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ABSTRACT

Automated  analysis  of  ophthalmic  angiography  sequences  
usually  requires  estimating  the  positions  and  appearance  
changes  of  blood  vessels  for  computer  aided  diagnosis.  
Matched filtering is a standard technique for vessel detection  
on several types of retinal images, but is ineffective on se-
quences of fluorescein angiograms largely because that the 
assumption of Gaussian matched filtering can hardly hold in  
retinal  circulation.  In  this  paper  we  define  a  non-linear  
matched filtering using a scaled Gaussian function, which al-
lows the vessels with varying appearance to be detected and 
the appearance changes to be extracted. The preliminary ex-
perimental results obtained from angiographic pairs and im-
ages of a SLO sequence are reported.

1. INTRODUCTION

Detection of known signals transmitted in linear and nonlin-
ear channels is a fundamental problem in signal processing 
theory with a broad range of applications, e.g., communica-
tions, high-energy physics, and biomedical engineering [1- 
3]. Generally the task of signal or object detection is reliant 
on the ability of maximising the signal-to-noise ratio (SNR). 
The classic matched filtering is an optimal filter under the 
assumptions of Gaussian distribution of additive noise and 
of the signal to be detected. The signal shape of a Gaussian 
is used to construct an impulse response,  hence the name 
matched filtering. For many years this has been a standard 
technique for tackling the detection problem.

Over  two  decades  the  matched  filtering  has  been  a 
standard technique for vessel detection from retinal images 
of several types including fluorescein angiograms (FAs), red-
free, and colour fundus images [4-6]. Nowadays it seems still 
an active research topic in the literature [7]. Vessels are ob-
jects with two-sided boundary. “Twin” boundaries of vessel 
are often assumed to run smoothly or parallel to each other, 
although their sharpness may vary considerably. A popular 
detection methodology is  to construct matched filters with 
the Gaussian shape describing vessel cross-sectional profile 
[6-7]. Figure 1 shows two vessel cross-sections in intensity 
extracted from two angiographic images. The filter kernel is 
correlated with each image location to give an estimate of 
likeness of a local region to a vessel. This filtering repeats at 
various orientations and the maximum response is retained 
and thresholded to produce a vessel pattern. Matched filter-
ing can be used not only for detection, but also for measure-

ment of vessel diameters. Clinically width measurement can 
play a valuable role in the study and diagnosis of several sig-
nificant diseases (i.e., hypertension and diabetes), since the 
change in width of vessels within the fundus is believed to be 
indicative of abnormalities in disease states [8]. It has been 
suggested that the width control parameter of a Gaussian pro-
file matched-filter is linearly relating to actual vessel width 
[9].

Retinal photographs of several types are often undergone 
on single subjects producing stereo pairs or sequential tem-
poral  series.  Retinal  vessels  are  visible  as  dark  or  bright 
structures relative to the background, i.e.,  dark in red-free 
photographic images; bright in many FA images. Since Gaus-
sian profiles of the matched filtering are predefined upward 
or downward, either bright or dark patterns of vessel can be 
detected. In practical, negatives of retinal images were gener-
ated in order to adapt to profile models [4].

To acquire FA temporal series by a normal ophthalmo-
scope or angiographic sequences by SLO (Scanning Laser 
Ophthalmoscope), fluorescent dye injections are required be-
fore the angiogram is taken. As dye injections help highlight 
the vascular tree, the brightness of vessels in an angiographic 
sequence of SLO images increases from low to a peak, then 
decreases to original low values [10]. Thus the appearance of 
vessels in intensity varies significantly in retinal circulation, 
i.e.,  changes  from  upward  profiles  (see  Figure  1  (d))  to 
downward profiles (see Figure 1 (b)), then back to upward 
profiles. Gaussian matched filtering in such cases is expected 
to  yield sub-optimal object  detection and false alarm per-
formance, since the limitations of filtering are defined by the 
assumptions under which its optimality can be achieved. We 
are aware that  in many applications,  extending the classic 
matched filtering by approximating non-Gaussian distribu-
tion functions (e.g., the mixture Gaussian model as used in 
[11]) for signal detection is possible. It is therefore interesting 
to devise non-linear matched filtering for vessel extraction on 
angiographic pairs and sequences.

Apart from matched filtering, there is still a wide literat-
ure in retinal vessel detection. However few attentions have 
been  given  to  extracting  vessel  appearance  variations.  By 
contrast, it is of great clinical and theoretical interest to un-
derstand how vessel appearance evolves in SLO sequences 
acquired in retinal circulation [10], [12].

We introduce  a  scaled  Gaussian  distribution function, 
which has been shown promising in natural image denoising 
[13], into the matched filtering in the next section. Then, we 
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discuss the phase invariance of scaled Gaussian distributions, 
which can be sought for by utilising phase congruency and 
can be used to initialise matched filtering. We proceed to ap-
plying the proposed algorithm to estimating vessel positions 
and appearance changes. In Section 3, we present some pre-
liminary experimental results obtained from FA pairs and se-
quences.

 

    
(a)            (b)

     
(c)            (d)

Figure 1 – The cross-section of a bright vessel (a) and its profile in in-
tensity (b); the cross-section of a dark vessel (c) and its profile in in-
tensity (d). The image patches (a) and (c) were cropped from two an-

giographic images respectively.

2. METHODOLOGY

2.1 Concept of Scaled Gaussian Matched Filtering

Let us consider that a random vector Α  can be approx-
imated by the product of a zero-mean Gaussian vector  Η  
and an independent positive scalar random variable γ :

Η=Α γ
d

, (1)

where d
=  indicates equality in distribution [13]. Suppose the 

amplitudes of Α are corrupted by additive noise:

nW+Α=Υ ,

where nW  is zero-mean Gaussian noise; Υ  is the observed 
vector. Without loss of generality, the vector Υ  is expressed 
as follows:

nW+Η±=Υ γ , (2)
where “ + ” or “-” is dependent on upward or downward sig-
nals (i.e., bright or dark object relative to background). As an 
approximation, Η  and nW  are assumed to be decorrelated. 

Classic matched filters constructed with Gaussian can be 
viewed as a special case where the multiplier takes the value 

1.0. Rather than a Gaussian shaped function, the object to be 
detected is characterised by the product of an independent 
scalar random variable  γ  and a Gaussian function  Η . Ap-
parently a scaled Gaussian vector is a real even signal. Using 
the Fourier transform we can readily see that the vector is 
also a  zero-phase  signal.  The phase of  a  downward zero-
phase signal is zero for all frequency components contained 
within the signal, and the phase of upward is π . That is, the 
phase is invariant with respect to the signal magnitude (i.e., 
the multiplier).

Our  observation  partly  motivates  us  to  locate  scaled 
Gaussian signals by exploiting Fourier phase information. To 
this end, the Kovesi phase congruency model of feature de-
tection [14] is utilised. Specifically the Fourier series expan-
sion of a 1-D signal is 

))(cos()( xAxI nn n φ∑= ,

where nφ  is the phase offset of the nth component of the ex-

pansion, and  nA  is the amplitude. Kovesi proposed to use 
the following function for feature detection [14]: 
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where )(xφ  is a weighted mean phase angle of all the Fouri-

er terms at the point ( x ) being considered; the term S  is a 
noise threshold; ε  is a small constant for avoiding division 
by zero. The symbol  ⋅  denotes that the enclosed quantity is 
equal to itself when its value is positive, and zero otherwise. 
This  function has  been shown effective  in  edge detection 
[14-15]. Herein we extend it for zero-phase signal detection 

by replacing the item )(xφ  with a specific phase sφ  ( 0=sφ  

or π ). We have
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The derived function is to calculate the alignment degree 
of the phases of all frequency components with sφ , 0=sφ  

for a downward signal and  πφ =s  for upward. It gives a 
normalised measure of the alignment degree, so as to be in-
variant to the signal magnitude.

Once scaled Gaussian signals are detected, the multiplier 
is sought by minimising the Euclidean distance between the 
scaled  Gaussian function  and data  with  high phase  align-
ment, using the Levenberg-Marquardt algorithm. We have an 
initial estimator for the multiplier:

2)( ωσγ −ΥΥ=Υ
N

T , (4)

where N  is the dimensionality of vectors Α ,  Η , nW , and 
Υ . An estimate of the multiplier is adjusted based on the ini-
tial estimator (4) until the minimum distance is approxim-
ated. 
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2.2 Vessel Extraction
Herein vessel cross-sections in intensity are modelled by 

a scaled Gaussian function - the product of an independent 
scalar random variable ( γ ) and a Gaussian shaped function (
Η ). The scalar variable implies in the appearance of a vessel 
being observed. Hence the values of  γ  extracted from the 
same cross-section across an angiographic sequence, reflect 
the interval variation of vessel brightness induced by dye in-
jection.

Vessel detection is achieved by assessing the alignment 
of Phases zero and π . The computation of applying the de-
rived function of phase alignment on 2-D images follows the 
implementation of the Kovesi phase congruency model. We 
apply  the  function  on  data  from  oriented  2-D  log-Gabor 
wavelets.  Empirically  we chose  six  orientations  with four 
resolution levels increasing the wavelength by 0.2 octave. In 
the scale of filter support, a resultant image is a map of the 
alignment degree on an input image. The region with high 
alignment is sought to coincide with vascular structures to be 
detected.

The multiplier is optimally obtained by maximising the 
cross-correlation  of  a  local  vessel  detection  and  a  scaled 
Gaussian. Specifically, the optimisation step repeats at 24 dif-
ferent orientations, and the value corresponding to the max-
imum cross-correlation is  taken. A notorious problem  for 
many vessel  detection  methodologies  is  that,  some vessel 
segments show a central light reflex due to certain imaging 
or pathologic conditions. In such cases, the phase invariance 
of any cross-section in intensity is expected to retain, but it 
would be difficult to approximate optimal values of the mul-
tiplier. As a first approximation, for a upward signal its Four-
ier components with zero phase are not taken into the optim-
isation, and for a downward signal its Fourier components 
with π  phase are discarded.

In contrast to the classical filtering, the scaled Gaussian 
matched filtering technique is expected to be capable of es-
timating the positions and appearance changes of blood ves-
sels. Briefly we give a summary of algorithm:

• Apply  (3)  on  each  FA image  producing  a  phase 
alignment map; 

• Apply thresholding on the phase alignment produ-
cing a detection map;

• Perform optimisation to find optimal values of the 
multiplier.

3. EXPERIMENTS

A pair of cropped FA images acquired from the same 
subject at different time are given in Figures 2(a) and 2(c), 
and their zero-phase detection results are given in Figures 
2(b)  and 2(d)  respectively.  In  the  original  FA images,  the 
central light reflex is obvious on some vessel segments. The 
alignment degrees shown in Figure 2(b) and 2(d) take values 
between 0 and 1.  From the results we readily observe that 
high alignment degrees of local Fourier components are de-

tected coinciding with the positions of the vasculature trees. 
Observation of the result in Figure 2(b) also supports that 
high alignment degrees retain even if the central light reflex 
is present.  

For the purpose of comparison, the classical matched fil-
tering  technique  ([6]  and  [7])  was  applied  to  the  image 
shown in Figure 2(a). Its detection result and our detection 
result are given in Figures 3(a) and 3(b) respectively. We no-
tice here that, unlike the Gaussian matched filtering where 
the large vessel segments are partially detected, the proposed 
algorithm extracts the large vessel segments in the original 
image and the diameters of the detections show good agree-
ment with visual inspections. 

 

(a) (b)

(c) (d)

Figure 2 – FA images (a) and (c) acquired from one subject at differ-
ent time; and their detection results (b) and (d) of zero phase.

Careful observation of the original image in Figure 2(c) 
shows that a few vessel segments are dark relative to the sur-
rounding background, while others are bright. In the presence 
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of both dark and bright vessels, it is necessary to look for 
both zero phase and  π  phase. Figure 4 shows the corres-
ponding detection result of π  phase. Further study on fusing 
detection results of zero and π  phases is needed.

A cropped original SLO image is given in Figure 5(a), 
and the detection result of zero-phase is given in Figure 5(b). 
For the purpose of comparison, the classical matched filter-
ing ([6] and [7]) was applied to the same image, and the cor-
responding filtered image is given in Figure 5(c). We notice 
here that the classical matched filtering is ineffective, largely 
because that the SLO image is fairly noisy. By contrast, the 
result of zero-phase detection delineates the vasculature tree. 
We may conclude that the method of zero-phase detection is 
noise-robust. 

(a) (b)

Figure 3 – Gaussian matched filtering result (a) and Scaled Gaussian 
matched filtering result (b) on the image of Figure 2(a).

Figure 4 – Detection result of π  phase on the image of Figure 2(c).

(a)

(b)

(c)

Figure 5 – A cropped SLO image (a) and the detection result of zero 
phase (b). The corresponding detection result (c) of the Gaussian 

matched filtering.
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The scaled Gaussian matched filtering was performed on 
the  cross-section  illustrated  in  Figure  1(c),  across  an-
giographic images of a SLO sequence.  The material of this 
experiment includes 35 images in time order taken from the 
frames of the sequence. These images have been registered 
beforehand. In this work a universal threshold value (0.38) 
on phase alignment was used. The values of the multiplier 
obtained were recorded and illustrated in Figure 6, reflecting 
the dye filling progress. We can see the proposed technique 
provides an interface to illustrate the dye filling progress, i.e., 
the  time to  peak.  We expect  to  extend  the  interface  to  a 
powerful visualisation tool.
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Figure 6 – The values of the multiplier at the cross-section as shown 
in Figure 1(c), and calculated from a SLO sequence. 

4. DISCUSSION

We have presented a new non-linear matched filtering 
technique for the understanding of FA pairs and sequences. 
The novelty of this work is that a scaled Gaussian function 
for modelling the distribution of signals is proposed to rein-
force  the  matched  filtering,  and  the  phase  invariance  of 
scaled  Gaussian is  utilised  for  the  detection purpose.  The 
proposed algorithm technique retains  the advantage of  the 
popular matched filtering, and may have gained the follow-
ing strengths attractive for retinal image sequences: 

• dark and bright vessels with varying appearance can 
be detected; 

• appearance changes can be extracted;
• noise-robustness;
• minimal operator intervention partly thanks to phase 

congruency. 

Additionally, the proposed algorithm may be useful for 
vessel detection on colour fundus images, since the filter ker-
nel used is based on the one which has been shown effective 
on colour fundus images. It is interesting to further investig-
ate this. Presently we are investigating on how to utilise the 
aperture of a scaled Gaussian for wide measurement, and ex-
pect to extend it to the images where both dark and bright 

vessels are present simultaneously. The driving application is 
super-resolution of angiographic images of a SLO sequence 
acquired during retinal circulation.
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