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ABSTRACT

One of the particle filtering uses is object traakisince this tech-
nigue permits to deal with uncertainty over time ineteal time

image sequences framework. This uncertainty is ashrmon-
manageable that an object occlusion appears in gsadn this
paper, we propose an occlusion-handling scheme wsighifi-

cantly improves the tracking performance in present partial

occlusion. The proposed technique is applied tokira single ob-
ject in real greyscale image sequences. Resultfirgpitracking

performance enhancement.

1 INTRODUCTION

Object tracking techniques aim at following objeittsimage se-
guences. They should be able to deal with compiexactions and
various dynamics in sequences such as occlusiangra motion,
varying lighting conditions and viewing directior@bject tracking
is useful in many image-based applications inclgdiideo com-
munication/compressidd] and surveillance systems [2].

Filtering and data association techniques are wigeplied in com-
puter vision for various tracking applications, iasthe work of

Rasmussen and Hage] who adapt probabilistic data association

filters and joint probabilistic data associatiottefis for tracking
complex visual objects. Within the filtering andtalaassociation
approach, the particle filter technique will betaarly concerned
here: it is a Bayesian methodology which appliescansive filter,
based on samples of the object to be tracked ).

This paper considers the patrticle filter technigiile the particle
filter is usually used with colour sequences, wesehto use the
grey-level scale because of its lower data sizk witiew to imple-
menting it in real time on an embedded system. Mae some
application domains such as video surveillance hiclw we are
interested implement still grey-level cameras. lge ahose a con-
text without any a priori information in order te lzloser to real
working conditions. Consequently, we cannot use ksayning
phases: we only have a single model of the objediet tracked
extracted from the first image.

Another problem related to object tracking is tlefitocclusion,
whether it is partial or complete. Partial occlusiides some parts
of the target while complete occlusion hides thérerarget for
some time. Many techniques exist to handle theusimh problem
with particle filter probabilistic models, suchiag6], [7],[8] and in
the work of Nummiaro and al.[9] who present a gyste track
objects in presence of occlusion. The proposecitrgcmethod
adds the robustness and invariance of colour loiigioins to particle
filtering. The probabilistic tracking model propdsim [10] uses a
particle filter for a better handling of colour ttkr in the back-
ground, as well as complete occlusion of the trdakaiect over a

proach by employing a mixture of three appeararrobabilistic
components: a stable component, a two frame transienponent,
and an occlusion component to deal with outlierd1P] and [L3],
authors have proposed complex particle trackingrékgns in col-
our sequences associated with a tracker uncermtyation.

In this paper, we propose an occlusion-handlingsehbased on
particle filter framework. Zhou et allfl] have already proposed a
similar technique; in their paper, the visual texclelies on an adap-
tive appearance model, a velocity motion model withptive noise
variance, and an adaptive number of particles, adtiusion han-
dling via robust statistics. The occlusion is desdlawhen the num-
ber of outliers in the object of interest compangith the appearance
model exceeds a threshold: therefore the appearaodel must not
be updated. Our approach differs from their sotutiothat it does
not keep solely affine transformations and in #ehnhique of con-
sidering the occlusion, as explained below in gred¢tail.

The rest of the article is structured as followsthie next section, we
present the principle of particle filtering. Ourrficle filter version is
proposed in Section 3. Section 4 demonstrates dbglts of the
proposed approach using several real scene seguehte last
section terminates this paper by concluding onamrk.

2. PATICLE FILTERING

Particle filtering (PF) is a sophisticated methaatived from the
Bayesian recursive filtering for model state estiomg it is a prom-
ising technique as it models uncertainty and caith wufficient
samples, deal with many tracking problems such @simg data
and occlusions. It is known under different nameduding the
Monte Carlo approachlp], the CONDENSATION algorithm5]
and bootstrap filter]6]. One of the main properties of the particle
filter is that it gives an approximate solution @ exact model,
rather than the optimal solution to an approximatedel as with
Kalman filters. It handles non linear models witbnrGaussian
noise; as a result, it has been proven to be anidwechnique for
tracking non linear systems.

The basic idea of this technique is to evaluatepthstion of an
object by testing its presence on a limited nundfgroints. When
this principle is used on object tracking, the lteisua local similar-
ity test between the target model and the imagee far every pixel
[5]. The output of this type of tracking is not arsalote value. In
our case, the response is a bi-dimensional mapaitidg the prob-
ability of locating the object in the picture, ithe probability den-
sity is approximated by a set of weighted particles

The first step of the tracking algorithm is thetialization in which
the target is detected and defined; a random nuofhearticles are
uniformly distributed inside the target in orderr&present it cor-
rectly. Each particle is represented by its statgor X, k={1...N}

few frames. Jepson and all] propose an adaptive recursive ap- where N is the number of particles. The initiatest@ector is given
as:
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where x and yare the position and speed in x direction respalgti
and y and yin the y direction. Initially their respective suis are
null.
The second step is the prediction step, where patitle is modi-
fied according to the state model of the regiorintérest in the
video frame. This prediction corresponds to a pgagian of parti-
cles X at time t-1 and is given by:

k k
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/7tk is the noise of the transition model. Around epatticle con-

sidered as a test point, the target model correporto its grey-
level distribution is compared with the local gieyel distribution.
This comparison is carried out by using the Bhatiagya coeffi-

cient although it has been studied 17 to give biased results with

greyscale images as there are not enough informatithe histo-

gram. As the main goal of this application is &k a target and not

to define exactly the target, the use of this é¢oiefit derives from a
compromise between accuracy and lightness of thementation;
this coefficient is defined as:
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whereZt is a similarity criterion, L is the number of vakiwhich
can be taken by each pixel (256 for a standard-srale image),'p

is the model histogram and that of a local area around th¥ k

particle. This step is called the weighting or updsep.

As expressed inlfg], one simple way to obtain better results is to

use the exponential of the criterion distance:

wi =exp({1-2)) kzl 3 3)

This criterion is often used in colour-based piesurApplied to
grey-scale images, it requires more informatioréorelevant. To
meet this need, a spatial dimension can be useeéxémple a bi-
dimensional weighting window which permits to weidfe pixels
by considering theirs distances to the window eejiif].

Many factors, such as the number of particles, dhpearance
model, and the particle motion model, affect tlagking result. The
global result of the tracking is given by the mesate of the parti-
cles, corresponding to the state estimate derifrmm the particle
approximation of the posterior probability, i.e.:

N
X, = Xiw{

)
The last step is the resampling procedure whicimiedtes par-
ticles that have small weights, i.e. low probapijliand replicates
the particles with larger weights, i.e. high proiigh in the target.
This procedure consists in fact in a particle reitlistion which
preserves only the most reliable ones.
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Figure 1 — Effect of an occlusion on patrticles.

3. THE MODIFIED TECHNIQUE

The results of the standard techniqbg if acceptable with some
simple sequences. However, the algorithm failsatokt the target in
complex sequences in which there are some occhisiorhigher
appearance changes of the object to be tracketisirsection, we
present the modification made to the standard tqaknn order to
improve the tracking algorithm in such cases.

The principle of the occlusion detector we haveettgped is ob-
tained from the observation of the weighting operatesult. In the
event of occlusion or bad detection, the bi-dimemai similarity
function is levelled, as shown in Figure 1. Thisamethat the simi-
larity maximum is more difficult to detect and masensitive to
noise: it is more complicated to define where thied is located.
We therefore propose to evaluate the flatnesseofbult by using a
dispersion criterion

T SX+Sy 5)

X\ is the mean state vector of the particles, Sx@ndre the model
dimensions on the x-axis and y-axis respectively.
The second recurrent problem is target deformatioiesto the rela-
tive displacement of the target and the cameranaulg to natural
target deformations. It is therefore not possiblekéep the same
target size and form throughout the sequence asdchitcessary to
employ a deformable model in order to manage ttuiblpm [L9].
The effect of the resample step is to gather tinicfes around the
position where the presence probability is higidter this step,
particles are closer to the object, and they areyast cases, inside
it. So, a very simple way to evaluate the moded aizd its topology
is to use the position of these particles afterrgample step: a
morphological closing operation is applied in orderdefine the
object (Figure 2). The resampling depends on tfectdfe sample
size referring to the number of particles expedtedurvive from
this step; it is defined as:

N

k=

Na =t/ 3 (w)

1 (6)

The inefficient particles I?Ieff _N'Neff, ordered by weight) are
redistributed around the central target positiohis Tdistribution

goes by the normal law. The distribution centréhs initial target

one and its deviation is fixed to the third of theget size. Theory
indicates that the use of a Gaussian distributfofi3as gives us a
target covering of 99%.

Particular care must be taken in case of troubtenguhis step by
testing the similarity between the pixels inigd in the mask and
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Figure 3 — Improvement of the basic algorithm.

the model previously defined, to avoid a regionobging to the

background being considered as a part of the target

Because of the closing operation during the massiep, the target
topology is limited: the target must not includddsoor transparent
parts with background grey-level distribution. Ti@gerve satisfac-
tory operating conditions, an update step is peréar only if the

grey-level distribution in the mask is close enoughthe target
model. In this case, the grey-level model distidoutbecomes the
distribution of the area included in the mask; otlige the grey-

level model distribution remains unchanged.

The final tracking algorithm is given in Figure Gompared to the

Frame 1

Figure 4 — Tracking results of the standard algonit
on the OC2 sequence.

Frame 60 Frame 62 Frame 64
Figure 5 — Tracking results of the improved aldorit

on the OC2 sequence.

cessively by a cyclist and another pedestrian.

The third sequence is the Univ sequence which ésafrthe most
complex ones amongst the test sequences. Indeezhiyothe se-
quence is very noisy but the pedestrian who comstitthe target
undergoes also very large occlusions in additichecsimultaneous
displacement of the target and the camera.

One of the main PF configuration parameters igptréicle number
influencing the processing time. This number i asfactor of
precision on the probability of target presence.

It is important to satisfy these two points: pr@ieg time and preci-
sion. When the particle number rises, processing thcreases too
and the speed of the target averaged on the temmages reduces
because of a better target localisation with atgrearecision. A
lack of particles produces an effect of oscillatamound the real
target position and creates a dispersion of thienatd position.
The particle number must then be chosen with @tenSeveral
tests on many image sequences have demonstratetishaumber
can be defined as a target size percentage inr¢hénfage: a value
of 10% gives good results.

One of the biggest problems in standard PF tracisirtg track an
object through occlusion (Figure 4 in which the lsoxrounds the
maximal limits of the object to be tracked): thetRieker converges
to a local maximum in the background. In contrast; PF algo-
rithm tracks successfully the target (Figure 5).

The ratio of the dispersion coefficient to its mefmm the OC2 se-
guence, is presented in Figure 6. Because thet tangeonment is
changing, we use the mean of the previous dispefsitction val-
ues to set the detection threshold. The firstfglidge is caused by
the incomplete average operation. In this way, usich detection

standard algorithr{b], we can note that occlusion detection and thecan be easily determined with a simple threshatdeliminate any

masking technique have been added for improvingréuoking.

4. RESULTS

The modified algorithm was tested on numerous geadgsimage
sequences, with a target initialisation realizeahifs to a specific
region growing algorithm. Only three representateguences are
presented here.

The first sequence is the OC2 sequence in whiclareenterested
in tracking a woman. This sequence is composed’ dfrges of
720x576 pixels. The appearance of the target doeshange a
much, but it is partially occluded during approxieig 10 images.
The second sequence is the OC1 one of 175 imag@s576 pixel)
in which the objective is to track a pedestrian \ighocculted suc-

ambiguous detection, a trigger must be used. Se thaletection-
when the dispersion function rises above the trifléehe mean of
the previous values. Detection ends when it féltsva that mean.
To evaluate the tracking stability, the algoritswepeated 10 times
with each sequence, with a different initializatiohthe target. In
fact, it is assumed that the target is locatedimihgiven window.
Therefore, the operator has to realize the tamgjetton at the be-
ginning of each trial by defining a window surroimgithe object to
be tracked. The performance of the tracking algorits estimated
by calculating the tracking error and the percémbavergence.
The tracking error, expressed in number of pixedpresents the
deviation of the algorithm result from the referemesult (Ground
Truth). The Ground Truth is the ideal representatiba target over
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Figure 6 — Variation of the dispersion functionQt2.
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Figure 7 — Performance curves with our algorithm
on the OC2 sequence.

time and is defined manually. The percent of cogeece corre-
sponds to the percent of trials for which the atbar gives an accu-
rate result. The performance curves representdbkitg error with
the time RQ], [21].

The performance curves for some selected expersnoenthe OC2
sequence are shown in Figure 7, the figure indigatie tracking
error at each frame for each trial. The resultsaaely identical for
all the trials. The percent of convergence witks ggquence is 100%
though the tracking error fluctuates along the eaqe, with a peak
during the occlusion. Despite this error, our dthan permits to
track but not to locate precisely the pedestridnicivis its objec-
tive.

An example of target tracking failure with the stard algorithm on
the sequence OCL is given in Figure 8. The corratipg perform-
ance curves show that the algorithm fails wheretlage high occlu-
sions near the frame 68. In some trials, the alyoreven fails from
the occlusion with a cyclist near the frame 37.sTééquence is
enough complex with similar pixel grey-levels betwehe pedes-
trian and the background, and some occlusiongdiffio manage.
For the same sequence, some results of targetingaekth our
algorithm are shown in Figure 9. The performangeesiare given
in Figure 10. From the example and performanceesm can be
noted that the algorithm tracks successively ttgetain spite of the
tracking errors, mainly during the large occlusiamsl because of
similar grey-levels regions in the backgroundsltd be noted that
depending on the particle propagation, the trackiegult can
change, as represented near the frame 72 in Figure

For the same sequence, some results of targetingaekth our
algorithm are shown in Figure 9. The performangeesiare given
in Figure 10. From the example and performanceesm can be
noted that the algorithm tracks successively ttgetain spite of the
tracking errors, mainly during the large occlusiamsl because of
similar grey-levels regions in the backgroundsltd be noted that
depending on the particle propagation, the trackiegult can
change, as represented near the frame 72 in Figure

Some results of applying the PF algorithm on thévdequence
shown in Figure 11 illustrate the difficulty of tking the target in
this sequence. One time out of two, the percertoolergence is
zero (Figure 13), depending on the initializatiowl ¢he particle

Figure 8 — Example of target tracking failure
with the standard algorithm on the OC1 sequence.

Figure 9 — Example of target tracking success
with our algorithm on the OC1 sequence.

distribution. One tracking failure is shown in Figu5, and we can
notice the difficulty of the pedestrian trackings & the previous
sequence, some pedestrian pixels have similarlgwels to some
ones of the background, and the two occlusionsiam to manage.
Finally one tracking success is presented in Fig@re

5. CONCLUSION

We have presented an improved particle filter fraglkalgorithm
suitable for object tracking in video sequence® fibw approach is
very robust as it can overcome occlusion of thekid object, as
well as tracking noise such as varying lightingditans and view-
ing directions. On the other hand, if there isrgdaocclusion and a
part of the background is similar to the targes, dlgorithm can fail
because it is focused on the background and dde®tuon on the
target at the end of occlusion.

This algorithm is quite easy to implement and imaetconsuming.
It could be used for many applications in whichttmget cannot be
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totally extracted: the pan / tilt camera contrad igerfect example of
use. It could also be implemented to track sevao@cts; in this

case, if the objects are similar, the dispersiomction must be

changed to avoid any merging effect.
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