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ABSTRACT
Fast QR-decomposition based recursive least-squares (FQRD-

RLS) algorithms are known for their good numerical properties and
low computational complexity. However, they have so far notbeen
used in active noise control (ANC) because the general implementa-
tion would require multiple-input multiple-output (MIMO)FQRD-
RLS algorithms, which are currently not available in the technical
literature. Another reason is the lack of an explicit weightvector
update equation in the FQRD-RLS algorithms, which preventstheir
use in structures where a copy of the coefficients is filteringa dif-
ferent input sequence than that of the adaptive filter, e.g.,the modi-
fied filtered-x ANC (MFX-ANC) structure. In this paper, we derive
a MIMO-FQRD-RLS algorithm based on backward prediction er-
ror updates. The proposed algorithm is applied to a multichannel
MFX-ANC structure. We show how to avoid the explicit use of
the weight vector in the MFX-ANC structure by reproducing the
filtered-x signal from the internal variables of the proposed algo-
rithm. Simulation results confirm that the learning curves of the
MIMO-FQRD-RLS algorithm are identical to those obtained bythe
QRD-RLS algorithm.

1. INTRODUCTION

The family of QR-decomposition (QRD) based least-squares (LS)
adaptive filters are known for fast convergence and stability in fi-
nite precision. Several low complexity versions of the QRD-LS
algorithm have been derived in past, e.g., the QRD least-squares
lattice and the fast QRD recursive least-squares (FQRD-RLS) algo-
rithms [1]. The main disadvantage of these low-complexity versions
is that they lack an explicit weight vector term, limiting themselves
to problems seeking an estimate of the output error signal. It was
recently shown in [2, 3] how to identify (or extract) the transversal
weights embedded in the FQRD-RLS variables, thus enabling their
use for system identification. Furthermore, in [4], it was shown how
to use the FQRD-RLS variables for fixed filtering, e.g., burst-trained
equalizers, without explicit knowledge of the associated weight vec-
tor.

Despite the recent progress, there are still applications where
the available FQRD-RLS algorithms cannot be directly employed.
To the best of our knowledge, it does not exist in literature an
FQRD-RLS algorithm that takes multiple inputs and generates mul-
tiple outputs, i.e., a MIMO-FQRD-RLS algorithm. In this paper
we develop a MIMO version of the numerically robust FQRD-RLS
algorithm based on the update of backward prediction errors[5].
The new algorithm is applied to the problem of multichannel ac-
tive noise control (ANC) using the modified filtered-x (MFX) struc-
ture [6].

In the MFX-ACN structure, a copy of the adaptive filter weights
is used for filtering a different input sequence than used foradap-
tation. The resulting output sequence is referred to as the filtered-x
signal. By extending the ideas in [4] we may reproduce the filtered-
x signal exactly without the explicit knowledge of the MIMO-
FQRD-RLS filter weights. This should be compared with the lat-
tice based FQRD algorithm used for ANC in [6], which solved this

Primary path

+
−Adaptive filter Secondary path

S(z)

xI (k) dM(k)

eM(k)yM(k)yJ(k)
∑

H(z)

w

Figure 1: A simplified illustration of an ANC system.

problem by explicitly identifying the required coefficientvector. To
reduce the complexity of such solution, it was suggested in [6] to
identify and copy the weights on a periodical basis (i.e., not every
iteration). Our approach avoids such an approximate solution while
still maintaining a low computational complexity.

Simulation results are provided in order to validate the proposed
method. A QR-decomposition based RLS algorithm is used as a
benchmark. The total number of multiplications for each algorithm
are listed in a table.

2. ACTIVE NOISE CONTROL SYSTEM BASICS

This paper considers the MFX structure detailed in [6]. In the fol-
lowing we describe the basic multichannel ANC setup and its asso-
ciated least-squares solution. Thereafter, we provide thenecessary
QRD-RLS equations and illustrate how the MFX-ANC structure
becomes the natural implementation for QRD-RLS algorithms.

2.1 Simplified ANC setup and least-squares solution

The concept of a simplified multichannel ANC is shown in Fig. 1.
An ANC cancels the unwanted noise by generating an anti-noise
signal. The noise signal to be canceledxI (k) ∈ R

I×1 is obtained
by the ANC system usingI “reference microphones”. The ANC
system processes the reference signal to generate the anti-signal of
the referenceyJ(k)∈R

J×1 usingJ actuators, where thej th element
(output) is given as

y j (k) =
I

∑
i=1

xT
i (k)wi, j , (1)

wherexi(k) = [xi(k) · · · xi(k−L+1)]T ∈R
L×1 is the input vector of

the ith channel, andwi, j ∈ R
L×1 is the coefficient vector that links

the ith input to j th output.
TheM “error microphones” pick the de-noised signal and serve

as a feedback to the ANC system. The path between the reference
microphone and the error microphone is called theI ×M-MIMO
primary pathH(z), while the path between the speakers and the
error microphone is called theJ×M-MIMO secondary pathS(z).
The output of the primary path isdM(k), where themth output is
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given as

dm(k) =
I

∑
i=1

x̄T
i (k)hi,m+nM(k) (2)

where where ¯xi(k) = [xi(k) · · · xi(k−Lp + 1)]T ∈ R
Lp×1 is the in-

put vector of theith channel, , andhi,m ∈ R
Lp×1 are the coefficients

of the primary path between theith input andmth output, assumed
stationary for this discussion, andnm(k) is the additive noise. Simi-
larly, the output of the secondary path isyM(k) ∈ R

M×1, where the
mth output is

ȳm(k) =
J

∑
j=1

yT
j (k)s j,m, (3)

wherey j = [y j (k) · · · y j (k−Ls+1)] ∈ R
Ls×1, andsi,m(k) ∈ R

Ls×1

are the coefficients of the secondary path between thej th input from
the adaptive filter andmth output. Finally, the error signal at theM
error sensors is given by,

eM(k) = dM(k)−yM(k) (4)

whereyM(k) = [ȳ1(k) · · · ȳM(k)]T ∈ R
M×1. We see from (4) that

signaleM(k) measured by the error microphone array in Fig. 1 is the
result of an acoustic subtraction of the desired signal vector dM(k)
and the output of the secondary pathyM(k). Let the adaptive filter,
after convergence, and the secondary path in Fig. 1 be lineartime-
invariant systems. Then the secondary path can be placed before the
adaptive filtering block without any loss of generality. As aresult,
the multichannel input signalxI (k) is filtered with the secondary
path before being used for the adaptive filtering. This can becarried
out by definingxm,r(k),1 ≤ i ≤ R as one of theR = IJ possible
values of

xm,{i, j}(k) = x̃T
i (k)ŝ j,m (5)

wherexm,{i, j}(k) is the filtered input signal, ˆs j,m ∈ R
Ls×1 is the

estimate of the secondary path forj th input andmth output, and
x̃i(k) ∈ R

Ls×1 is the ith channel input from the reference micro-
phones. The definition in (3) has to be changed, therefore themth
output of the adaptive filter using the filtered input signal is given
by ȳm(k)and is now written as

ȳm(k) = xT
m(k)w (6)

where

xm(k) = [xT
m,R(k) · · · xT

m,R(k−L +1)]T ∈ R
RL×1 (7)

xm,R(k) = [xm,1(k)xm,2(k) · · · xm,R(k)]T ∈ R
R×1 (8)

and vectorw ∈R
RL×1 is formed by stacking theR= IJ vectorswi, j

defined in (1). By employing the definition of the output signal (6)
in the error expression (4),w is chosen to minimize the following
deterministic weighted least-squares cost function

ξD(k) =
k

∑
i=0

λ k−i ||dM(i)−XT
M(i)w||2 (9)

whereλ is the forgetting factor and

XM(k) =
[

XT
M,R(k) · · · XT

M,R(k−L +1)
]T

∈ R
RL×M(10)

XM,R(k) = [x1,R(k)x2,R(k) · · ·xM,R(k)]T ∈ R
M×R. (11)

The optimal solution at time instantk, obtained by differentiating
(9) with respect tow, is given byw(k) = R−1(k)p(k), where

R(k) =
k

∑
i=0

λ k−iXM(i)XT
M(i) ∈ R

RL×RL

p(k) =
k

∑
i=0

λ k−iXM(i)dM(i) ∈ R
RL×1.

(12)

The recursive least-squares (RLS) coefficient update for this
filtered-x structure is

w(k) = w(k−1)+R−1(k)XM(k)eM(k) (13)

The inverseR−1(k) can be obtained recursively in terms of
R−1(k− 1) using thematrix inversion lemma. We see that the
filtered-x (FX) RLS algorithm in (13) requires only knowledge
of the input-signal matrixXM(k) and the measured error vector
eM(k), whereas the unknown desired vectordM(k) is not needed.

2.2 Modified filtered-x ANC setup and QRD-RLS equations

The main problem with the FX-RLS algorithm is potential diver-
gence behavior in finite precision and high computational com-
plexity. The QRD-RLS and, its fast version, the FQRD-RLS al-
gorithm could provide a more robust solution with reduced com-
plexity. However, both these algorithms require explicit knowledge
of dM(k) to minimize the objective function in (9). This should be
compared with the FX-RLS algorithm of previous section thatdi-
rectly employs vectoreM(k) measured by the error microphones.
However, we see from Fig. 1 that if we pass the actuator signal
yJ(k) through an off-line estimate of the secondary-path channel
Ŝ(z), an estimatêd(k) of the desired signal vector can be obtained,
whose elements are given by

d̂m(k) = em(k)+ ŷm(k) (14)

where ŷm(k) = ∑J
j=1yT

j (k)ŝ j,m(k) and ŝ j,m(k) being the estimate
of s j,m(k) in S(z). Taking this QRD approach leads to the real-
ization depicted in Fig. 2, which is known as the MFX structure.
Equipped with an estimate ofdM(k) through (14), we may derive
MIMO-QRD-RLS algorithms for ANC. In the following we pro-
vide the basic QRD-RLS equations used for deriving the MIMO-
FQRD-RLS version in Section 3. We also show in Section 3 how to
obtain the outputyJ(k) in Fig. 2 without explicit knowledge of the
MIMO-FQRD-RLS weightsw(k).

Considering a QRD-RLS algorithm for obtaining vectorw, cor-
responding to an estimate of the vectorizedI × J-MIMO channel
H(z), (9) is re-written as the norm of an increasing order vector

e(k) =











dM(k)
λ 1/2dM(k−1)

...
λ k/2dM(0)











−











XT
M(k)w

λ 1/2XT
M(k−1)w

...
λ k/2XT

M(0)w











= d(k)−X(k)w

(15)

wheree(k) ∈ R
M(k+1)×1 is the error vector,d(k) ∈ R

M(k+1)×1 is
the desired signal vector, andX(k) ∈ R

M(k+1)×RL is the input data
matrix encompassing values for all time instances from 0 up to k.

In the QRD-RLS algorithm, the triangularization of the input
data matrix is obtained with

[

0(M(k+1)−RL)×RL
U(k)

]

= Q(k)X(k) (16)

whereQ(k) ∈ R
M(k+1)×M(k+1) is the Givens rotation matrix, and

U(k)∈ R
RL×RL is a triangular matrix known as the Cholesky factor

of the input data matrix. Applying the Givens rotation matrix to
e(k) results in

Q(k)e(k) =

[

dq1(k)
dq2(k)

]

−

[

0(M(k+1)−RL)×RL
U(k)

]

w (17)

From (17), we are able to minimize the norm ofe(k), at time
instantk, by choosingw as

w = U−1(k)dq2(k) (18)
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Figure 2: FQRD-RLS in an active noise control (ANC) system.

In QRD-RLS algorithm the update for the Cholesky factor ma-
trix and the rotated desired signal vector are provided as follows

[

0M×RL
U(k)

]

= Qθ

[

XT
M(k)

λ 1/2U(k−1)

]

(19)

[

eqM(k)
dq2(k)

]

= Qθ

[

dM(k)
λ 1/2dq2(k−1)

]

(20)

whereQθ (k) ∈R(M+RL)×(M+RL) is the Givens rotation matrix that
annihilates the values ofXM when used to updateU(k) and is de-
fined by the partition matrix

Qθ (k) =

[

Γ(k) G(k)
F(k) E(k)

]

(21)

where

Γ(k) =







γ1(k) · · · 0
...

...
...

0 · · · γM(k)







G(k) = −Γ(k)A(k) = −Γ(k)λ−1/2U−T(k−1)XM(k)

F(k) = U−T(k)XM(k)

E(k) = λ 1/2U−T(k)UT (k−1)

(22)

Finally, thea posteriorierror vector,eM(k) computed withw(k), is
given as

eM(k) = Γ(k)eqM(k). (23)

3. MIMO-FQRD-RLS ALGORITHM FOR MFX ANC

In this section we derive a MIMO-FQRD-RLS algorithm that ren-
ders a computationally efficient and robust implementationof the
MFX-ANC structure. Common to the FQRD-RLS algorithms al-
ready available in the literature, the proposed algorithm does not
have explicit update equations for vectorw(k). However, as ear-
lier mentioned, the weights embedded in the MIMO-FQRD-RLS
algorithm are needed to reproduce output signalyJ(k) in Fig. 2.
We know from [2] that it should be possible to acquire the weights
through a sequential weight extraction procedure. However, such
an approach would lead to a solution ofO(R2L2) complexity per
iteration. In other words, there would not be any obvious advantage
of using an MIMO-FQRD-RLS solution in place of, say, an Inverse
QRD-RLS solution [5]. To solve this problem, we also show in this
section how to reproduce the exact outputyJ(k) by conveniently
reusing variables from the proposed MIMO-QRD-RLS algorithm.

3.1 Derivation of the MIMO-FQRD-RLS algorithm

The fast versions of the QRD-RLS algorithm based on update of
the backward prediction errors are known for their numerical sta-
bility and its a posterioriversion (FQRD-RLSPOSB) is consid-
ered here for ANC application. This algorithm offers low complex-
ity solution by using matrix of smaller dimensions in the updating
procedure of inner variables, unlike the conventional QRD-RLS or
the Inverse QRD-RLS algorithms. For the FQRD-RLS PRI B al-
gorithm,F(k) ∈ R

RL×M in (22) is considered for the update. As a
result, the problem of updating theRL×RLmatrixU(k) is reduced
to updating aRL×M matrix, whereM << RL.

We start the derivation of the fast version by considering the
extended input data matrix defined as

XL+1(k) =

[

D f (k)
X(k−1)
0M×RL

]

= [X(k) Db(k)] (24)

whereD f (k) ∈ R
M(k+1)×R is the desired signal vector in a forward

prediction

D f (k) =







XM,R(k)
...

λ k/2XM,R(0)






, (25)

anddb(k) ∈ R
M(k+1)×R is the desired signal vector in a backward

prediction

Db(k) =











XM,R(k−RL)
...

λ (k−RL)/2XM,R(0)
0ML×R











. (26)

In order to triangularize (24) and obtainUL+1(k), three sets of
Givens rotation matrices are needed [7]. Note that we have intro-
duced a few rows of zeros belowXL+1(k) in order to allow the
formation of a triangular extended Cholesky factor of dimension
(RL+R)× (RL+R).

Q′
f (k)Q f (k)

[

Q(k−1) 0
0 IR×R

][

XL+1(k)
0(R−M)×(RL+R)

]

=

= Q′
f (k)Q f (k)





E f q1(k) 0

D f q2(k) U(k−1)
XM,R(0) 0M×RL

0(R−M)×(RL+R)





= Q′
f (k)

[

0 0
D f q2(k) U(k−1)
E f (k) 0

]

(27)

From the previous expression and using the fixed-order ma-
tricesQθ (k− 1) embedded inQ(k− 1) andQ f (k) embedded in
Q f (k), it is possible to obtain the following equations.

[

ET
f qM(k)

D f q2(k)

]

= Qθ (k−1)

[

XM,R(k)
λ 1/2D f q2(k)

]

(28)

[

0T

E f (k)

]

= Q f (k)

[

ET
fqM(k)

λ 1/2E f (k−1)

]

(29)

In (28), E f qM(k) corresponds to the firstM rows of E f q(k),
the rotated forward error, and, in (29),E f (k) is theR×R forward
prediction error covariance(lower-triangular) matrix.

Removing the ever-increasing null section in (27) and usingthe
fixed-order matrixQ′

θ f (k) embedded inQ′
f (k), we obtain

ŪL+1(k) = Q′
θ f (k)

[

D f q2(k) U(k−1)
E f (k) 0

]

. (30)
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A natural choice forQ′
θ f (k) could be the Givens rotation ma-

trix that annihilateD f q2(k) againstE f (k) while keeping its triangu-
lar structure. Also from (30), we can write the following equation
whereE0

f (k) was named thezero-order error covariance matrix
in [7].

[

0

E0
f (k)

]

= Q′
θ f (k)

[

D f q2(k)
E f (k)

]

(31)

Since we are interested in deriving thea posterioriversion of
the FQRD-RLS algorithm, we update matrixFL+1(k) as follows,
i.e., based on the inverse of the extended order Cholesky factor ob-
tained in (30). Note that, similarly to the case of employingforward
prediction reference signal in the definition of the extended order in-
put matrix, using backward prediction reference signal leads to the
conclusion that the lastRLrows ofFL+1(k) correspond toF(k). By
replacing the definition ofXM(k) in (10) and the inverse transposed
of Cholesky factor given by (30), we have:

FL+1(k) =

[

∗
F(k)

]

= Q′
θ f (k)

[

F(k−1)
Fp(k)

]

, (32)

whereFp(k) correspond to the product ofE−T
f (k) with the forward

prediction error matrixE fM(k). The computation ofFp(k), how-
ever, is quite simplified with the help of the following expression
(the proof is omitted here due to lack of space but similar derivation
can be found in [7]).

Q f (k)

[

Γ(k)
0

]

=

[

∗
Fp(k)

]

(33)

where the asterisks in the two previous equations representnon-zero
values that are not used in this algorithm.

Once knowing the structure of matrixQθ (k), its rotation angles
can be obtained using

Qθ (k)

[

I
0

]

=

[

Γ(k)
F(k)

]

. (34)

Although thea posteriorierror vector was given in (23), thea
priori errorsεM(k) can be obtained as follows. Note that matrix
Γ(k) is diagonal and its inverse is easily obtained. The equations of
thea posterioriversion of the MIMO Fast QRD-RLS algorithm are
summarized in Table 1, and the computational complexity is given
in Table 3.

εM(k) = Γ−1(k)eqM(k) (35)

3.2 Re-producing the filtered-x signalyJ(k)

While running the MIMO-FQRD-RLS algorithm in the lower
branch of Fig. 2, we need to have access to the associated coef-
ficient vector for reproducing the output signalyJ(k). As noted
earlier, making the coefficient vector explicitly available using the
technique in [2] is not an attractive solution considering its com-
putational complexity. One can avoid this complexity problem by
extracting and copy the weights at a reduced rate, say once every
K samples. This type of solution was considered in [6] for the
QRD least-squares lattice (QRD-LSL) algorithm. Such approach
certainly affects the convergence behavior of the adaptiveimple-
mentation. Our goal is to reproduce, at each iteration, the exact out-
putyJ(k) that corresponds to the weights embedded in the MIMO-
FQRD-RLS algorithm.

Similar to definition ofyM(k) in (15) we may expressyJ(k) as

yJ(k) = XT
J (k)w(k) = XT

J (k)U−1(k)dq2(k) (36)

where
XJ(k) = [x1(k) · · · xJ(k)] ∈ R

{R=IJ}L×J, (37)

Table 1: MIMO-FQRDPOSB Algorithm
For eachk, do
1. ObtainingD f q2(k) andE f qM(k)
[

ET
f qM(k)

D f q2(k)

]

= Qθ (k−1)

[

XT
M,R(k)

λ1/2D f q2(k)

]

2. ObtainingE f (k) andQ f (k)
[

0T

E f (k)

]

= Q f (k)

[

ET
f qM(k)

λ1/2E f (k−1)

]

3. ObtainingFp(k)
[

∗
Fp(k)

]

= Q f (k)

[

Γ(k)
0

]

4. ObtainingQ′
θ f (k)

[

0

E0
f (k)

]

= Q′
θ f (k)

[

D f q2(k)
E f (k)

]

5. ObtainingF(k), the lastLR rows ofFL+1(k)

FL+1(k) = Q′
θ f (k)

[

F(k−1)
Fp(k)

]

6. ObtainingQθ (k) andΓ(k)

Qθ (k)

[

I

0

]

=

[

Γ(k)
F(k)

]

7. Joint Estimation
[

eqM(k)
dq2(k)

]

= Qθ (k)

[

dM(k)
λ1/2dq2(k−1)

]

8. Obtaining thea posteriorierror
eM(k) = Γ(k)eqM(k)

}

andx j(k) ∈ R
RL×1 is obtained by stacking the columns of the ma-

trix X j(k), which is defined as,

X j(k) =





0 j−1×IL
xT

I (k) · · · xT
I (k−L +1)

0J− j×IL



 (38)

wherexI (k) = [x1(k) · · · xI (k)] ∈ R
I×1 is the input data vector of

I channels.Note that the outputyJ(k) is defined differently than
in (1), as in MIMO-FQRD-RLS algorithm the coefficient of all
the channels are only available asw(k). Matrix U−1(k) and vec-
tor dq2(k) in (36) are parameters of the MIMO-FQRD-RLS algo-
rithm running in the lower branch of Fig. 2. Vectordq2(k) is di-
rectly available from the MIMO-FQRD-RLS algorithm. However,
U−1(k) is hidden inF(k) = U−T(k)XM(k) while our objective is
to construct and update

FJ(k) = U−T(k)XJ(k) ∈ R
RL×J. (39)

where we may note the use of a different input matrix. Since matri-
cesXM(k) andXJ(k) are both initially set to zero, we may exploit
(32) in order to updateFJ(k). The Givens rotation matrix and the
matrix E f (k) are copied from the MIMO-FQRD-RLS algorithm,
while the forward prediction error matrix is computed usingthe cur-
rent inputs. The procedure is summarized in Lemma 1.

Lemma 1. Let U−T(k) ∈ R
RL×RL denote the upper triangular

inverse transposed Cholesky factor matrix in Table1. Given
Qθ f (k) ∈ R

R(L+1)×R(L+1), D f q2(k) ∈ R
RL×R, andE f (k) ∈ R

R×R

from the MIMO-FQRD-RLS algorithm operating in the lower
branch of ANC, then we can obtainFJ(k) fromFJ(k−1) using

[

∗
FJ(k)

]

= Qθ f (k)

[

FJ(k−1)
E−1

f (k)ET
fJ(k)

]

(40)

The matrixE f J(k) is defined as,

E f J(k) = [x1(k)IJ×J . . . xI (k)IJ×J]−FT
J(k−1)D f q2,v(k)

(41)
where xi(k) is the current input of the ith channel, andFT

J(0) =
0RL×J

1748



Table 2: The algorithm for computingyJ(k) in MFX ANC using
MIMO-FQRD-RLS algorithm.

Initialize:
FJ(k−1) = 0(RL)×J
Available from MIMO-FQRD-RLS algorithm:
D f q2(k), dq2(k), E f (k)
for eachk
{
ObtainingE f J(k): using (41)
ObtainingFJ(k): using (40)
ObtainingyJ(k): using (36)

}

The lemma follows by taking the inverse transpose of (30) and
post-multiplying it withXJ(k), which is a straightforward exten-
sion of the single-channel case detailed in [5].

The algorithm for reproducing the outputyJ(k) in the upper
branch of Fig. 2 is given in Table 2. The computational complexity
of this method is mentioned in Table 3.

4. SIMULATIONS

This section provides the simulation setup and the results for
the MIMO-FQRD-RLS algorithm applied to a multichannel ac-
tive noise control system using MFX structure. To illustrate the
MFX MIMO-FQRD-RLS algorithm we consider an ANC setup
with primary paths and secondary paths are given as,P1(z) = z−3−

1.8z−4+0.2z−5+0.1z−6, P2(z) = z−3−1.2z−4+0.5z−5+0.05z−6,
S11(z) = 2z−2 +0.5z−3+0.1z−4, S12(z) = 2z−2 +0.3z−3+0.1z−4,
S21(z) = z−2 − 1.7z−3 + 0.2z−4, S22(z) = z−2 + 0.2z−3 + 0.2z−4,
wherePr(z) denotes the primary path andSjm(z) denotes the sec-
ondary path, withR= 2, andM = 2. The order of the adaptive filter
is L = 49, and the input signalx(k) was a colored noise sequence,
colored by filtering a zero-mean white Gaussian noise sequence
nx(k) through a first order IIR filterx(k) = −0.95x(k− 1) + n(k).
The desired signald(k) was further disturbed by noise whose vari-
ance is set such that SNR is 60dB. The results were obtained by
averaging and smoothing 25 realizations of the experiment.For
comparison purposes, a QRD-RLS algorithm is also implemented.
Fig. 3 shows the MSE curves for both the algorithms. The results
show that both algorithms converge to the same solution.
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Figure 3: The MSE for MIMO-FQRD-RLS and MIMO-QRD-RLS
algorithms in MFX structured ANC.

5. CONCLUSIONS

This paper derives a MIMO version of FQRD-RLS algorithm for
application in MFX-ANC systems. It further shows how to avoid
the explicit use of the weight vector in the MFX-ANC structure by

reproducing the filtered-x signal from the internal variables of the
proposed algorithm. The presented technique enables application
of the MIMO-FQRD-RLS algorithms in MFX-ANC structure. The
proposed method was verfied by simulating the multichannel MFX-
ANC system. The results were compared with those using a design
based on the QRD-RLS algorithm. It was verified that identical
results are obtained using the proposed design method at a much
lower computational cost.

Table 3: Operations required for MIMO-FQRD-RLS algorithm in
MFX structure and Weight extraction method.

ALG. MULT DIV SQRT
MIMO-FQR 2R3L +4R2L(M +1) R2L (R)2L

+2R2M +RLM +RLM
+2RLM+5RM+RL +RM +RM

MIMO-QRD 4M(RL)2 2MRL MRL
+4MRL+2RL+1

MFX-FQR 2R3L +4R2L(M +1) R2L (R)2L
+4R2LJ+2R2M +RLM +RLM

+2RLM+5RM+RL+3RLJ +RM +RM

MFX-QRD 4M(RL)2 2MRL MRL
+4MRL+RLJ+RL+1
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