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ABSTRACT

The H.264 video coding standard includes new syntactic structures
that allow efficient drift-free switching among precoded sequences
at different bit-rates, making H.264 standard suitable for video
streaming in time-varying channels. In network design, a good
modeling of the video source is desirable to achieve a good dimen-
sioning. A model of the traffic generated by a bitstream switch-
ing source requires considering not only variations of the video se-
quence activity, as it occurs in modeling classic VBR sources but
also global variations of the average bit-rate. In this work we study
a synthetic source constituted by a Hidden Markov Process model-
ing a real bit-rate switching video source. Parameter estimation is
performed by the Expectation-Maximization algorithm. Model ac-
curacy is assessed by a comparison of the frame loss rate of a fixed
size buffer filled with the synthetic source and with a real H.264
video source.

1. INTRODUCTION

In these years, one of the emerging application which advances is
the video streaming service. The video streaming service consists
in a server which stores pre-encoded video sequences and transmits
them to users. The video content is represented by two or more
pre-encoded bitstreams, characterized by different encoding para-
meters, thus the server is able to choose the appropriate bitstream
to transmit according to the network conditions. In fact, a video
streaming service can be employed in networks that show a non-
stationary behaviour, such as wireless networks that usually have
a time varying structure, e.g. channel characteristics. The video
server shall adapt the bitstream characteristics to the network be-
haviour by switching dinamically among pre-encoded bitstreams
having different features, e.g. bandwith, delay, etc., but represen-
ting the same video content. Hence, the bitstreams should provide a
periodical access point. An Intra (I) coded frame can be inserted pe-
riodically in order to provide this feature. Since I frames are larger
than predicted (P) or bidirectional predicted (B) frames, their im-
pact on the bitrate is considerable.

The most recent video coding standard, namely ITU-T Rec.
H.264 or ISO/IEC MPEG-4/Part 10-AVC [1], includes new fea-
tures that make attractive its employment in many contexts, inclu-
ding video streaming applications. In fact, H.264 introduces a new
syntactic structure named Switching Picture (SP), which can be em-
ployed as a virtual access point instead of a I frame. Two kind of SP
frames exists: the primary SP frame, which provides a virtual access
point to the bitstream and is transmitted during ordinary streaming
of an assigned video bitstream, and the secondary SP frame, that is
transmitted only when bitstream switching occurs [2]. The primary
SP frame permits to reconstruct exactly the frame using as reference
frames the previous pictures of the same bitstream; the secondary
SP frame uses as reference frames the pictures that are already avai-
lable to the decoder, i.e., the previous pictures of the bitstream that
was transmitted before the switching. Since SP frames employ mo-
tocompensation to encode the picture, their impact on the bitstream
is not dramatic as for I frames, making SP frames actractive for
video streaming applications.

A good modeling of the video streaming statistical characteri-
stics is crucial in network design. In fact, video traffic suffers errors,

delay and jitter and is expensive in bandwidth allocation. During the
stage of network design all of these requirements and characteri-
stics must be taken into account in order to guarantee the negotiated
quality of service.

In this work, we model the output of a H.264 video source re-
presenting a streaming application as the output of a Markovian ran-
dom process. Such model may be a good tool in network design
since it may be employed to replace the real source with a synthetic
source that generates video traffic with similar statistical characte-
ristics to a real one. By only varying the parameters of the syn-
thetic source it is possible representing several classes of real video
sources and generate synthetic traffic as much as needed. Moreover,
the process parameter estimation can be performed only observing
short segments of real video traffic.

In literature there are many works on modeling video source in
broadcasting contexts. In [3], there’s a summary of several models
usually employed, such as Markoviand models, or TES (Transform
Expand Sample) models. In [4], an MPEG1 video source is syn-
thesized by a Markov chain, representing different video activities,
and three AR processes representing a different kind of frame (I,
P or B). First works on H.264 modeling are [5, 6, 7] which study
models employing respectively wavelets, gamma distributions and
Markov chains.

In the area of video streaming, only recently the literature has
began to analyze the dynamical behavior of the H.264 source per-
forming bitstream switching. A first preliminary approach can be
found in [8], in which a Markov chain models the whole frame
sequence by representing a frame as a state in the chain. In [9]
the authors exploit the Group Of Pictures (GOP) structure of the
video traffic by modeling the video source as a switching autore-
gressive hidden Markov process whose states represent different
kind of GOPs. Instead, in [10] a low order autoregressive process is
used to model the correlation between the frames whereas a Markov
chain governs the global averages at the GOP layer.

The aim of this work consists in modeling a H.264 video source
performing a bitstream switching and then creating a synthetic
video traffic having similar statistical characteristics of a real one.
We employ a Hidden Markov Process (HMP) to model the video
source: each state of the Markov chain represent a different kind of
GOP. The synthetic traffic is created by modulating mean and co-
variance matrix of a multivariate white Gaussian process according
to the state. Parameter estimation is carried out in the likelihood
sense by the Expectation-Maximization (EM) algorithm [12], by
observing only a segment of real video traffic. First and second or-
der moments are calculated. With respect to [10] parameter estima-
tion is performed without any knowledge of the bitstream transition
probability and observing only a part of a real video traffic.

The model is validated by a comparison of the buffer loss rate
for the synthetic source and the real source, and by calculating the
autocorrelation functions of the two sequences at the frame layer.

The remainder of this paper is organized as follows: in Section
2, we will describe the analyzed Markovian model; in Section 3
we will introduce the model validation based on a network point of
view and the main simulation results; Section 4 concludes the paper.
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Figure 1: H.264 video source Markov Model for L=2.

2. MARKOV MODEL OF H.264 VIDEO SOURCE

2.1 Source characteristics

The video source transmits data extracted from L different bit-
streams of the same video sequence, VBR encoded at different av-
erage bit-rate. A SP frame is inserted periodically to provide the
virtual access point to the bitstream, and to allow, by sending a
secondary SP frame, switching among the bitstreams. Hence, the
GOP structure is constituted by a SP frame followed by NGOP − 1
non-switching frames. We denote with ri the average bit-rate of the
i-th bitstream, i = 1, . . . ,L. Since during bitstream switching be-
tween rate ri and rate r j a secondary SP frame replaces the primary
SP frame, each bitstream will present L different kind of GOPs. We
denote the GOP with the primary SP frame with Ri and the GOPs
with the secondary SP frame with S ji, i 6= j, i, j = 1, . . . ,L. Hence,
the entire video source exhibites Ns = L2 different kind of GOPs.

Due to the presence of secondary SP frames, GOPs can’t be
generated in arbitrary order. In fact, to switch from a bitstream
to another, a switching GOP must be always generated, i.e. a Ri
GOP can’t never follow a R j GOP. In other words, the kind of the
GOP actually generated depends on the kind of the GOP previously
generated.

Hence we model the GOP sequence as a first-order homoge-
neous Markov chain in which each state corresponds to a different
kind of GOP. We denote the transition matrix, constituted by N2

s el-
ements, with Π. The probability to switch from bit-rate ri to bit-rate
r j is denoted with πi, j . An example of the model is shown in Fig.1
with L = 2, Ns = 4.

In each state, the source emits a NGOP-dimensional random
variable representing the frame sizes of the GOP associated to the
λ -th state, λ = 1, · · · ,Ns:

x[n]def=[x0[n], · · · ,xNGOP−1[n]]T

being xi[n] the size of the i-th frame of the n-th GOP of the coded
video sequence.

2.2 The Hidden Markov Process

Hidden Markov Processes (HMP) are a well-known stochastic pro-
cess family widely studied in the literature [11]. A HMP is
a discrete-time finite-state homogeneous Markov chain observed
through a discrete-time memoryless invariant channel. The state
sequence is not observed directly at the destination. Various types
of HMP are described in [11], where stationarity and ergodic con-
ditions and algorithms for parameter estimation are also fully dis-
cussed.

Since x[n], the observed variable, depends on the actual state of
the Markov chain which models the GOP sequence and the GOP

sequence is not directly observed, the proposed model is a HMP.
By denoting the GOP sequence with {λn}∞

n=0, we model the ran-
dom variable x[n] as multivariate normal mixture whose averages
are governed by the hidden Markov chain. Thus, x[n] is written as:

x[n] = Σλ e[n]+ cλ (1)

where e[n] = [e0[n], · · · ,eNGOP−1[n]]T is a standard normal random
vector modeling the innovation of the sequence. The sequence e[n]
is supposed to be white, i.e. E{e[n]e[n−m]T}= I ·δ [m], being I the
identity matrix and δ [m] the Kronecker delta. Σλ = {σ i

λ}, i =
0, . . . ,NGOP −1 and cλ = [c0

λ , . . . ,cNGOP−1
λ ]T, are respectively a ma-

trix modeling the standard deviation of the frames in a GOP and the
vector of the frames mean value. The Markov chain {λ}∞

n=0 and
the innovation process e[n] are supposed to be independent.

Ergodic conditions for the HMP reside only on the properties of
the hidden Markov chain: if the chain is stationary, irreducible and
aperiodic, the model is ergodic [11]. It is simply to show that the
Markov chain modeling the GOP sequence has in fact the properties
listed above.

Let us denote by pλ ,λ = 1, · · · ,Ns , the limit state probabili-
ties of the Markov chain. The mean vector and the autocorrelation
function for the variate x[n] in (1) are defined as follows:

mx
def= E {x[n]}

Rx[m]def= E{x[n]xT [n−m]}
(2)

and are proved to be:

mx =
Ns

∑
λ=1

pλ cλ (3)

and:

Rx[m]=
Ns

∑
λ1=1

Ns

∑
λ2=1

pλ1
Πm(λ1,λ2)cλ2

cT
λ1

+δ [m]
Ns

∑
λ=1

pλ Σλ ΣT
λ . (4)

2.3 Parameter Estimation

A crucial step in the modeling procedure is in estimating the cor-
rect parameters of the synthetic source in order to generate traffic
statistically similar to the real video coded traffic. The parameter
estimation is performed by observing a real video traffic and then
extrapolating the parameters that permits to generate traffic similar,
in the likelihood sense, to the observed traffic.

The Expectation-Maximization (EM) algorithm, originally de-
veloped by Dempster, Laird and Rubin [12] performs a local ma-
ximization of the log-likelihood function and it is frequently used

in HMP parameter estimation. Let us denote xN−1
0

def={x[n]}N−1
n=0 the

observed video traffic and Θ ∈ Θ the model parameter, where Θ
is the parameter space. In detail, Θ = {Π,Σ1, . . . ,ΣNs ,c1, . . . ,cNs}.
The EM algorithm iterates between two steps: the expectation
step (E-step) which computes the auxiliary likelihood function
Q(Θ,Θ(k)) = E{log( f (Λ,x|Θ)|x,Θ(k)} being Λ ∈ Λ a plausible
state sequence and Θ(k) the parameter estimated at the k-th step;
the maximization step (M-step) which maximizes the Q function:

Θ(k+1) = argmax
Θ

Q(Θ,Θ(k)). (5)

Algorithm is stopped when the parameters quit changing, i.e.
‖Θ(k) −Θ(k+1)‖ < ε for some ε and an appropriate measure dis-
tance.

The EM algorithm applied to HMP is illustrated in the follo-
wing steps:
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1. The probabilities α(λ |n)def= P(λn = λ |xn
0,Θ

(k)), are calculated
iteratively through the following expression:

α(λ |n)=





fλ0π(k)
λ

∑Ns
µ=1 π(k)

µ fµ0
n = 0

∑Ns
µ=1 α(µ|n−1)π(µ,λ )(k) fλn

∑Ns
µ=1 a(µ|n−1) fµn

n > 0

(6)

being

a(µ |n−1)def= P(λn = µ |xn−1
0 ,Θ(k))

=
Ns

∑
δ=1

π(δ ,µ)(k)α(δ |n−1),

and

fλ n
def= f (x[n]|λn = λ ,Θ(k)).

π(k)
λ and π(µ ,λ )(k) represent respectively the initial a-priori and

the transition probabilities estimated ad the k-th step.
2. The a-posteriori probabilities





γn(λ )def= P(λn = λ |xN−1
0 ,Θ(k))

ξn(µ ,λ )def= P(λn = µ , λn+1 = λ |xN−1
0 ,Θ(k))

are calculated through the backward iteration:





γN−1(λ )= α(λ |N−1)

ξn(µ ,λ ) = α(µ|n)π(µ,λ )(k)

a(λ |n) γn+1(λ )

γn(µ) = ∑Ns
λ=1 ξn(µ ,λ )

(7)

3. Finally the parameter Θ(k+1) is calculated according to the fol-
lowing expressions:

π(µ ,λ )(k+1) =
∑N−2

n=0 ξn(µ ,λ )

∑N−2
n=0 γn(µ)

(8)

c(k+1)
λ =

∑N−1
n=0 γn(λ )x[n]

∑N−1
n=0 γn(λ )

(9)

σ i(k+1)

λ =

√√√√∑N−1
n=0 γn(λ )(xi[n]− ci(k+1)

λ )2

∑N−1
n=0 γn(λ )

. (10)

3. SIMULATIONS

In this Section we assess the goodness of the model, that is, how
our source achieves the aim of generate traffic with the same cha-
racteristics of real video traffic. First, we evaluate the convergence
of the EM algorithm by estimating the parameter of a HMP syn-
thetic source. Next, following the approach in [4] for MPEG1
video sources, we compare the buffer load generated by the syn-
thetic source and by a real video source, in terms of observed frame
loss rate. Furthermore, the frame-level autocorrelation of the real
video source is compared with the autocorrelation of the synthetic
source. For the sake of simplicity, but without loss of generality, we
will refer to the case of L = 2.

Figure 2: P frame mean value: true value (black - star), estimation
from non-switching state (gray - circle), estimation from switching
state (gray - triangle).

3.1 EM algorithm convergence

EM algorithm needs an initial estimation of the parameter to start
the iterations: the choice of this initial estimation is crucial in or-
der to reach the global maximum of the likelihood function [12].
To start sufficiently close to the global maximum, we perform an
heuristic coarse estimation by exploiting the nominal bit-rate and
the transition matrix structure. Specifically, we set the elements of
the vector cλ to the nominal frame size and the matrix Σλ to a dia-
gonal matrix whose elements are the average of the nominal frame
size:

ci(0)

λ = rλ ·TGOP/NGOP, i = 0, . . . ,NGOP −1 (11)

σ i(0)

λ =
1
L

(
L

∑
λ=1

rλ ·TGOP/NGOP), i = 0, . . . ,NGOP −1 (12)

where TGOP is the GOP period. The transition matrix elements are
set to the uniform distribution except for the transitions not allowed
by the SP frame characteristics that are set to zero.

In the first test, we evaluate the goodness of the parameter esti-
mation algorithm by generating video traffic from a synthetic source
according to the model above and then estimating the parameters to
verify the algorithm convergence. The synthetic source switches
between L = 2 bitstreams where the frame averages are set to the
same value for the same kind of frame of a fixed bitstream, e.g. all
the P frames at the GOPs Ri and S ji have the same mean value and
standard deviation. The transition probabilities π12 and π21 are set
to 0.4 and 0.7. The observed sequence is 25 GOPs long. We set the
nominal bit-rates at 20 kbps and 50 kbps, since their closeness can
put under stress EM algorithm in identifying the bitstreams. The
algorithm estimates the entire cλ vectors and Σλ matrices, so, to
compare the estimation to the real values we average the estima-
tions of mean values and standard deviations for all the frames of
the same kind at each GOP. Figs.2-4 show the simulation results for
the mean P and SP frame value and the transition probabilities: it’s
remarkable that after 3 iterations EM algorithm converges near the
true parameter values, validating the parameter estimation for this
kind of model. Moreover, P mean value estimated in the switching
GOPs and in the non-switching GOPs are very similar.

After the assessment of the parameter estimation procedure, we
finally compare a real video source with the synthetic source by
first evaluating the frame loss rate on buffer load then comparing
the autocorrelation function at the frame layer.

3.2 Comparison between a real source and the synthetic source

A real sequence is generated using the H.264 reference encoder JM
v11.0 [13], extended profile. The Class A test sequence Bridge (far)
in QCIF format is encoded at different bit-rates at ten frames per
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Figure 3: SP frame mean value: true value (black - star), estimation
(gray - circle).

Figure 4: Transition probability estimation: true value (black -
star), estimation (gray - circle).

second, NGOP = 10, namely one SP picture is followed by nine P
pictures. The sequence is 690 frames long, and parameter estima-
tion is performed by observing only the first 25 GOP. Unlike from
[8, 9, 10], the synthetic source is unaware of the transition proba-
bilities so they must also be estimated. The bitstream switching
probabilities π1,2 and π2,1 are respectively 0.4 and 0.7. The allow-
able bit-rates we considered are 20, 50 and 100, 320 kbps; the size
of the buffer’s cell is 384 bit (48 bytes being the size of an ATM cell
without the overhead).

In order to assess the validity of the model we compare the
frame loss rate of a finite-size buffer loaded with the real source
with the frame loss rate of the same buffer loaded with the synthetic
source. Frame loss events happen due to the finite size of the buffer;
a synthetic source that shows similar statistical characteristics of a
real one will exhibit also similar frame loss rate. The buffer out-
put rate varies according to the initial and final average rates of
the VBR source. The processes of buffer filling and depleting are
shown in Fig.5. For what the depleting procedure is concerned the
stepwise curve represents the written data and the straight lines the
read data; the channel rate determines the straight lines slope. The
results based on the described buffering schemes are reported in the
following, together with the detailed simulation settings.

In Fig.6 the frame loss rates of the real source and the synthetic
source are shown. Both get similar loss rates despite the transition
probability estimation; in particular at low bit-rates the synthetic
source loss rate is almost identical to the real source. Therefore we
can assess that the model is able to reproduce a real video source
characteristics in the sense of buffer allocation.

In Figs.7 and 8 the autocorrelation functions at bit-rates 20-50

Figure 5: Buffer filling and depleting in presence of bitstream
switching.

kbps and 100-320 kbps for the real and the synthetic source are
shown for the two sets of transition probabilities. It’s remarkable
that the Markov model captures well the GOP periodicity by obser-
ving only a part of the real video sequence.

In order to test the model in presence of non stationarity we
have concatenated the test sequence Akiyo, Bridge (close) and
Bridge (far) and then we modelled this new sequence. Parameter
estimation is performed by observing the whole sequence so as to
include non stationarity not observed in the first GOPs of the se-
quence. The bitstream switching probabilities π1,2 and π2,1 are set
to 0.4 and 0.7. Fig. 9 shows the frame loss rate of the two sources.
We observe that the model achieves a good modeling (in the frame
loss rate sense) also in presence of non stationarity.

4. CONCLUSION AND FURTHER WORK

The H.264 video coding standard introduces a compression tool for
fast bitstream switching, based on the syntactic element Switching
Pictures (SP). In this work a Hidden Markov Process is employed to
model a H.264 source performing bit-rate adaptation using Switch-
ing Pictures. In the model each state represent the generation of
an entire kind of GOP. Parameter estimation is performed by the
Expectation-Maximization (EM) algorithm in order to find a local
maximization of the likelihood function observing only a part of a
real video sequence. We assessed the model performance at first by
validating EM algorithm convergence through parameter estimation
from a synthetic source which generates video traffic according to
the model, then we compared a real video source to the synthetic
source by examining their frame loss rate due to the transmission
through a fixed size buffer and finally we compared the autocorre-
lation function of the two sequences. Numerical experiments show
that the Markov GOP model provides a good approximation of the
source behavior.

Future works will direct on the modeling of a more complex
video sequence, exhibiting a larger amount of movement, scenes
changes and including intra frames, by evaluating other Markov
process, such as auto-regressive hidden Markov processes, to take
into account interframe correlation. Moreover, an ”on-line” param-
eter estimation in which the parameter is estimated iteratively at ev-
ery new GOP observed will be studied, to manage non-stationarities
of the video sequence due to, e.g., a scene change.
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