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ABSTRACT

Fast QR-decomposition based recursive least-squaresiFQR
RLS) algorithms are known for their good numerical propesrtind
low computational complexity. However, they have so farlmegn
used in active noise control (ANC) because the general imgihta-
tion would require multiple-input multiple-output (MIMGJQRD-
RLS algorithms, which are currently not available in thehtgcal
literature. Another reason is the lack of an explicit weigattor
update equation in the FQRD-RLS algorithms, which previes
use in structures where a copy of the coefficients is filteartif-
ferent input sequence than that of the adaptive filter, thg.modi-
fied filtered-x ANC (MFX-ANC) structure. In this paper, we der
a MIMO-FQRD-RLS algorithm based on backward prediction er-
ror updates. The proposed algorithm is applied to a multioha
MFX-ANC structure. We show how to avoid the explicit use of
the weight vector in the MFX-ANC structure by reproducing th
filtered-x signal from the internal variables of the propbségo-
rithm. Simulation results confirm that the learning curvéshe
MIMO-FQRD-RLS algorithm are identical to those obtainedly
QRD-RLS algorithm.

1. INTRODUCTION

The family of QR-decomposition (QRD) based least-squat&3 (
adaptive filters are known for fast convergence and stgbiitfi-
nite precision. Several low complexity versions of the QBR®-
algorithm have been derived in past, e.g., the QRD leasiregu
lattice and the fast QRD recursive least-squares (FQRD}YRIgS-
rithms [1]. The main disadvantage of these low-complexéssions
is that they lack an explicit weight vector term, limitingethselves
to problems seeking an estimate of the output error sigrnalas
recently shown in [2, 3] how to identify (or extract) the tsarrsal
weights embedded in the FQRD-RLS variables, thus enaltieig t
use for system identification. Furthermore, in [4], it waewsh how
to use the FQRD-RLS variables for fixed filtering, e.g., btrained
equalizers, without explicit knowledge of the associateibt vec-
tor.

Despite the recent progress, there are still applicatiomsrev
the available FQRD-RLS algorithms cannot be directly erygdo
To the best of our knowledge, it does not exist in literatune a
FQRD-RLS algorithm that takes multiple inputs and generatal-
tiple outputs, i.e., a MIMO-FQRD-RLS algorithm. In this map
we develop a MIMO version of the numerically robust FQRD-RLS
algorithm based on the update of backward prediction effjrs
The new algorithm is applied to the problem of multichanne! a
tive noise control (ANC) using the modified filtered-x (MFXjc-
ture [6].

In the MFX-ACN structure, a copy of the adaptive filter weght
is used for filtering a different input sequence than usedattap-
tation. The resulting output sequence is referred to as lteesiil-x
signal. By extending the ideas in [4] we may reproduce theré&H-

x signal exactly without the explicit knowledge of the MIMO-
FQRD-RLS filter weights. This should be compared with the lat
tice based FQRD algorithm used for ANC in [6], which solveis th
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Figure 1: A simplified illustration of an ANC system.

problem by explicitly identifying the required coefficievdctor. To
reduce the complexity of such solution, it was suggestedjind
identify and copy the weights on a periodical basis (i.et,every
iteration). Our approach avoids such an approximate solwthile
still maintaining a low computational complexity.

Simulation results are provided in order to validate theopsed
method. A QR-decomposition based RLS algorithm is used as a
benchmark. The total number of multiplications for eactoatgm
are listed in a table.

2. ACTIVE NOISE CONTROL SYSTEM BASICS

This paper considers the MFX structure detailed in [6]. ke fibl-
lowing we describe the basic multichannel ANC setup andsitea
ciated least-squares solution. Thereafter, we providedoessary
QRD-RLS equations and illustrate how the MFX-ANC structure
becomes the natural implementation for QRD-RLS algorithms

2.1 Simplified ANC setup and least-squares solution

The concept of a simplified multichannel ANC is shown in Fig. 1
An ANC cancels the unwanted noise by generating an antenois
signal. The noise signal to be cancetedk) € R'*! is obtained

by the ANC system using “reference microphones”. The ANC
system processes the reference signal to generate thegmi-of
the reference 3 (k) € R?*! usingJ actuators, where thigh element
(output) is given as

'_lleiT(k)Wi,j,

wherex;(k) = [x(K) --- xi (k—L+1)]T € R-* is the input vector of
theith channel, andv; ; € R-*1 is the coefficient vector that links
theith input to jth output.

TheM “error microphones” pick the de-noised signal and serve
as a feedback to the ANC system. The path between the reéerenc
microphone and the error microphone is called theM-MIMO
primary pathH(z), while the path between the speakers and the
error microphone is called thex M-MIMO secondary patts(z).

The output of the primary path &y (k), where themth output is

@)

yi (k)
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given as
I

O (k) = ;;ﬁ(k)hi,m i (K)

where wherexi(k) = [x(k) --- % (k—Lp+1)]T € Rt»*1 is the in-

put vector of thath channel, , and; ,, € R-r*1 are the coefficients
of the primary path between thth input andmth output, assumed
stationary for this discussion, angh(k) is the additive noise. Simi-

larly, the output of the secondary pathyig (k) € RM*1, where the

@)

mth output is
J
Ym(k) = > y] (sjm, (3)
j=1
whereyj = [yj(K) --- yj(k—Ls+1)] € Rk, andsj m(k) € Rbs*1

are the coefficients of the secondary path betweeitthi@put from
the adaptive filter andih output. Finally, the error signal at tié
error sensors is given by,

em (k) =
ya(k) --

dm (k) —ym(k) 4)

whereyy (k) = ym(K)]" € RM*L. We see from (4) that

The recursive least-squares (RLS) coefficient update fis th
filtered-x structure is
w(k) =

w(k—1)+ R (k) Xn (Kjem (k)

The inverseR~1(k) can be obtained recursively in terms of
~1(k— 1) using thematrix inversion lemma We see that the
filtered-x (FX) RLS algorithm in (13) requires only knowlezlg

of the input-signal matrixXy (k) and the measured error vector
em(k), whereas the unknown desired veatly (k) is not needed.

(13)

2.2 Modified filtered-x ANC setup and QRD-RLS equations

The main problem with the FX-RLS algorithm is potential dive
gence behavior in finite precision and high computationah-co
plexity. The QRD-RLS and, its fast version, the FQRD-RLS al-
gorithm could provide a more robust solution with reducech<o
plexity. However, both these algorithms require expliciowledge

of dm (k) to minimize the objective function in (9). This should be
compared with the FX-RLS algorithm of previous section ftiiat
rectly employs vectoey (k) measured by the error microphones.
However, we see from Fig. 1 that if we pass the actuator signal

signaley (k) measured by the error microphone array in Fig. 1 is theY9(K) through an off-line estimate of the secondary-path channel

result of an acoustic subtraction of the desired signaloredy (k)
and the output of the secondary paifa (k). Let the adaptive filter,
after convergence, and the secondary path in Fig. 1 be ltivaar
invariant systems. Then the secondary path can be placerelibé
adaptive filtering block without any loss of generality. Asesult,
the multichannel input signat, (k) is filtered with the secondary
path before being used for the adaptive filtering. This cacaged
out by definingxmr(k),1 <i < R as one of theR = 1J possible

values of .
Xm (i) (K) =% (K)Sjm ®)

wherexy (i j; (k) is the filtered input signalsjm € R'=*1 is the
estimate of the secondary path figh input andmth output, and
%i (k)
phones. The definition in (3) has to be changed, thereforeithe
output of the adaptive filter using the filtered input sigreagiven
by ym(k)and is now written as

Yn(K) = x1(K)w ©)

where
xmk) = [xmrK) - xprk-L+1)]T eRRXL(7)
xmr(K) = Fm1(K)Xm2(K) - xmr(K)]" € RR* @)

and vectow € RR 1 s formed by stacking thR= 1J vectorsw;,
defined in (1). By employing the definition of the output suﬁ;
in the error expression (4yy is chosen to minimize the following
deterministic weighted least-squares cost function

k )
ED(k)=.;Ak7'|\dM(i)*XKA(i)WH2 ©)

whereA is the forgetting factor and

XuK) = [XGa®) - Xfak-L+1)] cRRM0)

XurK) = [xor(K)x2R(K) - xmRrK)]T (12)

The optimal solution at time instat obtained by differentiating
(9) with respect tow, is given byw (k) = R~1(k)p(k), where

e RMxR

_ i)\ kfiXM (I)X-l\l;l (I) c RRLXRL
B 12)

p(k) = i)\kiXM(i)dM(i) e RRL,

e RY*1 is theith channel input from the reference micro-

S(2), an estimatel (k) of the desired signal vector can be obtained,
whose elements are given by

A (K) = em(K) +Ym(K)

whereym(k) = zleij(k)éj,m(k) andsj m(k) being the estimate
of sjm(Kk) in S(z). Taking this QRD approach leads to the real-
ization depicted in Fig. 2, which is known as the MFX struetur
Equipped with an estimate afy (k) through (14), we may derive
MIMO-QRD-RLS algorithms for ANC. In the following we pro-
vide the basic QRD-RLS equations used for deriving the MIMO-
FQRD-RLS version in Section 3. We also show in Section 3 how to
obtain the outpuy (k) in Fig. 2 without explicit knowledge of the
MIMO-FQRD-RLS weightsw (k).

Considering a QRD-RLS algorithm for obtaining vectey cor-
responding to an estimate of the vectorided J-MIMO channel

2), (9) is re-written as the norm of an increasing order vector

(14)

dm (k) X (K)w
Al/ZdM k—1) A2 (k—)w
- : (15)
Ak/ZdM AKX (0w

=d(k

wheree(k) € RMk+1x1 s the error vectord(k) € RMk+1)x1 jg
the desired signal vector, aii(k) € RM(K+1xRL s the input data
matrix encompassing values for all time instances from Qup t

In the QRD-RLS algorithm, the triangularization of the ibpu
data matrix is obtained with

OM(k+1)—RUXRL| _
Ot — QoK (16)

where Q(k) € RM(k+1)xM(k+1) js the Givens rotation matrix, and
U(k) € RRMRL s a triangular matrix known as the Cholesky factor
of the input data matrix. Applying the Givens rotation matio
e(Kk) results in

Q(K)e(k) = {dql(k)} _ {O(M(k+l)—RL)xRL:| w a7

dg(k) U(k)

From (17), we are able to minimize the normedk), at time
instantk, by choosingw as
w=U"

LK) dga(K) (18)
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Primary path du (k) 3.1 Derivation of the MIMO-FQRD-RLS algorithm

H(z) The fast versions of the QRD-RLS algorithm based on update of
the backward prediction errors are known for their numésta-
bility and itsa posterioriversion (FQRD-RLSPOSB) is consid-
ered here for ANC application. This algorithm offers low qaex-
ity solution by using matrix of smaller dimensions in the apdg
procedure of inner variables, unlike the conventional QRICS or
the Inverse QRD-RLS algorithms. For the FQRD-RLS PRI B al-
gorithm, F(k) € RRM in (22) is considered for the update. As a
result, the problem of updating tiRL x RL matrix U (k) is reduced
to updating &RL x M matrix, whereM << RL.

We start the derivation of the fast version by considerirng th
extended input data matrix defined as

yi(k) Secondary path
52

Adaptive filter
copy

X(k—-1)] _
OmxRL |

Xurk | FQR-RLS
algorithm

X (k) = | D1 (K) (X(k) Dp(k)]  (24)

______________________________________________

whereDy (k) € RMk+D>Ris the desired signal vector in a forward
Figure 2: FQRD-RLS in an active noise control (ANC) system. Prediction

XmR(K)
In QRD-RLS algorithm the update for the Cholesky factor ma- Dy (k) = K/2 : ’ (25)
trix and the rotated desired signal vector are provided ikais AK XmRr(0)
O] _ g X (k) (19) anddy(k) € RMktD*R s the desired signal vector in a backward
U(k) o AV2Uu(k-1) prediction
dg(K) A2dgp(k—1) Dyp(k) = : (26)
AK-RU/2X ¢ (0)
whereQg (k) € R(M+RUX(M+RU) is the Givens rotation matrix that OMLXR
annihilates the values &y when used to updaf& (k) and is de-
fined by the partition matrix In order to triangularize (24) and obtalid“*1(k), three sets of
Givens rotation matrices are needed [7]. Note that we have-in
K- |FK) - G(k) 51)  duced a few rows of zeros beloX*1(k) in order to allow the
QQ( ) F(k) E(k) (21) . . S
formation of a triangular extended Cholesky factor of disien
(RL+R) x (RL+R).
where
nk -0 L 00s (k| QKk=1 0 X1 (k) _
rk) = oo Qr9Qr 0 IRR | | OR-M)x(RLIR)
0 o W

(22)

OmxRL
OR-M)x(RL+R)

Efq1<k) 0
/ Dip(k) Uk-1)
G(k) = —T (A (K) = —F (KA V20T (k= 1) Xy (K) Qr(k)Qr(k) { Xual0 ]

F(k)=U"T(KXu(K) 0 0
A2 T a0t (ke = Q(k) | Diga(k) U(k—1) ] (27)
Ek) =A7“U" " (kU' (k—1) f Er(k) 0
Finally, thea posteriorierror vectorew (k) computed withw (k), is _ _ _ )
given as From the previous expression and using the fixed-order ma-
em (k) =T (K)egm(K). (23)  tricesQg(k— 1) embedded iMQ(k — 1) and Q(k) embedded in

Q+ (Kk), itis possible to obtain the following equations.
3. MIMO-FQRD-RLS ALGORITHM FOR MFX ANC

In this section we derive a MIMO-FQRD-RLS algorithm that+en E%M(k) _ Quk—1) XmRr(K)
ders a computationally efficient and robust implementatibthe Dig(k) | o Al/Zquz(k)
MFX-ANC structure. Common to the FQRD-RLS algorithms al-

ready available in the literature, the proposed algorittoasdnot -

have explicit update equations for vectwik). However, as ear- o' =Qs(k Equ(k) (29)
lier mentioned, the weights embedded in the MIMO-FQRD-RLS ) f A2E¢(k—1)

algorithm are needed to reproduce output signgk) in Fig. 2.

We know from [2] that it should be possible to acquire the \uisg In (28), Eqm (k) corresponds to the firdtl rows of Eq(k),
through a sequential weight extraction procedure. Howeseh  therotated forward error and, in (29),E¢ (k) is theR x R forward
an approach would lead to a solution 6fR?L?) complexity per ~ prediction error covariancélower-triangular) matrix.

iteration. In other words, there would not be any obviousaatge Removing the ever-increasing null section in (27) and utieg
of using an MIMO-FQRD-RLS solution in place of, say, an Irseer  fixed-order matrixQj; (k) embedded iQ’; (k), we obtain
QRD-RLS solution [5]. To solve this problem, we also showhiis t

section how to reproduce the exact outgytk) by conveniently — , Digpk) Uk-1

reusing variables from the proposed MIMOﬁQ)RD-RLS algamnith ULH(k) = Qo (K) Efff&)) ( 0 ) ’ (30)

(28)
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A natural choice foiQj; (k) could be the Givens rotation ma-

trix that annihilateD ¢ (k) againstE (k) while keeping its triangu- Table 1: MIMO-FORRPOSB Algorithm

lar structure. Also from (30), we can write the following @djon For eactk, do
where E? (k) was named theero-order error covariance matrix L OgtTam'&?quZ(k) andEqu(k)XT )
: fqm _ k—1 |: M,R :|
ntl 0 Dig(k) { Diqa(k) } Qol 7) AY2Digp(K)
—-Q/ q 2. ObtainingE¢ (k) and K
{E?(k) }_Qef(k){ Bk } (31) - 0% ngE¢ (k) andQy (k)

Efqu(K) }

:Qf (k) { 1/2
Since we are interested in deriving theposterioriversion of L Er(k) ] A2Ef (k—1)
3. ObtainingF p (k)
(

the FQRD-RLS algorithm, we update matii¥*1(k) as follows, i )
i.e., based on the inverse of the extended order Choleskgyrfab- Fo(k) =Qi (K { 0 }
tained in (30). Note that, similarly to the case of employfiogvard i Ogtainith' )
prediction reference signal in the definition of the extehdeler in- - P of Do (K
put matrix, using backward prediction reference signal$eta the Bk | = Qo (K) { Efq2|£ ) }
conclusion that the lagtL rows of F-1(k) correspond t@ (k). By f r(k)
replacing the definition aKy (k) in (10) and the inverse transposed

5. ObtainingF (k), the lastLR rows of F-1(k)

of Cholesky factor given by (30), we have: FLY (k) = Qp¢(K) Fbngk)l)
F(k—1) 6. ObtainingQg (k) andIP(k)
L+1/p\ * — 0 - I 'k
P = i | = Q0 | G | @ Qoo 5 |- 1 |
7. Joint Estimation
whereF (k) correspond to the product &F; ' (k) with the forward {fﬂ; ((lk())} — QoK) {)\ 1/2?:2(("(()_ 1)}

prediction error matridEy (k). The computation oF p(k), how-

ever, is quite simplified with the help of the following expsion 8. Obtaining thea posteriorierror

(the proof is omitted here due to lack of space but similaive&on em (k) =T (Kjequ (k)
can be found in [7]). }
re) L' (k) * . . .
Qi) | "o | = Fpo(k) (33)  andxj(k) € RR™1 is obtained by stacking the columns of the ma-

o _ _ trix X1 (k), which is defined as,
where the asterisks in the two previous equations represenzero

values that are not used in this algorithm. ) 0j_1x1L
Once knowing the structure of mati@g(k), its rotation angles XI(k) = X|T(k) . xlT(k, L+1) (38)
can be obtained using 03 jxiL

Qo (k) I]_ 34y Wherexa (k) = Dy (k) - (k)] € R'*! is the input data vector of
6 0 Fk) |- I channels.Note that the outpuy (k) is defined differently than
in (1), as in MIMO-FQRD-RLS algorithm the coefficient of all
Although thea posteriorierror vector was given in (23), te  the channels are only available agk). Matrix U~1(k) and vec-
priori errorsey (k) can be obtained as follows. Note that matrix tor dge (k) in (36) are parameters of the MIMO-FQRD-RLS algo-
I'(k) is diagonal and its inverse is easily obtained. The equaobn  rithm running in the lower branch of Fig. 2. Vectdg(K) is di-
thea posterioriversion of the MIMO Fast QRD-RLS algorithm are rectly available from the MIMO-FQRD-RLS algorithm. Howeye
_summarlzed in Table 1, and the computational complexityvisrg Ufl(k) is hidden inF (k) = U*T(k)XM(k) while our objective is
in Table 3. L to construct and update
em (K) =T (Kequ (K) (35)
Fi(k) = U T(k)X;(k) € RRWI. (39)

where we may note the use of a different input matrix. Sincgima
3.2 Re-producing the filtered-x signaly (k) cesXum (k) andX;(k) are both initially set to zero, we may exploit
: : : : 32) in order to updat&;(k). The Givens rotation matrix and the
While running the MIMO-FQRD-RLS algorithm in the lower ( ; . X
branch of Fig. 2, we need to have access to the associated codfatrix E1(k) are copied from the MIMO-FQRD-RLS algorithm,
ficient vector for reproducing the output signaj(k). As noted  While the forward prediction error matrix is computed using cur-
earlier, making the coefficient vector explicitly availahlsing the rent inputs. The procedure is summarized in Lemma 1.

technique in [2] is not an attractive solution consideritgdom- | emma 1. Let U~ "(k) € RRMRL denote the upper triangular
putational complexity. One can avoid this complexity pesblby inverse transposed Cholesky factor matrix in Tallle Given
extracting and copy the weights at a reduced rate, say orerg ev Qos (k) € RREFDXRLAD) »(K) € RRIR andE¢ (k) € RR*R

K samples. This type of solution was considered in [6] for thefrorn the MIMO-FQRD-’RLS algorithm oberating in the lower

QRD least-squares lattice (QRD-LSL) algorithm. Such appho ~ :
certainly affects the convergence behavior of the adaptise- branch of ANC, then we can obtalfy (k) from Fy(k—1) using

mentation. Our goal is to reproduce, at each iteration, xaeteout- « Fi(k—1)
puty; (k) that corresponds to the weights embedded in the MIMO- |:Fj(k):| = Qo1 (k) {Efl(k)ET (k)} (40)
FORD-RLS algorithm. f fJ
Similar to definition ofyw (k) in (15) we may expresss(k) 8 The matrixiy,(K) is defined as
v = XJ(Rw(k) =XJRU HKdea(k)  (36) Bk =pa®Ing .. %(Kx]—Fjk-1)Dig(k)
41
where where x(k) is the current input of the ith channel, arfg](0) =

X;(K) = [x1(K) - x3(k)] € RIRFIILX, (B7)  OrLxa
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Table 2: The algorithm for computing;(k) in MFX ANC using
MIMO-FQRD-RLS algorithm.

Initialize:

Fy(k—1) =0ry)xs

Available from MIMO-FQRD-RLS algorithm:
Dig2(k), dge(k), Ef (k)

for eachk

{

ObtainingE¢3(k): using (41)
ObtainingF';(k): using (40)
Obtainingyj(k): using (36)

reproducing the filtered-x signal from the internal vareabbf the
proposed algorithm. The presented technique enablescapph

of the MIMO-FQRD-RLS algorithms in MFX-ANC structure. The
proposed method was verfied by simulating the multichanrfeXM
ANC system. The results were compared with those using gmlesi
based on the QRD-RLS algorithm. It was verified that idemhtica
results are obtained using the proposed design method acth mu
lower computational cost.

Table 3: Operations required for MIMO-FQRD-RLS algorithm i
MFX structure and Weight extraction method.

ALG. MULT DIV SQRT
MIMO-FQR 2R3L +4R?L(M +1) RL | (RZL
+2R?M +RLM | +RLM
+2RLM+5RM+RL +RM +RM
The lemma follows by taking the inverse transpose of (30) and
post-multiplying it with X;(k), which is a straightforward extern- MIMO-QRD 4AM(RL)2 2MRL | MRL
sion of the single-channel case detailed in [5]. JLAMRL4+2RL+1
The algorithm for reproducing the outpyt (k) in the upper
branch of Fig. 2 is given in Table 2. The computational comipfe| MFEX-FQR 2R3L + 4R2L(M + 1) R2L (R2L
of this method is mentioned in Table 3. +ARZLI + 2R2M +RLM | +RLM
+2RLM+5RM+RL+3RLJ | +RM +RM
4. SIMULATIONS
This section provides the simulation setup and the resualts f MFX-QRD 4M(R'-)2 2MRL | MRL
the MIMO-FQRD-RLS algorithm applied to a multichannel dc- +AMRL+RLI+RLA+-1
tive noise control system using MFX structure. To illustraéhe

MFX MIMO-FQRD-RLS algorithm we consider an ANC setup
with primary paths and secondary paths are giveirgs) = z 3 —
1.82 44022 %4012 6,P,(2) =z 3—1.22 % +0.52 54+ 0.052°6,
S11(2) =2272+0523+0.124,S12(2) =222+ 0.32 3 +0.12°%,
$1(2) =22-1723+022% S(2) =22 +022 340224,
whereP (z) denotes the primary path a8, (z) denotes the sec-
ondary path, wittR= 2, andM = 2. The order of the adaptive filter

is L =49, and the input signad(k) was a colored noise sequence,
colored by filtering a zero-mean white Gaussian noise saguen

nk(k) through a first order IIR filtex(k) = —0.95x(k — 1) + n(k).
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