit
at a rate of 27.5 Mbps in the SISO case, whereas in the SIMO case
this is 30 Mbps, i.e. an increase of 9%. Vice versa, if the datarate
of the RT deployed user is kept at 30 Mbps, the CO deployed user
can transmit at 2 Mbps in the SISO case and 2.9 Mbps in the SIMO
case, i.e. an increase of 45%.
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Figure 3: Transmit PSD’s; CO line @ 3 Mbps.

Figure 3 shows a comparison of the transmit PSD’s when the
CO deployed user is transmitting at 3 Mbps. These PSD’s were
obtained using the power loading method described in section 5
with a setS of cardinality 100, equally spaced in dBm/Hz between
-100 dBm/Hz and the spectral mask. To allow the CO deployed user
to transmit at this data rate, the RT deployed user has to apply con-
siderable power backoff in the SISO case. It can only allocate 65%
of its available power budget in order to sufficiently protect the CO
deployed user. In the SIMO case, the RT deployed user can allo-
cate 85% of its available power budget. In the range from 0.4 MHz
to 0.55 MHz, the RT deployed user can now transmit at the spec-
tral mask since the CO deployed user can use its multiple receiver
signals to reduce the effect of the crosstalk.

Figure 4 shows the result when the bit loading procedure of sec-
tion 5 is applied, where in the exhaustive search integer bitloadings
from 0 to 24 are evaluated. For both the SISO and SIMO case, the
CO deployed user is transmitting a 2.9 Mbps. In the SISO case,
the RT deployed user can achieve a data rate of 28.3 Mbps while
using 50% of the available power budget. In the SIMO case, theRT
deployed user can use 80% of its available power budget, leading
to an increased data rate of 31.1 Mbps. Averaged over the exhaus-
tive search, Algorithm 1 required only 2 iterations to converge when
calculating the required transmit powers for a given bit loading.

7. CONCLUSION

In this paper, an algorithm for the optimal allocation of power and
bits in multi-user SIMO xDSL networks has been presented. Op-
timal power allocation can be performed based on the well known
capacity formula for SIMO systems. For optimal multi-user bit al-
location, an algorithm was presented to calculate the required trans-
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Figure 4: Bit loading; CO line @ 2.9 Mbps.

mit powers for a given bit loading. The resulting optimal bitloading
procedure is not only computationally more efficient than optimal
power loading, it is also more relevant in practice since xDSL trans-
mitters are usually restricted to integer bit loadings.

Finally, the simulation results showed that the use of SIMO re-
ceivers in the xDSL network can lead to significant performance
improvements in cases where crosstalk would otherwise be a limit-
ing factor.

APPENDIX

A1. Proof theorem 1

Theorem (Initialization). The SISO power loading, where each
user only uses one of its receiver signals, provides an upperbound
for the solution of (5).

Proof. In the SISO case, update formula (6) reduces to a scalar
equation of the form

sn(t +1) =




Γ
(

2bn
−1
)




α∗ (a)−1 α
︸ ︷︷ ︸

fSISO






−1




+

, (12)

with α the channel transfer coefficient anda the total noise power,
including crosstalk from other users. In the SIMO case with 2re-
ceivers (without loss of generality) the equation is of the form

sn(t +1) =








Γ
(

2bn
−1
)








[α∗β ∗]

[

a b
b∗ c

]−1[ α
β

]

︸ ︷︷ ︸

fSIMO








−1






+

(13)
In this case there is a second channel transfer coefficientβ and the
total noise is characterized by a positive definite Hermitian noise co-
variance matrix, wherea is the total noise power at the first receiver
and equal to the noise power in the SISO case if the transmit powers
of all the users are kept the same,c is the total noise power at the
second receiver andb is the correlation between the noise signals.
x∗ denotes the complex conjugate ofx.

For the SISO case, a stationary point can be easily calculated
by solving a linear system of equations. By showing that for this
stationary pointfSIMO ≥ fSISO, the updated transmit powers for the
SIMO case will not increase:

fSIMO ≥ fSISO

α2 c
ac−|b|2 −2αβ |b|

ac−|b|2 +β 2 a
ac−|b|2 ≥ α2

a

(α|b|−βa)2 ≥ 0

(14)
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sn(t +1) =
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(16)

A2. Proof theorem 2

Theorem (Iteration). Update formula (6) exhibits monotonic be-
haviour: when the transmit powers sj(t), j 6= n are decreased, the
updated transmit power sn(t +1) cannot increase. Vice versa, when
the transmit powers sj (t), j 6= n are increased, the updated transmit
power sn(t +1) cannot decrease.

Proof. Consider the case where one of the original transmit powers
si(t) is changed with an amount∆si(t). Update formula (6) can then
be written assn(t +1) =

[

Γ
(

2bn
−1
)(

hn,nH
(

N′n +hn,i∆si(t)hn,i H
)−1

hn,n
)−1

]+

,

(15)
with N′n = Nn +∑ j 6=nhn, jsj (t)hn, j H the original total noise. Us-
ing the matrix inversion lemma this becomes the scalar equation
(16). It follows that if∆si(t) > 0 (transmit power increases), the
transmit powersn(t +1) also increases.

The termhn,iHN′n−1
hn,i can be further decomposed as

hn,iHN′n−1
hn,i = hn,iH

(

N′′n +hn,isi(t)hn,iH
)−1

hn,i . (17)

Using the matrix inversion lemma this becomes scalar:

hn,i HN′′n−1
hn,i−

hn,iHN′′n−1
hn,i

(

si(t)
−1

+hn,i HN′′n−1
hn,i
)−1

hn,i HN′′n−1
hn,i

= h
n,i H

N
′′n−1

h
n,i

hn,iHN′′n−1
hn,isi(t)+1

≤ h
n,iH

N
′′n−1

h
n,i

hn,iHN′′n−1
hn,isi(t)

= 1
si(t)

≤ 1
|∆si(t)|

(18)
where the last inequality follows from the fact that transmit powers
are not negative and thus a power decrease cannot be larger than
the current power level. Applying this to equation (16) it follows
that if ∆si(t) < 0 and |∆si(t)| < si(t) (transmit power decreases),
the transmit powersn(t +1) also decreases.

The case where more than one of the original transmit powers
sj(t) is increased can be decomposed into a series of 1-user up-
dates. In each of these updates the transmit powersn(t + 1) in-
creases. When more than one of the original transmit powerssj(t)
is decreased, decomposition leads to a series of decreases for the
transmit powersn(t +1).

A3. Proof theorem 3

Lemma. To increase sn by a factorα > 1, at least one of the trans-
mit powers sj of the other users has to be increased by a factor
larger thanα.

Proof. Equation (5) can be written as

sn = Γ
(

2bn
−1
)



h̃n,nH

(

I+ ∑
j 6=n

h̃n, jsj h̃n, jH

)−1

h̃n,n





−1

(19)

whereh̃n,i = Ln−1hn,i with Nn = LnLnH is the prewhitened chan-
nel. Using the singular value decomposition∑ j 6=n h̃n, jsj h̃n, jH =

USUH this becomes

sn = Γ
(

2bn
−1
)(

(UH h̃n,n)H (I+S)−1
UH h̃n,n

)−1
(20)

whereS is diagonal with nonnegative elements.
If all transmit powerssj are multiplied by a factorα > 1, U is

unchanged andS is multiplied byα. Writing this as

sn = αΓ
(

2bn
−1
)
(

(UH h̃n,n)H
(

I

α
+S

)−1

UH h̃n,n

)−1

(21)

it follows that sn is increased by a factor smaller thanα. Or, one
way to increasesn by a factorα, is to increase all transmit powers
sj by a factor larger thanα.

More generally, to increasesn by a factorα, at least one of
the transmit powerssj of the other users has to be increased by a
factor larger thanα. Indeed, if it where sufficient to increase the
transmit powerssj by a factor smaller thanα, these could then be
increased further until they areα times the initial value and then due
to the monotonic behaviour described by theorem 2,sn would be
increased by a factor larger thanα. This contradicts the observation
above that if the transmit powerssj are increased by a factorα, sn

is increased by a factor smaller thanα.

Theorem (Uniqueness). The nonlinear system of equations (5) has
a unique solution.

Proof. Assume there are two solutionsa andb for the nonlinear sys-
tem of equations (5) witha= (s1

a,s
2
a, . . . ,s

N
a ) andb= (s1

b,s
2
b, . . . ,s

N
b )

and assume that (without loss of generality) the users are ordered
such thats1

a/s1
b > 1 ands1

a/s1
b >= s2

a/s2
b >= . . . >= sN

a /sN
b mean-

ing that by moving from solutionb to solutiona the transmit power
s1 increases the most.

This increase ofs1 when moving from solutionb to solutiona is
with some factorα. From the lemma, it follows that at least one of
the other transmit powerssj has to increase with a factor larger than
α which contradicts the fact thats1 increases most. Therefore it is
not possible to have 2 different solutions to the nonlinear system of
equations (5).
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