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ABSTRACT

A modification of the new edge-directed interpolation
method is presented. The modification eliminates the predic-
tion error accumulation problem with adopting a modified
training window structure, and further extends the covari-
ance matching into multiple directions for suppressing the
covariance mis-match problem. Simulation results show that
the proposed method achieves remarkable subjective per-
formance in preserving the edge smoothness and sharpness
among other methods in literature. It also demonstrates con-
sistent objective performance among a variety of images.

1. INTRODUCTION

Image interpolation is a process that estimates a set of un-
known pixels from a set of known pixels in an image. High
quality interpolated images are obtained when the pixel val-
ues are interpolated according to the edges of the original im-
ages. A number of edge-directed interpolation (EDI) meth-
ods that make use of the local statistical and geometrical
properties to interpolate the unknown pixel values are shown
to be able to obtain high visual quality interpolated images
without the use of edge map [1–6]. TheNew Edge-Directed
Interpolation (NEDI) method in [1] models the natural im-
age as a second-order locally stationary Gaussian process
and estimates the unknown pixels using simple linear pre-
diction. A covariance of the image pixels in a local block
(training window) is required for the computation of the pre-
diction coefficients. Compared to the conventional methods,
e.g. the bilinear method or the bicubic method, the NEDI
method preserves the sharpness and continuity of the inter-
polated edges. However, this method considers only the four
nearest neighboring pixels along the diagonal edges and not
all the unknown pixels are estimated from the original image,
which degrades the quality of interpolated image. Moreover,
the NEDI method has difficulty in texture interpolation be-
cause of the large kernel size, which reduces the fidelity of
the interpolated image, thus lower thepeak signal-to-noise
ratio (PSNR) level. Markov random field (MRF) model-
based method [2] models the image with MRF model and
extends the edge estimation in other possible directions by
increasing the number of neighboring pixels in the kernel.
MRF model-based method is able to preserve the visual qual-
ity of the interpolated edges and also maintain the fidelity of
the interpolated image, thus enhances the PSNR level. The
more accurate the MRF model, the better the efficiency of
the MRF model-based method. TheImproved New Edge-
directed Interpolation(iNEDI) method in [4] modifies the
NEDI method by varying the size of the training window ac-
cording to the edge size and achieves better PSNR perfor-
mance. TheIterative Curvature Based Interpolation(ICBI)
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method in [6] considers the effects of the curvature continu-
ity, curvature enhancement and isophote contour. By proper
weighting between these three effects, the ICBI method pro-
duces perceptually pleasant image. However, similar to the
iNEDI method, the performance depends on the chosen pa-
rameters. This paper will present an improvement of the
NEDI method, namely theModified Edge-Directed Interpo-
lation (MEDI), which is an extension of our work in [7]. We
proposed a different training window to mitigate the interpo-
lation error propagation problem [7]. Later on, we found the
similar training window has been proposed in theImproved
Edge-Directed Interpolation(IEDI) [3]. The enlarged train-
ing window will inevitably increase the interpolation error
due to the worsen covariance mis-match problem, thus the
interpolation results obtained by IEDI is shown to be worse
than that of NEDI in most cases. As a result, we propose
to apply multiple training windows to mitigate the covari-
ance mis-match problem. The performance of the proposed
method is verified by extensive simulations and comparisons
with other EDI based interpolation methods, including the
NEDI, the IEDI, the iNEDI and the ICBI methods. The sim-
ulation results show that the proposed method generates high
visual quality images and demonstrates a highly consistent
objective performance over a wide variety of images.

2. REVIEW OF THE EXISTING METHODS

Consider the interpolation of a low-resolution imageX (with
sizeH ×W) to a high-resolution imageY (with size 2H ×
2W) such thatY(2i,2 j) = X(i, j). This is graphically shown
in Figure 1, where the white dots denote the pixels fromX.
The NEDI method is a two-step interpolation process which
first estimates the unknown pixelsY2i+1,2 j+1 (gray dot in
Figure 1(a)), then the pixelsY2i,2 j+1 andY2i+1,2 j (black dot
in Figure 1(b)). The NEDI method makes use of a fourth-
order linear prediction to interpolate unknown pixel from the
four neighboring pixels, e.g.Y2i+1,2 j+1 is estimated from
{

Y2i,2 j ,Y2i+2,2 j ,Y2i+2,2 j+2,Y2i,2 j+2
}

as

Y2i+1,2 j+1 =
1

∑
k=0

1

∑
ℓ=0

α2k+ℓY2(i+k),2( j+ℓ) (1)

To simplify the notations, and without ambiguity, the six-
teen covariance values and four cross-covariance values ob-
tained by the four pixels in eq.(1) are enumerated to beRkℓ
and rk with 0 ≤ k, ℓ ≤ 3, respectively, as shown by the la-
bels next to the arrows in Figure 1(a). For examples,R03 =
E

[

Y2i,2 jY2i,2 j+2
]

and r0 = E
[

Y2i,2 jY2i+1,2 j+1
]

. The optimal
prediction coefficients setα can be obtain as [1]

α = R
−1
yy ry, (2)

whereα = [α0, · · · ,α3], Ryy = [Rkℓ] and ry = [r0, · · · , r3].
The interpolation is therefore locally adapted toRyy andry.
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Figure 1: Illustration of the training windows and local
blocks of (a) the first step and (b) the second step of the NEDI
method.

However, the computation ofRkℓ and rk would require the
knowledge ofY2i+1,2 j+1 which is not available before the in-
terpolation. This difficulty is overcome by the “geometric
duality” property, where the covariance ˆr0 (circled in the fig-
ure) estimated from the low-resolution training window is
applied to replace the high-resolution covariancer0 as indi-
cated by the arrow in Figure 1(a). In a similar manner, the co-
variancerk are replaced by ˆrk with 0≤ k≤ 3. The unknown
pixel Y2i+1,2 j+1 is therefore estimated by eq.(1) witĥRkℓ and
r̂k. The remaining pixelsY2i,2 j+1 andY2i+1,2 j can be obtained
by the same method with a scaling of 21/2 and a rotation fac-
tor of π/4 as shown in Figure 1(b). A hybrid approach is
adopted, where covariance based interpolation is applied to
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Figure 2: Illustration of the training window and local block
of the second step of the MEDI method.

edge pixels (pixels near an edge) when the covariance ma-
trix has full rank, and the energy of the covariance matrix is
higher than a predefined thresholdε, otherwise bilinear in-
terpolation is applied to non-edge pixels (pixels in smooth
regions). However, prediction error is unavoidable in the in-
terpolated pixels. The NEDI method propagates the errors
from the first step to the second step because the estimation
in the second step depends on the result of the first step (the
black dot is estimated from the gray dots as shown in Fig-
ure 1(b)). To cater this problem, a modified training window
structure has been developed independently in [3, 7]. The
training window in the second step of the NEDI method for
the interpolation ofY2i+1,2 j andY2i,2 j+1 is modified to form a
sixth-order linear prediction with a 5×9 training window as
illustrated in Figure 2, where

Y2i+1,2 j =
1

∑
k=0

1

∑
ℓ=−1

α2k+ℓY2(i+k),2( j+ℓ). (3)

The coefficientsα2k+ℓ can be estimated from eq.(2) with
the auto-covariance matrixRyy that contains thirty-sixRkℓ,
and cross-covariance vectorry with six elements ofrk with
0 ≤ k, ℓ ≤ 5. The high-resolution covariances are then re-
placed by the low-resolution covariances ofR̂yy andr̂y using
geometric duality property. The rest of the unknown pixels
Y2i,2 j+1 can be estimated in a similar manner with a sixth-
order linear prediction as that for pixelsY2i+1,2 j but with the
training window rotated byπ/2.

However, both the NEDI method and the IEDI method
suffer from the covariance structure mis-match problem as
illustrated in Figure 4, where the white box is the geomet-
ric low-resolution training window, the gray box is the cor-
responding high-resolution local block and the dash lines
“AB” and “CD” indicate the image edges in the local block.
Figure 4(a) and (b) show the training windows adopted in
the NEDI method and the IEDI method. Clearly, the geo-
metric duality property is satisfied as shown in Figure 4(a).
However, it is apparent that the geometric duality property
is not satisfied for the edge “CD” as shown in Figure 4(b),
and thus causes covariance mis-match. To cater this prob-
lem, we propose to consider all the four locations of the
low-resolution training window and the high-resolution local
block as shown in Figure 4(b)–(e).

3. THE PROPOSED METHOD: MEDI

To reduce the covariance mis-match problem, multiple low-
resolution training windows are used. Figure 4(b–e) illus-
trates the four training windows applied in the first step of
the proposed method. The NEDI and the IEDI methods con-
sider the training window shown in Figure 4(b) only and
the training window is centered at pixelY2i,2 j . Compared
with the NEDI method, the proposed MEDI method will
consider three more training windows centered atY2i,2 j+2,
Y2i+2,2 j andY2i+2,2 j+2, as illustrated by Figure 4(c), (d) and
(e) respectively. The covariance signal energy of all train-
ing windows will be compared. The higher the energy in
the training window, more likely the edge exists. The one
contains the highest energy will be applied to the linear pre-
diction in eq.(1). In this example, training window in Fig-
ure 4(c) is applied for the prediction. Similarly, the MEDI
method considers six training window candidates in the sec-
ond step, with such windows centered atY2i,2 j−2, Y2i,2 j ,
Y2i+2 j+2, Y2i+2,2 j−2, Y2i+2,2 j andY2i+2,2 j+2 (see Figure 2 for
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the pixel locations). The proposed method further adopts a
hybrid framework, where the pixels at the edge region are
interpolated by covariance-based method and the pixels at
smooth region are interpolated by bilinear interpolation.If
the variance of the pixels in the local block is larger thanε,
the unknown pixel is regarded to be part of an edge, thus
covariance-based method is applied.

4. RESULTS AND DISCUSSIONS

The proposed algorithm has been compared with other inter-
polation algorithms in literature including bilinear interpola-
tion, the NEDI method [1], the IEDI method [3], the iNEDI
method [4] and the ICBI method [6]. The proposed algo-
rithm was implemented in Matlab running on a PC with Intel
Pentinum(R) Duo Core 3 GHz CPU and 1GB DDR Ram. For
comparison purpose, the IEDI method is also implemented
in Matlab. Noted that heat diffusion refinement in the IEDI
was bypassed because the investigation was mainly focused
on the covariance mis-match problem. For bilinear interpola-
tion, the built-in function in Matlab was used. For the rest of
the methods, Matlab source code available on authors’ web-
sites were used [8–10]. The default function parameters of
iNEDI and ICBI were applied. The thresholdε=48 was ap-
plied in the MEDI, NEDI and IEDI methods. The interpo-
lation of the image boundaries was achieved by pixel exten-
sion. Both synthetic image and natural images were tested
with different methods.

The original test image was first direct downsampled by
a factor of two, that is from 2H×2W to H×W. The down-
sampled images were then expanded to their original sizes
by using different interpolation methods. The interpolated
images were compared with the original images objectively
by measuring the PSNR and thestructural similarity index
(SSIM) [11]. The PSNR andSSIM of all test images are
summarized in Table 1 and 2. ThePSNRhas been widely
used to measure the distortion of the grayscale images after
processing and given by

PSNR = 20log10

(

255√
MSE

)

, (4)

MSE =
1

2H ×2W

2H−1

∑
i=0

2W−1

∑
j=0

Z2
i, j . (5)

Zi, j = |Li, j −Yi, j |. (6)

whereLi, j andYi, j are the pixels in the original image and the
interpolated image at location(i, j), respectively. Another
objective measurement is theSSIM. The higher theSSIM
value indicates there is a greater structural similarity between
the original image and the interpolated image. ThePSNRand
SSIMof synthetic image “letter Y” are summarized in Ta-
ble 1. The bilinear method shows the worstPSNRandSSIM
values because of both the blurring effect and aliasing prob-
lem. The ICBI method shows the highestPSNRandSSIM
values, because the synthetic image contains only high con-
trast edges, which are beneficial to isophate-based method.
Among all the statistically optimal methods, the proposed
method shows the highestPSNRandSSIMvalues because
it does not only eliminate the error propagation problem, but
also the covariance mis-match problem.

Besides the synthetic image, comparison has been per-
formed using natural images, where thePSNRandSSIMre-
sults are summarized in Table 2. The bilinear method al-
ways shows the lowestPSNRandSSIMvalues. ThePSNR

Method PSNR SSIM
MEDI 22.46 0.9352

Bilinear 19.75 0.8852
NEDI [1] 22.19 0.9311
IEDI [3] 22.26 0.9342

iNEDI [4] 22.19 0.9289
ICBI [6] 22.88 0.9456

Table 1: ThePSNRandSSIMof test image “Letter Y” for
different interpolation methods.

andSSIMperformance are observed to be image dependent,
and there is no clear winner between the proposed method,
the NEDI method, the iNEDI method and the ICBI method.
Consider the image with less texture, like “grayscale F16”,
the ICBI method achieves the highest PSNR, and the iNEDI
method achieves the second highestPSNR, then the proposed
method and finally the NEDI method. However, for texture
rich image, like “grayscale baboon”, a reverse order is ob-
served. Furthermore, the highestPSNRdoes not always im-
ply the highestSSIMor vice versa. For example, consider
the test image “boat”. Although the NEDI method achieves
the highestPSNR, it only achieves the fourth highestSSIM
value. However, it is observed that the proposed method and
the IEDI method demonstrate averagePSNRandSSIMper-
formance in a variety of images.
4.1 Subjective Test

Besides the objective measurement, subjective test was per-
formed to evaluate the visual perception of the interpolated
images. Error images (i.e.Zi, j in eq.(6)) are used as an evalu-
ation tool. To obtain a fair comparison, the intensity of theer-
ror images are normalized with the same normalization factor
among all interpolation method, and thus not all error images
have their pixel values span from 0 to 255. Figure 5 shows
the original image, interpolated images and the error images
of test image “letter Y”. It is observed that the MEDI inter-
polated image is perceptually more pleasant among all the
interpolated images, because of the continue and smooth di-
agonal edges. It is more vivid by observing the error images.
The white region concentrated along the edges in bilinear in-
terpolated image because of the blurring problem. The white
region is comparatively less obvious in the error images of
the iNEDI and ICBI methods. The white region is dispersed
in the NEDI case because the edges are interpolated by co-
variance matching, thus minimizing the error along edges.
The white region is even more dispersed in the IEDI case,
especially along the diagonal edges, because it fully utilizes
the low resolution pixels with an enlarged training window.
For the MEDI case, the white region is observed to be even
dimmer and segmented along the diagonal edges, because
the proposed method accurately adapts the edge orientation
by covariance matching in multiple directions.

Figures 6 and 7 show the pixel intensity maps of the orig-
inal image and the interpolated images of region A and re-
gion B in Figure 5, respectively. There is a sharp transition
from 0 to 255 across the vertical edge of the original im-
age in region A as shown in Figure 6. All the vertical edges
are blurred after interpolation and the effect is the least sig-
nificant for the iNEDI interpolated image, where the tran-
sition spanned 3 columns only. The blurring effect is the
most vivid for the bilinear interpolated image. Halo effect
is observed in the ICBI interpolated image. Similar interpo-
lation performance are observed from the proposed method,
the NEDI method and the IEDI method because these meth-
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Image Resolution MEDI Bilinear NEDI [1] IEDI [3] iNEDI [4] ICBI [6]
Enhancement PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Grayscale baboon 256×256⇒512×512 23.21 0.7123 22.27 0.6320 23.58 0.7361 23.24 0.7134 22.90 0.7280 22.47 0.7138
Bicycle 256×256⇒512×512 20.33 0.7790 18.56 0.6848 20.44 0.7726 20.41 0.7768 20.08 0.7812 18.90 0.7280

Boat 256×256⇒512×512 29.69 0.8911 27.06 0.8359 29.81 0.8910 29.75 0.8915 29.70 0.8920 29.21 0.8828
Grayscale F16 256×256⇒512×512 31.46 0.9326 28.34 0.8958 31.40 0.9308 31.46 0.9327 31.96 0.9375 32.44 0.9411

Table 2: ThePSNRandSSIMof interpolated grayscale images by different interpolation methods.

ods using the same training window structure. Furthermore,
the covariance structure is identical in all cases because it is
a perfect vertical edge in the synthetic image. The outstand-
ing performance of the proposed method is emphasized in
the study of the intensity maps for region B as shown in Fig-
ure 7, which contains a diagonal edge. The interpolated edge
of the bilinear method is the most blurred. Halo effect is also
observed in the ICBI interpolated image. It is observed that
the IEDI method achieves sharper diagonal edges than that
of the NEDI method because a modified training window is
applied in the second step of the IEDI method, which fully
utilizes the original image information. The iNEDI method
results in sharp and smooth edge but the edge continuity is
not close to that of the original image. The proposed method
forms sharp and smooth edge, the interpolated edge structure
is highly close to the original edge, and thus shows the best
subjective performance among different methods.

Figure 3 shows the simulation results for the test image
“bicycle” with part of the original and interpolated images
being zoomed-in. Consider the enclosed edges, the proposed
method and the IEDI method show the most outstanding
performance in preserving the continuity, smoothness and
sharpness of the interpolated edge. The proposed method
further preserves the image structure even at the edge ter-
mination (enclosed with rectangular box). This verifies that
the proposed method is effective in eliminating the covari-
ance mis-match problem. Therefore, though both the pro-
posed method and the IEDI method show comparable ob-
jective performance, the proposed method outperforms IEDI
in preserving image structure because of the use of multiple
training windows.

5. CONCLUSION

An improved statistical optimized interpolation method, the
Modified Edge-Directed Interpolationis presented. The pro-
posed method overcomes the existing problems of new edge-
directed interpolation by considering multiple training win-
dow and modified training window structure. The covariance
mis-match problem is mitigated and the prediction error ac-
cumulation problem is eliminated. The performance of the
proposed method has been verified with extensive simulation
and comparison with other benchmark interpolation meth-
ods. Simulation results showed that the presented method
has achieved outstanding perceptual performance with con-
sistent objective performance that is independent to the im-
age structure.
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Figure 4: Illustration of (a) the single training window of the
NEDI method with edge “AB” and (b–e) the four training
windows of the MEDI method with edge “CD”.+,-,./012345
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Figure 5: Original image, interpolated images and error im-
ages of “letter Y” (Resolution enhancement from 100×100
to 200×200).

:;<=<>?@
A<@<>B?;
CDEF

GDEF

FDEF
<CDEF
FHAF

Figure 6: Pixel intensity maps of the original image and in-
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Figure 7: Pixel intensity maps of the original image and in-
terpolated images of “letter Y” in region B.
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