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ABSTRACT
We propose a new method for noise robust encoding of

speech at very low bit rates. The method constitutes an
extension to common speech-recognition/speech-resynthesis
schemes, which have become feasible in recent years due
to advances in speech recognition and artificial speech syn-
thesis. Most such methods, however, suffer from a signifi-
cant performance degradation in acoustic environments with
background noise.

Our proposed procedure is novel since speech enhance-
ment capabilities are built directly into the coding paradigm.
Denoising and coding are accomplished jointly by utilizinga
statistical description of the parameter space of an underly-
ing speech model (i.e. speech inventory). We conducted ex-
periments with a dedicated speaker in acoustic environments
with a signal-to-noise ratio of 10dB. The proposed method
was able to improve the perceptual quality of the encoded
speech signal by 30% in PESQ measure at an average rate
of just under 1.5 kbit/sec.

1. INTRODUCTION

Most known algorithms for the encoding of speech signals
at low bit rates fall into either of two categories: (1) para-
metric coders and (2) waveform inventory coders. Paramet-
ric coders analyze the incoming speech signal according to
a parametric speech production model (such as an autore-
gressive production model or a time-varying sinusoidal sig-
nal model) and encode and transmit the model parameters
across the channel. At the receiver the signal is resynthesized
from the encoded parameters through the model.

Classic examples for parametric coders are linear predic-
tion based schemes [1] and harmonic decomposition based
schemes [2]. Technically feasible coding methods with a re-
liable performance according to these two fundamental cod-
ing paradigms were developed in the 1980s. Prominent ex-
amples are the code excited linear prediction (CELP) ap-
proach by Schroeder and Atal [1] and the sinusoidal de-
composition approach by McAulay and Quatieri [2]. Since
the 1980s many improvements upon these two fundamen-
tal methods have been accomplished. Notable examples are
the 2400 bits/sec mixed excitation LPC vocoder (MELP) by
McCree and Barnwell [3] and Suppleeet. al. [4] and the
NATO-STANAG 4479 improvement of the LPC-10 approach
by Mouy et. al., which operates at bit rates as low as 800
bits/sec [5].

More recently waveform inventory coders have become
technically feasible at low bit rates [6, 7]. Waveform in-
ventory coding is motivated by a speech-recognition/speech-
resynthesis paradigm with an inventory style speech-
resynthesis mechanism [7]. Prominent examples for wave-

form inventory coding are the 1000 bits/sec scheme devel-
oped by Lee and Cox [6] and the 400 bits/sec scheme pro-
posed by Baudoin and El Chami [8]. The advantage of the
waveform inventory approach is that, if the codec is trained
for a dedicated speaker, the resulting speech is of signifi-
cantly more natural quality than for parametric approaches.

The disadvantage of many very low bit rate speech
codecs is, however, that their performance degrades rapidly
with increasing levels of background noise. The approach
proposed in this paper improves the noise robustness of a
very low rate speech codec by building a denoising method
into the heart of the procedure. Our method is motivated by
the waveform inventory based codec proposed by Lee and
Cox in 2001 [6] and a novel speech enhancement procedure
published by our research group in 2008/2009 [9, 10]. The
disadvantage of the method of Lee and Cox is that it re-
lies on a prosodic analysis of the incoming speech signal,
which is potentially problematic under noisy conditions. In
our method we have removed the prosodic analysis in fa-
vor of a more refined speech inventory, in conjunction with
a statistical model of the underlying parameter space. As a
result, our method has the ability to jointly encode and en-
hance an incoming speech signal. The price for the speech
enhancement capability is a moderate increase in average bit
rate from around 1000 bits/sec to just under 1500 bits/sec.

2. METHODS

To discuss the encoding and decoding methods concisely it
is necessary to introduce some mathematical notation. We
assume that we have a large record, i.e. aninventory,of pre-
recorded speechs[n] from our targeted speaker. The data is
sampled at 8kHz with a fine quantization granularity. We de-
fine a segment vectors[n] as a collection of 160 successive
samples starting atanyarbitrary time indexn.

s[n] = [ s[n] s[n+1] . . . s[n+159] ]T (1)

We also assume that we have a mappingk = cmap(n) that
assigns every frames[n] (for everytime indexn) uniquelyto
one of 50 frame clustersSk. Each frame cluster collects all
inventory frames that belong to a cluster-specificphonemic
function1. The clusters can be generated with an automated
design procedure from the given inventory2. A detailed de-
scription of how to define cmap(n) and how to generate the
clusters can be found in [9].

Sk = {s[n] |k = cmap(n)} = {s
k
1,s

k
2, . . . ,s

k
Mk

} (2)

1We are using the termphonemic functionin reference to a general, func-
tion carrying unit of a language. The groupmayor may notmatch with an
actualphonemedefined for that language.

2The design procedure is fully automated and does not requireany man-
ual tuning and/or other human intervention.
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It is assumed that the set of all framess
k
m of clusterSk is

organized in an unspecified but fixed sequential order. The
numberMk of frames in each cluster may vary. In our ex-
periments (see section 3) the average number of frames-per-
cluster was around 400,000.

Besides the organization of our inventory into clustersSk
we also need column vectors ¯ck of mel frequency cepstral
coefficients (MFCCs, [9]) that represent an average of the
MFCCs of the frames of clusterk under noisy conditions.
Again, the details of the computation of the ¯ck is comprehen-
sively described in [9].

In our coding approach we assume that we are operat-
ing on a noisy input signalx[n] that has been contaminated
with a known noise type at a reasonably constant signal-to-
noise ratio (10dB jet cockpit noise in our experiments). The
availability of training noise for our procedure allows forthe
preprocessing of the input signalx[n] with a pre-whitening
filter. The details are summarized in [10]. We use ˆx[n] to de-
note the output of the pre-whitening filter. For the sake of a
concise discussion we will also make use of the notation ˜x[n]
to indicate theunknownunderlyingcleanspeech input.

Unlike the segmentation of our inventory, which operates
on a 159 samples overlap, we are using only an 80 samples
overlap (i.e. a 50% overlap) to segment our input signals.

xi = [ x[80i] x[80i +1] . . . x[80i +159] ]T (3)

Index i = 0,1,2, . . . indicates the input frame number. Sym-
bols x̂i and x̃ are defined analogously with respect to the
pre-whitened signal ˆx[n] and the clean signal ˜x[n].

The coding paradigm of our approach is best summarized
with the following diagram:

x[n]
framing
−→

filtering
x̂i

analysis
−→ gi · s

kopt(i)
mopt(i)

resynthesis
−→ y[n] (4)

An incoming noisy input signalx[n] is pre-whitened and seg-
mented into a sequence of ˆxi vectors. An analysis procedure

then finds a frames
kopt(i)
mopt(i)

in our inventory that is, in a prob-
abilistic sense, similar to the underlying clean speech frame
x̃i . A gain factorgi is estimated to account for possible mag-

nitude discrepancies between ˜xi and s
kopt(i)
mopt(i)

. The parame-

terskopt(i) (cluster index),mopt(i) (sub-frame index), andgi
(gain) are encoded and sent across the channel. At the re-
ceiver we are concatenating the scaled inventory frames with
a 50% overlap and a post-processing procedure to resynthe-
size the desired outputy[n]. A block diagram of the proposed
coding procedure is shown in figure 1.

In the following three subsections we discuss the compu-
tation and encoding of the three parameterskopt(i), mopt(i),
andgi . The resynthesis step at the receiver is considered in
section 2.4.

2.1 Cluster Index Computation and Encoding

We begin by computingmel frequency cepstral coefficients
ci = MFCC{xi} for every incoming noisy framexi . The
MFCCs are then compared to every MFCC cluster represen-
tativec̄k with the following distance measure3:

d(i,k) = ‖ci ‖ · (1−
c

T
i c̄k

‖ci ‖ · ‖ c̄k‖
) (5)

3The distance measure proposed in equation (5) is more robustunder the
considered noise conditions than Euclidean distances [9].
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Figure 1. A block diagram of the proposed
speech coding method.

The MFCCs are used to formulate a cluster membership
hypothesis by finding the clusterp (as a function ofi) with
the smallest distanced betweenci andc̄p.

xi → p(i) if d(i, p) = min
k=1...50

d(i,k) (6)

We refer to a sequenceΦ of observed hypothetical cluster
memberships as theobserved code sequence.

Φ = [ x0 → p(0), x1 → p(1), x2 → p(2), ... ] (7)

Similarly, we can argue that there exists a “true” sequence
Ψ of underlying cluster memberships of the corresponding
clean frames ˜xi .

Ψ = [ x̃0 → k(0), x̃1 → k(1), x̃2 → k(2), ... ] (8)
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We refer toΨ as thetrue underlying state sequence.The true
underlying state sequence is, of course, not known. We can,
however, estimate it by maximizing thea posterioriproba-
bility Prob[Ψ |Φ ].

Ψ̂opt = arg max
over allΨ

Prob[Ψ |Φ ] (9)

The computation of Prob[Ψ |Φ ] becomes possible if we
know thestate transition probabilities

P[k, j ] = Prob[ x̃i+1 → j | x̃i → k] (10)

and theobservation code probabilities

Q[k,p] = Prob[xi → p| x̃i → k] (11)

for k, j, p = 1. . .50. BothP[k, j ] andQ[k,p] can be estimated
from our inventory under clean and noisy conditions. The de-
tails are described in [9]. The maximization of equation (9)
is readily accomplished with the Viterbi algorithm. The esti-
mated hidden state sequence

Ψ̂opt = [ x̃0 → kopt(0), x̃1 → kopt(1), ... ] (12)

provides us with the desired cluster indiceskopt(i).
Encoding of thekopt(i) can be accomplished in a recur-

sive fashion. WithP[k, j ] we know the followup probabil-
ity from every state at framei to the next state at frame
i + 1. Instead of defining a fixed code word for each state,
we are defining a flexible length code word for each of the
50×50= 2500 possible followup scenarios. For a fixedk we
can use the probabilitiesP[k, j ] for j=1. . . 50 to design a Huff-
man code [11] that minimizes the expected rate. As a result,
we obtain a 50× 50 “bit-matrix” of codewords that can be
used at the transmitter for encoding and at the receiver for
decoding. The code word for the cluster indexkopt(i + 1) at
framei +1 is therefore a function of the cluster indexkopt(i)
at framei, as defined through the “bit-matrix.”

In our experiments (see section 3) we found that the ex-
pected rate for the encoding of thekopt(i) under the assump-
tion of a uniform cluster probability was 2.817 bits/frame.
The average rate measured on our testing sets, however, was
significantly lowerdue to highly non-uniform cluster proba-
bilities.

2.2 Sub-Frame Index Computation and Encoding

The computation of the sub-frame indicesmopt(i) requires
the definition of a concatenation similarity between two
frame vectorsx ands as:

csim(x,s) =
∑80

m=1[x ]80+m · [s ]m
√

∑80
m=1([x ]80+m)2 ·∑80

m=1([s ]m)2
. (13)

We use the notation[x ]i to indicate thei th element of vector
x. The concatenation similarity is normalized between -1
and +1 and provides information about structural similarity
between the second half of a framex and the first half of a
followup frames.
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Figure 2. A logarithmic representation of the event count
histogram of sub-frame indices.

Similarly to the encoding ofkopt(i), we are using a recur-
sive strategy for the encoding ofmopt(i) which relies on the

availability of the decoded frame vectors
kopt(i−1)

mopt(i−1)
from the

previous framei−1. Givenmopt(i−1), kopt(i−1), andkopt(i)
we can rearrange the sequence of elements inSkopt(i) with a
permutation functionµ(q) for q = 1. . .Mkopt(i) such that the
concatenation similarity with the known previous frame is
monotonically decreasing4.

csim(s
kopt(i−1)

mopt(i−1)
,s

kopt(i)
µ(q)

) > csim(s
kopt(i−1)

mopt(i−1)
,s

kopt(i)
µ(q+1)

) (14)

We, furthermore, generate an ordered subsetS̄kopt(i) of the
total inventorySkopt(i) in clusterkopt(i) via

S̄kopt(i) = {s
kopt(i)
µ(1)

, s
kopt(i)
µ(2)

, . . . , s
kopt(i)
µ(2048)}. (15)

Note that the subset̄Skopt(i) and the permutation function
µ(q) are both available at the transmitterand the receiver.
We found that a limitation of the full inventory5 to only 2048
best matches in concatenation similarity is sufficient for the
targeted coding quality.

We proceed by identifying the frames
kopt(i)
µ(q)

in S̄kopt(i)

that best resembles the pre-whitened input frame ˆxi . Given
an inventory vectors and a matrixH that models the pre-
whitening filter operation6 we can define a similarity mea-
sure between ˆxi ands as follows:

σ(x̂i ,s) =
x̂

T
i Hs

‖Hs‖
(16)

The frame inS̄kopt(i) that best matches ˆxi is chosen to repre-
sent the input framei.

qopt = arg max
q=1...2048

σ(x̂i ,s
kopt(i)
µ(q)

)

4The probability of two different frames in a cluster to have the exact
same concatenation similarity is zero.

5The full inventory contains in average 400,000 frames per cluster.
6See [10] for the details on matrixH.
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The optimal sub-frame indexmopt(i) for framei is then found
as mopt(i) = µ(qopt). Note that we can encodemopt(i) in-
directly throughqopt, sinceµ(q) is also available at the re-
ceiver. The advantage of encodingqopt is two fold: (1)
we only need to consider a fixed range ofqopt = 1. . .2048,
and (2) the probability mass function (PMF) ofqopt is non-
uniform and we can therefore gain further compression via a
Huffman code [11].

Figure 2 shows a representation of the event counts (his-
togram) forqopt from our experimental training data (see sec-
tion 3). It is readily visible that, in the double logarithmic
representation chosen for figure 2, the data points fall ap-
proximately onto a straight line. The deviation from the line
at higher values ofqopt is explained with the increased vari-
ance of the event counts in these areas. An appropriate esti-
mate for a PMF ofqopt can be accomplished with a weighted
leased squares (WLS) fit between a straight line and the event
counts in figure 2. We useξ (qopt) to indicate the event counts
as a function ofqopt. A logarithmic index vectorγ and a log-
arithmic event count vectorχ are defined as

γ = [ log10(1) log10(2) . . . log10(2048) ]T and (17)

χ = [ log10(ξ (1)) log10(ξ (2)) . . . log10(ξ (2048)) ]T

We, furthermore, need a diagonal weight matrixW with
an exponentially decaying weight on its main diagonal, i.e.
[W]kk = 101−k for k = 1. . .2048. Symbolι indicates a 2048
dimensional vector in which each element is equal to 1. The
slopeα and the offsetβ of the line are estimated as follows:

β =
χT

Wχ · γT
Wι − χT

Wι · γT
Wχ

ιTWι · χTWχ − (χTWι)2 (18)

α =
γT

Wχ − χT
Wι ·β

χTWχ
(19)

From our training data (see section 3) we foundα =−0.6529
andβ = 2.8974. The probability mass function for the esti-
mated distribution ofqopt can then be written as

PMF(qopt) = λ 10β+α log10(qopt) (20)

in which λ is an appropriately chosen constant such that
∑2048

qopt=1 PMF(qopt) = 1. The PMF ofqopt can be used to de-
sign a Huffman codeword for eachqopt index.

In our experiments we found that the average rate of
10.357 bits/frame for the encoding ofmopt(i) via the Huff-
man code was only slightly less than the rate of a correspond-
ing fixed rate scheme at 11 bits/frame (forqopt = 1. . .2048).
The rather modest increase in additional compression may
not warrant the complexity of encoding and decoding with a
Huffman scheme. However, this small rate decrease enabled
us to push the average overall rate below 1.5 kbits/sec.

2.3 Gain Computation and Encoding

The last parameter that needs to be estimated and encoded
is the appropriate segment gaingi. We choosegi such that
the frame energy of the scaled inventory frame matches the
estimated energy of the underlying clean signal, i.e.

‖gi ·Hs
kopt(i)
mopt(i)

‖2 = ‖ x̂i ‖
2−V2 in whichV2 is the expected

frame energy of the pre-whitened noise7. Coding ofgi canbe
7We are assuming that the signal and the noise are approximately orthog-

onal. We setgi = 0 if V2 ≥ ‖ x̂i ‖
2. See [10] for details.

Table I

Huffman Code Lengths of Gain Ratio Codes.

Gain Estimated Huffman Code
Ratioεi Probability (%) Length (bits)

0.25 0.32 8
0.5 1.45 5
0.75 11.66 2

1 70.75 1
1.25 11.5 3
1.5 2.49 4
2 0.88 6

2.5 0.42 8
3 0.18 9

3.5 0.13 9
4 0.23 8

accomplished in a recursive fashion by considering the half
frame normE′

(i−1) of the previous frame and the half frame

normE′′
(i) of the current frame.

E′
(i−1) =

√

80

∑
m=1

([

gi−1 · s
kopt(i−1)

mopt(i−1)

]

80+m

)2
(21)

E′′
(i) =

√

80

∑
m=1

([

s
kopt(i)
mopt(i)

]

m

)2
(22)

We define a gain ratioεi as:

εi = E′
(i−1)/(gi ·E

′′
(i)) (23)

The gain ratio can be used as a vehicle to transmit the gain
information to the receiver. It is possible to quantize the
gain ratioεi with only 11 quantization levels without much
of a loss in perceptual quality of the reconstructed speech
at the receiver. A complete list of theεi -quantization levels
employed in our experiments, as well as a probability esti-
mate for each level from our training data is listed in table I.
Since the probability distribution for each level is highlynon-
uniform we can, again, use a Huffman code for the transmis-
sion of theεi information. The lengths of the resulting Huff-
man codewords for each level are listed in table I as well. At
the receiver we reconstruct the targeted frame gaingi from
the decodedεi with gi = E′

(i−1)/(εi ·E′′
(i)).

From our training data we estimated the expected rate
of the gain encoding to be at 1.616 bits/frame. The actual
average rate observed with our testing data, however, was
slightly higher (see section 3).

2.4 Speech Signal Resynthesis

After decoding the parameterskopt(i), mopt(i), and gi for
frame i at the receiver we can begin with the speech sig-
nal resynthesis. In a first step we are reconcatenating the

segmentsgi · s
kopt(i)
mopt(i)

with a simple 50% overlap crossfading

procedure. The resulting reconstructed speech signal ˆy[n] ex-
hibits still a significant amount of musical noise. The musi-
cal noise is (in part) due to phase discontinuities at the frame
transition boundaries. To reduce the amount of musical noise
we employ a sinusoidal analysis/resynthesis procedure which
gracefully interpolates the phases and frequencies from one
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frame to the next. The procedure is comprehensively de-
scribed in [10]. For the purpose of discussion we will call
the post-processed output of our coding schemey[n].

3. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed methods with
experiments over theCMU_ARCTIC database from the Lan-
guage Technologies Institute at Carnegie Mellon University8.
The database was generated specifically for the design of (in-
ventory based) speech synthesis systems. The corpus subset
that is used for our study stems from theUS Englishmale
speaker with identifierBDL. It contains 1132 phonetically
balanced English utterances, most of which are between one
and four seconds long. The data is appropriately low-pass
filtered and downsampled to a processing sampling rate of
8kHz. We divided the data into three strictly disjoint sets.
1002 utterances were used for the inventory design process
(equation 2, [9, 10]). A separate set of 100 utterances was
used for the estimation of the gain ratio probabilities (seeta-
ble I) and the sub-frame index statistics (see figure 2). The
remaining 30 utterances were used for codec testing.

Additive noise was taken from theNOISEX database
from the Institute for Perception-TNO, The Netherlands
Speech Research Unit, RSRE, UK9. For our experiments we
used additivebuccaneer jet cockpitnoise at a signal-to-noise
ratio of 10dB.

The coding results and average rates for the proposed
scheme are summarized in table II. We are reporting the es-
timated rates from the training data and the actually obtained
rates from the testing data (in bold face). The total average
rate for the proposed scheme is just below 1500 bits/sec with
a variation between 1382 bits/sec (low end) and 1512 bits/sec
(high end) across different utterances. As can be seen, the
estimated total rate (training) and the actually observed to-
tal rate (testing) are quite similar. The estimated rate forthe
cluster index was somewhat higher than the actual rate. The
discrepancy is due to an (unrealistic) assumption of equal
cluster probability for the estimated rate. Similarly, there is
a seemingly significant discrepancy between the estimated
rate for the gain and its actual rate. It should be pointed out,
though, that the rate difference amounts to less than one bit
per frame, which is well within the expected variability fora
flexible length code.

Lastly, an objective quality assessment was performed
with the Perceptual Evaluation of Speech Quality(PESQ)
measure. The PESQ measure is an ITU recommendation de-
veloped by Rixet. al. [12]. It is reported to correlate very
well with subjective qualityof speech. In our experiments,
the average PESQ measure across all input testing utterances
x[n] amounted to 2.02. The average PESQ measure across
all corresponding output signalsy[n] amounted to 2.64. We
observed, therefore, an improvement of around 30% in per-
ceptual quality as measured by the PESQ standard.

4. CONCLUSIONS

We presented a new method for joint coding and denoising of
speech at an average bit rate of 1500 bits/sec. The approach
is based on aninventory stylespeech analysis/resynthesis
scheme that utilizes a statistical analysis of the underlying

8The corpus is available at<http://www.festvox.org/cmuarctic>.
9The noise is available at<http://spib.rice.edu/spib/selectnoise.html>.

Table II
Average Bit Rates for Each Parameter.

Bit Rate (bits/sec)
Parameters Training Testing

Clusterkopt(i) 281.7 195.8
Sub-Framemopt(i) 1023.0 1035.7

Gaingi 161.6 226.8
Total Rate 1466.3 1458.3

parameter space. The required statistical descriptions are ob-
tained from noise enrollment and from speaker enrollment.
With experiments we have shown that the proposed method
significantly improves the perceptual quality of the coded
signal.
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